
实力IT教育

邂逅Node.js
王红元

coderwhy



课前提醒
n 学习课程需要具备什么样的基础：

p 掌握JavaScript，但是会设计到一些前端基础知识；

p 上课使用Mac电脑，但是window、Mac都可以学习（遇到比较复杂的window操作，我会课下专门录制视频）

n 上课时间：

p 周一、三、五：晚上20：00 ~ 22：00

p 最好来听直播，如果没有来听直播，一定找时间回看录播，跟上上课的节奏；

p 课程目录是暂时的，不完全按照目录来讲（可能会调整顺序、可能会穿插其他知识点）；

n 相互尊重，共同进步：

p 每个人基础不一样，之前学习的经历和方向不同；

p 所讲内容是为大部分同学考虑的，同学们之间要相互尊重，共同进步；

p 虽然是从零讲解Node，但是即使学过的同学，也能学到很多之前不知道或不明白的细节；

p 课程以大纲为主，是否穿插其他知识我会根据情况决定，但是大纲内容都会讲；



什么是Node.js呢？
n 我们先看一下官方对Node.js的定义：

p Node.js是一个基于V8 JavaScript引擎的JavaScript运行时环境。

n 但是这句话对于很多同学来说，非常笼统：

p 什么是JavaScript运行环境？

p 为什么JavaScript需要特别的运行环境呢？

p 什么又是JavaScript引擎？

p 什么是V8？

n 我们先来把这些概念搞清楚，再去看Node到底是什么？



JavaScript无处不在
n Stack Overflow的创立者之一的 Jeff Atwood 在2007年提出了著名的 Atwood定律：

p Any application that can be written in JavaScript, will eventually be written in JavaScript.

p 任何可以使用JavaScript来实现的应用都最终都会使用JavaScript实现。

Ø 但是在发明之初，JavaScript的目的是应用于在浏
览器执行简单的脚本任务，对浏览器以及其中的

DOM进行各种操作，所以JavaScript的应用场景
非常受限。

Ø Atwood定律更像是一种美好的远景，在当时看
来还没有实现的可能性。

Ø 但是随着Node的出现，Atwood定律已经越来越
多的被证实是正确的。

Ø 但是为了可以理解Node.js到底是如何帮助我们
做到这一点的，我们必须了解JavaScript是如何被
运行的。



浏览器内核是什么？
n 大家有没有深入思考过：JavaScript代码，在浏览器中是如何被执行的？

n 我们经常会说：不同的浏览器有不同的内核组成

p Gecko：早期被Netscape和Mozilla Firefox浏览器使用；

p Trident：微软开发，被IE4~IE11浏览器使用，但是Edge浏览器已经转向Blink；

p Webkit：苹果基于KHTML开发、开源的，用于Safari，Google Chrome之前也在使用；

p Blink：是Webkit的一个分支，Google开发，目前应用于Google Chrome、Edge、Opera等；

p 等等...

