
26 | JavaScript词法：为什么12.toString会报错？
2019-03-19 winter

重学前端 进入课程

讲述：winter
时长 20:28 大小 18.76M

你好，我是 winter。

在前面的文章中，我们已经从运行时的角度了解过 JavaScript 的知识内容，在接下来的几

节课，我们来了解一下 JavaScript 的文法部分。

文法是编译原理中对语言的写法的一种规定，一般来说，文法分成词法和语法两种。

词法规定了语言的最小语义单元：token，可以翻译成“标记”或者“词”，在我的专栏文

章中，我统一把 token 翻译成词。

从字符到词的整个过程是没有结构的，只要符合词的规则，就构成词，一般来说，词法设计

不会包含冲突。词法分析技术上可以使用状态机或者正则表达式来进行，我们的课程主要是





 下载APP 

学习词法，关于它们实现的细节就不多谈了。

概述

我们先来看一看 JavaScript 的词法定义。JavaScript 源代码中的输入可以这样分类：

这个设计符合比较通用的编程语言设计方式，不过，JavaScript 中有一些特别之处，我下

面就来讲讲特别在哪里。

首先是除法和正则表达式冲突问题。我们都知道，JavaScript 不但支持除法运算符“ /

”和“ /= ”，还支持用斜杠括起来的正则表达式“ /abc/ ”。

但是，这时候对词法分析来说，其实是没有办法处理的，所以 JavaScript 的解决方案是定

义两组词法，然后靠语法分析传一个标志给词法分析器，让它来决定使用哪一套词法。

JavaScript 词法的另一个特别设计是字符串模板，模板语法大概是这样的：

WhiteSpace 空白字符

LineTerminator 换行符

Comment 注释

Token 词

IdentifierName 标识符名称，典型案例是我们使用的变量名，注意这里关键字也包含

在内了。

Punctuator 符号，我们使用的运算符和大括号等符号。

NumericLiteral 数字直接量，就是我们写的数字。

StringLiteral 字符串直接量，就是我们用单引号或者双引号引起来的直接量。

Template 字符串模板，用反引号` 括起来的直接量。

1 `Hello, ${name}`

复制代码

理论上，“ ${ } ”内部可以放任何 JavaScript 表达式代码，而这些代码是以“ } ” 结尾

的，也就是说，这部分词法不允许出现“ } ”运算符。

是否允许“ } ”的两种情况，与除法和正则表达式的两种情况相乘就是四种词法定义，所以

你在 JavaScript 标准中，可以看到四种定义：

为了解决这两个问题，标准中还不得不把除法、正则表达式直接量和“ } ”从 token 中单

独抽出来，用词上，也把原本的 Token 改为 CommonToken。

但是我认为，从理解的角度上出发，我们不应该受到影响，所以在本课，我们依然把它们归

类到 token 来理解。

对一般的语言的词法分析过程来说，都会丢弃除了 token 之外的输入，但是对 JavaScript

来说，不太一样，换行符和注释还会影响语法分析过程，这个我们将会在语法部分给你详细

讲解（所以要实现 JavaScript 的解释器，词法分析和语法分析非常麻烦，需要来回传递信

息）。

接下来我来给你详细介绍一下。

空白符号 Whitespace

说起空白符号，想必给大家留下的印象就是空格，但是实际上，JavaScript 可以支持更多

空白符号。

InputElementDiv；

InputElementRegExp；

InputElementRegExpOrTemplateTail；

InputElementTemplateTail。

<HT>(或称<TAB>) 是 U+0009，是缩进 TAB 符，也就是字符串中写的 \t 。

<VT>是 U+000B，也就是垂直方向的 TAB 符 \v，这个字符在键盘上很难打出来，所以

很少用到。

<FF>是 U+000C，Form Feed，分页符，字符串直接量中写作 \f ，现代已经很少有打

印源程序的事情发生了，所以这个字符在 JavaScript 源代码中很少用到。

此外，JavaScript 支持所有的 Unicode 中的空格分类下的空格，我们可以看下表：

很多公司的编码规范要求 JavaScript 源代码控制在 ASCII 范围内，那么，就只有<TAB>

<VT> <FF> <SP> <NBSP>五种空白可用了。

<SP>是 U+0020，就是最普通的空格了。

<NBSP>是 U+00A0，非断行空格，它是 SP 的一个变体，在文字排版中，可以避免因为

空格在此处发生断行，其它方面和普通空格完全一样。多数的 JavaScript 编辑环境都会

把它当做普通空格（因为一般源代码编辑环境根本就不会自动折行……）。HTML 中，很

多人喜欢用的 最后生成的就是它了。

<ZWNBSP>(旧称<BOM>) 是 U+FEFF，这是 ES5 新加入的空白符，是 Unicode 中的零宽

非断行空格，在以 UTF 格式编码的文件中，常常在文件首插入一个额外的 U+FEFF，解

析 UTF 文件的程序可以根据 U+FEFF 的表示方法猜测文件采用哪种 UTF 编码方式。这

个字符也叫做“bit order mark”。

换行符 LineTerminator

接下来我们来看看换行符，JavaScript 中只提供了 4 种字符作为换行符。

其中，<LF>是 U+000A，就是最正常换行符，在字符串中的\n。

<CR>是 U+000D，这个字符真正意义上的“回车”，在字符串中是\r，在一部分

Windows 风格文本编辑器中，换行是两个字符\r\n。

<LS>是 U+2028，是 Unicode 中的行分隔符。<PS>是 U+2029，是 Unicode 中的段落

分隔符。

大部分 LineTerminator 在被词法分析器扫描出之后，会被语法分析器丢弃，但是换行符会

影响 JavaScript 的两个重要语法特性：自动插入分号和“no line terminator”规则。

注释 Comment

JavaScript 的注释分为单行注释和多行注释两种：

多行注释中允许自由地出现MultiLineNotAsteriskChar，也就是除了*之外的所有字

符。而每一个*之后，不能出现正斜杠符/。

除了四种 LineTerminator 之外，所有字符都可以作为单行注释。

<LF>

<CR>

<LS>

<PS>

1

2

/* MultiLineCommentChars */
// SingleLineCommentChars

复制代码

我们需要注意，多行注释中是否包含换行符号，会对 JavaScript 语法产生影响，对于“no

line terminator”规则来说，带换行的多行注释与换行符是等效的。

标识符名称 IdentifierName

IdentifierName可以以美元符$下划线_或者 Unicode 字母开始，除了开始字符以外，

IdentifierName中还可以使用 Unicode 中的连接标记、数字、以及连接符号。

IdentifierName的任意字符可以使用 JavaScript 的 Unicode 转义写法，使用 Unicode

转义写法时，没有任何字符限制。

IdentifierName可以是Identifier、NullLiteral、BooleanLiteral或者

keyword，在ObjectLiteral中，IdentifierName还可以被直接当做属性名称使用。

仅当不是保留字的时候，IdentifierName会被解析为Identifier。

注意<ZWNJ>和<ZWJ>是 ES5 新加入的两个格式控制字符，它们都是 0 宽的。

我在前面提到了，关键字也属于这个部分，在 JavaScript 中，关键字有:

除了上述的内容之外，还有 1 个为了未来使用而保留的关键字:

在严格模式下, 有一些额外的为未来使用而保留的关键字:

1 await break case catch class const continue debugger default delete do else export exten

复制代码

1 enum

复制代码

1 implements package protected interface private public

复制代码

除了这些之外，NullLiteral（null）和BooleanLiteral（true false）也是保留

字，不能用于Identifier。

符号 Punctuator

因为前面提到的除法和正则问题, / 和 /= 两个运算符被拆分为 DivPunctuator，因为前面

提到的字符串模板问题，}也被独立拆分。加在一起，所有符号为：

数字直接量 NumericLiteral

我们来看看今天标题提出的问题，JavaScript 规范中规定的数字直接量可以支持四种写

法：十进制数、二进制整数、八进制整数和十六进制整数。

十进制的 Number 可以带小数，小数点前后部分都可以省略，但是不能同时省略，我们看

几个例子：

这都是合法的数字直接量。这里就有一个问题，也是我们标题提出的问题，我们看一段代

码：

1 { () [] ; , < > <= >= == != === !== + - * % ** ++ -- << >> >>> & | ^ ! ~ && ||

复制代码

1

2

3

.01
12.
12.01

复制代码

1 12.toString()