n 事实上，我们经常说的浏览器内核指的是浏览器的排版引擎：

p 排版引擎（layout engine），也称为浏览器引擎（browser engine）、页面渲染引擎（rendering engine）

或样版引擎。



渲染引擎工作的过程
n 但是在这个执行过程中，HTML解析的时候遇到了JavaScript标签，应该怎么办呢？

p 会停止解析HTML，而去加载和执行JavaScript代码；

n 当然，为什么不直接异步去加载执行JavaScript代码，而要在这里停止掉呢？

p 这是因为JavaScript代码可以操作我们的DOM；

p 所以浏览器希望将HTML解析的DOM和JavaScript操作之后的DOM放到一起来生成最终的DOM树，而不是

频繁的去生成新的DOM树；

n那么，JavaScript代码由谁来执行呢？

p JavaScript引擎



JavaScript引擎
n 为什么需要JavaScript引擎呢？

p 事实上我们编写的JavaScript无论你交给浏览器或者Node执行，最后都是需要被CPU执行的；

p 但是CPU只认识自己的指令集，实际上是机器语言，才能被CPU所执行；

p 所以我们需要JavaScript引擎帮助我们将JavaScript代码翻译成CPU指令来执行；

n比较常见的JavaScript引擎有哪些呢？

p SpiderMonkey：第一款JavaScript引擎，由Brendan Eich开发（也就是JavaScript作者）；

p Chakra：微软开发，用于IT浏览器；

p JavaScriptCore：WebKit中的JavaScript引擎，Apple公司开发；

p V8：Google开发的强大JavaScript引擎，也帮助Chrome从众多浏览器中脱颖而出；



WebKit内核
n 这里我们先以WebKit为例，WebKit事实上由两部分组成的：

p WebCore：负责HTML解析、布局、渲染等等相关的工作；

p JavaScriptCore：解析、执行JavaScript代码；

n 看到这里，学过小程序的同学有没有感觉非常的熟悉呢？

p 在小程序中编写的JavaScript代码就是被JSCore执行的；

n另外一个强大的JavaScript引擎就是V8引擎。



V8引擎
n 我们来看一下官方对V8引擎的定义：

p V8是用C ++编写的Google开源高性能JavaScript和WebAssembly引擎，它用于Chrome和Node.js等。

p 它实现ECMAScript和WebAssembly，并在Windows 7或更高版本，macOS 10.12+和使用x64，IA-32，

ARM或MIPS处理器的Linux系统上运行。

p V8可以独立运行，也可以嵌入到任何C ++应用程序中。

https://tc39.es/ecma262/
https://webassembly.github.io/spec/core/


V8引擎的原理
n V8引擎本身的源码非常复杂，大概有超过100w行C++代码，但是我们可以简单了解一下它执行JavaScript代码的原理：

n Parse模块会将JavaScript代码转换成AST（抽象语法树），这是因为解释器并不直接认识JavaScript代码；

p 如果函数没有被调用，那么是不会被转换成AST的；

p Parse的V8官方文档：https://v8.dev/blog/scanner

n Ignition是一个解释器，会将AST转换成ByteCode（字节码）

p 同时会收集TurboFan优化所需要的信息（比如函数参数的类型信息，有了类型才能进行真实的运算）；

p 如果函数只调用一次，Ignition会执行解释执行ByteCode；

p Ignition的V8官方文档：https://v8.dev/blog/ignition-interpreter

n TurboFan是一个编译器，可以将字节码编译为CPU可以直接执行的机器码；

p 如果一个函数被多次调用，那么就会被标记为热点函数，那么就会经过TurboFan转换成优化的机器码，提高代码的执行性能；

p 但是，机器码实际上也会被还原为ByteCode，这是因为如果后续执行函数的过程中，类型发生了变化（比如sum函数原来执行的是number类型，后
来执行变成了string类型），之前优化的机器码并不能正确的处理运算，就会逆向的转换成字节码；

p TurboFan的V8官方文档：https://v8.dev/blog/turbofan-jit

n 上面是JavaScript代码的执行过程，事实上V8的内存回收也是其强大的另外一个原因，不过这里暂时先不展开讨论：

p Orinoco模块，负责垃圾回收，将程序中不需要的内存回收；

p Orinoco的V8官方文档：https://v8.dev/blog/trash-talk

https://v8.dev/blog/scanner
https://v8.dev/blog/ignition-interpreter
https://v8.dev/blog/turbofan-jit
https://v8.dev/blog/trash-talk


回顾：Node.js是什么
n回顾：官方对Node.js的定义：

p Node.js是一个基于V8 JavaScript引擎的JavaScript运行时环境。

n 也就是说Node.js基于V8引擎来执行JavaScript的代码，但是不仅仅只有V8引擎：

p 前面我们知道V8可以嵌入到任何C ++应用程序中，无论是Chrome还是Node.js，事实上都是嵌入了V8引擎

来执行JavaScript代码；

p 但是在Chrome浏览器中，还需要解析、渲染HTML、CSS等相关渲染引擎，另外还需要提供支持浏览器操作

的API、浏览器自己的事件循环等；

p 另外，在Node.js中我们也需要进行一些额外的操作，比如文件系统读/写、网络IO、加密、压缩解压文件等

操作；



浏览器和Node.js架构区别
n 我们可以简单理解规划出Node.js和浏览器的差异：



Node.js架构
n 我们来看一个单独的Node.js的架构图：

p 我们编写的JavaScript代码会经过V8引擎，再通过Node.js的Bindings，将任务放到Libuv的事件循环中；

p libuv（Unicorn Velociraptor—独角伶盗龙）是使用C语言编写的库；

p libuv提供了事件循环、文件系统读写、网络IO、线程池等等内容；

p 具体内部代码的执行流程，我会在后续专门讲解事件和异步IO的原理中详细讲解；



Node.js的应用场景
n Node.js的快速发展也让企业对Node.js技术越来越重视，在前端招聘中通常会对Node.js有一定的要求，特别对于高级前端开发