复制代码

这时候12. 会被当做省略了小数点后面部分的数字而看成一个整体，所以我们要想让点单

独成为一个 token，就要加入空格，这样写：

数字直接量还支持科学计数法，例如：

这里 e 后面的部分，只允许使用整数。当以0x 0b 或者0o 开头时，表示特定进制的整数：

上面这几种进制都不支持小数，也不支持科学计数法。

字符串直接量 StringLiteral

JavaScript 中的 StringLiteral 支持单引号和双引号两种写法。

1 12 .toString()

复制代码

1

2

3

10.24E+2
10.24e-2
10.24e2

复制代码

1

2

3

0xFA
0o73
0b10000

复制代码

1

2

 " DoubleStringCharacters "
 ' SingleStringCharacters '

复制代码

单双引号的区别仅仅在于写法，在双引号字符串直接量中，双引号必须转义，在单引号字符

串直接量中，单引号必须转义。字符串中其他必须转义的字符是\和所有换行符。

JavaScript 中支持四种转义形式，还有一种虽然标准没有定义，但是大部分实现都支持的

八进制转义。

第一种是单字符转义。 即一个反斜杠\后面跟一个字符这种形式。

有特别意义的字符包括有SingleEscapeCharacter所定义的 9 种，见下表：

除了这 9 种字符、数字、x 和 u 以及所有的换行符之外，其它字符经过\转义后都是自身。

正则表达式直接量 RegularExpressionLiteral

正则表达式由 Body 和 Flags 两部分组成，例如：

其中 Body 部分至少有一个字符，第一个字符不能是 *（因为 /* 跟多行注释有词法冲突）.

正则表达式有自己的语法规则，在词法阶段，仅会对它做简单解析。

正则表达式并非机械地见到/就停止，在正则表达式[]中的/就会被认为是普通字符。我们

可以看一个例子：

除了\、/ 和[三个字符之外，JavaScript 正则表达式中的字符都是普通字符。

用\和一个非换行符可以组成一个转义，[]中也支持转义。正则表达式中的 flag 在词法阶

段不会限制字符。

虽然只有 ig 几个是有效的，但是任何 IdentifierPart（Identifier 中合法的字符）序列在词

法阶段都会被认为是合法的。

字符串模板 Template

从语法结构上，Template 是个整体，其中的 ${ } 是并列关系。

但是实际上，在 JavaScript 词法中，包含 ${ } 的 Template，是被拆开分析的，如：

它在 JavaScript 中被认为是：

1 /RegularExpressionBody/g

复制代码

1 /[/]/.test("/");

复制代码

1 `a${b}c${d}e`

复制代码

它被拆成了五个部分：

实际上，这里的词法分析过程已经跟语法分析深度耦合了。

不过我们学习的时候，大可不必按照标准和引擎工程师这样去理解，可以认为模板就是一个

由反引号括起来的、可以在中间插入代码的字符串。

模板支持添加处理函数的写法，这时模板的各段会被拆开，传递给函数当参数：

模板字符串不需要关心大多数字符的转义，但是至少 ${ 和 ` 还是需要处理的。

模板中的转义跟字符串几乎完全一样，都是使用 \。

总结

1

2

3

4

5

`a${
b
}c${
d
}e`

复制代码

`a${ 这个被称为模板头

}c${ 被称为模板中段

}e` 被称为模板尾

b 和 d 都是普通标识符

1

2

3

4

5

6

function f(){
 console.log(arguments);
}

var a = "world"
f`Hello ${a}!`; // [["Hello", "!"], world]

复制代码

今天我们一起学习 JavaScript 的词法部分，这部分的内容包括了空白符号、换行符、注

释、标识符名称、符号、数字直接量、字符串直接量、正则表达式直接量、字符串模板。掌

握词法对我们平时调试代码至关重要。

最后，给你留一个问题：用零宽空格和零宽连接符、零宽非连接符，写一段好玩的代码。你

可以给我留言，我们一起讨论。

猜你喜欢

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 25 | 浏览器CSSOM：如何获取一个元素的准确位置

下一篇 27 |（小实验）理解编译原理：一个四则运算的解释器

Snow同學
2019-03-24

 37

只有我看完，还是不知道12.toString()为什么会报错嘛？

展开

🐻🔫�...
2019-03-24

 11

为啥不支持直接回复呢？

精选留言 (15)  写留言

https://time.geekbang.org/course/intro/163?utm_term=zeusMTA7L&utm_source=app&utm_medium=chongxueqianduan&utm_campaign=163-presell

这里讨论一下@Snow同学的问题 别忘了JS是允许直接写小数的，也就说12.toString() 他
无法分辨你是想要创建一个小数位为toString()的数 还是创建一个12 然后调用toString()
这种情况。也就说 JS里面的. 是拥有两种含义的 一种是小数点 一种是方法调用。 你可以…
展开

田野的嘴好...
2019-03-26

 10

零宽空格
var a = '\uFEFF',b = 'b', c = 'c', d = (b+a+c);
console.log(d); //bc
console.log(d.length); //3
console.log(d.indexOf(a)); //1

展开

华洛
2019-03-25

 7

我真的觉得这些东西已经超出普通前端对于基础的定义了。

展开

水儿涵涵
2019-03-20

 5

老师好，前端工作一年多，需要学一门后端语言吗？我是想把精力放到前端上，但是现在
很多公司都要求熟练一门后端语言，但是工作又用不上后端语言，现在有点纠结。希望给
点建议，感谢！

展开

商志远🤪
2019-03-19

 3

【理论上，“ ${ } ”内部可以放任何 JavaScript 表达式代码，而这些代码是以“ } ” 结尾
的，也就是说，这部分词法不允许出现“ } ”运算符。】
这段话没理解

展开

曾侃
2019-04-10

 2

之前没有接触过零宽字符，学完这节课后网上搜了下零宽字符的应用，看到了这篇文章
《[翻译]小心你复制的内容：使用零宽字符将用户名不可见的插入文本中》，受益匪浅。自
己用这个思路实现了一样的给字符串添加水印的功能。
代码地址：https://github.com/zengkan0703/text-watermark，有不对的地方请同学们
指正。

展开

一步
2019-03-29

 1

正则表达式冲突，这时候对词法分析来说，其实是没有办法处理的，所以 JavaScript 的解
决方案是定义两组词法，然后靠语法分析传一个标志给词法分析器，让它来决定使用哪一
套词法。

对于这句活我有个疑问，不是先进行词法分析，然后在进行语法分析吗？ …
展开

CaveShao
2019-05-20



js 中 . 有两种含义，一种是代表一个小数，一种是调用方法。12.toString() 中的 12. 会被
浏览器解析为一个省略了小数后面部分的数字。一个数字后面直接写一个方法，就像
333toString 一样，肯定会报错。
Invalid or unexpected token

是零壹呀
2019-04-24



12.toString() 会被解析成 12.（数字字面量） 和 toString()。
所以正常的写法是12..toString()才是正常的

0xAC7
2019-04-14



@Snow同學

只有我看完，还是不知道12.toString()为什么会报错嘛？

 …

展开

桂马
2019-04-02



经典的USD.replace(/\B(?=(\d{3})+$)/g,',')

展开

一步
2019-03-29



@商志远🤪
你可以尝试一下在控制台输入：`test } ${}` 看看会发生什么？

Uncaught SyntaxError: Unexpected token }

Skyling
2019-03-21



重学前端是夯实前端基础，那前端进阶方向在哪里?还是一定要修一门后端语言扩展服务
端，希望老师可以指点迷津😊

leslee
2019-03-19



是否允许“ } ”的两种情况，与除法和正则表达式的两种情况相乘就是四种词法定义，所
以你在 JavaScript 标准中，可以看到四种定义：…… 有点蒙