工程师，Node.js更是必不可少的技能：

p 目前前端开发的库都是以node包的形式进行管理；

p npm、yarn工具成为前端开发使用最多的工具；

p 越来越多的公司使用Node.js作为web服务器开发；

p 大量项目需要借助Node.js完成前后端渲染的同构应用；

p 资深前端工程师需要为项目编写脚本工具（前端工程师编写脚本通常会使用JavaScript，而不是Python或者shell）；

p 很多企业在使用Electron来开发桌面应用程序；



Node的安装
n Node.js是在2009年诞生的，目前最新的版本是分别是LTS 12.19.0以及Current 14.13.1：

p LTS版本：相对稳定一些，推荐线上环境使用该版本；

p Current版本：最新的Node版本，包含很多新特性；

n 这些我们选择什么版本呢？

p 如果你是学习使用，可以选择current版本；

p 如果你是公司开发，建议选择LTS版本；

n Node的安装方式有很多：

p 可以借助于一些操作系统上的软件管理工具，比如Mac上的homebrew，Linux上的yum、dnf等；

p 也可以直接下载对应的安装包下载安装；

n 我们选择下载安装，下载自己操作系统的安装包直接安装就可以了：

p window选择.msi安装包，Mac选择.pkg安装包，Linux会在后续部署中讲解；

p 安装过程中会配置环境变量（让我们可以在命令行使用）；并且会安装npm（Node Package Manager）工具；



Node的版本工具
n 在实际开发学习中，我们只需要使用一个Node版本来开发或者学习即可。

n 但是，如果你希望通过可以快速更新或切换多个版本时，可以借助于一些工具：

p nvm：Node Version Manager；

p n：Interactively Manage Your Node.js Versions（交互式管理你的Node.js版本）

n问题：这两个工具都不支持window

p n：n is not supported natively on Windows.

p nvm：nvm does not support Windows

n Window的同学怎么办？

p 1.并不是每个人都需要安装多个版本，在课堂上我会以最新的Current版本讲解几乎所有内容；

p 2.接下来我会在Mac上面演练n工具的使用，后面我会录制一个在window上使用nvm的视频；



版本管理工具：n
n安装n：直接使用npm安装即可

n安装最新的lts版本：

p 前面添加的sudo是权限问题；

p 可以两个版本都安装，之后我们可以通过n快速在两个版本间切换；



JavaScript代码执行
n 如果我们编写一个js文件，里面存放JavaScript代码，如何来执行它呢？

n 目前我们知道有两种方式可以执行：

p 将代码交给浏览器执行；

p 将代码载入到node环境中执行；

n 如果我们希望把代码交给浏览器执行：

p 需要通过让浏览器加载、解析html代码，所以我们需要创建一个html文件；

p 在html中通过script标签，引入js文件；

p 当浏览器遇到script标签时，就会根据src加载、执行JavaScript代码；

n 如果我们希望把js文件交给node执行：

p 首先电脑上需要安装Node.js环境，安装过程中会自动配置环境变量；

p 可以通过终端命令node js文件的方式来载入和执行对应的js文件；



Node的REPL
n 什么是REPL呢？感觉挺高大上

p REPL是Read-Eval-Print Loop的简称，翻译为“读取-求值-输出”循环；

p REPL是一个简单的、交互式的编程环境；

n 事实上，我们浏览器的console就可以看成一个REPL。

n Node也给我们提供了一个REPL环境，我们可以在其中演练简单的代码。



Node程序传递参数
n正常情况下执行一个node程序，直接跟上我们对应的文件即可：

n 但是，在某些情况下执行node程序的过程中，我们可能希望给node传递一些参数：

n 如果我们这样来使用程序，就意味着我们需要在程序中获取到传递的参数：

p 获取参数其实是在process的内置对象中的；

p 如果我们直接打印这个内置对象，它里面包含特别的信息：

p 其他的一些信息，比如版本、操作系统等大家可以自行查看，后面用到一些其他的我们还会提到；

n 现在，我们先找到其中的argv属性：

p 我们发现它是一个数组，里面包含了我们需要的参数；

node index.js

node index.js env=development coderwhy



为什么叫argv呢？
n 你可能有个疑问，为什么叫argv呢？

n 在C/C++程序中的main函数中，实际上可以获取到两个参数：

p argc：argument counter的缩写，传递参数的个数；

p argv：argument vector的缩写，传入的具体参数。

ü vector翻译过来是矢量的意思，在程序中表示的是一种数据结构。

ü 在C++、Java中都有这种数据结构，是一种数组结构；

ü 在JavaScript中也是一个数组，里面存储一些参数信息；

n 我们可以在代码中，将这些参数信息遍历出来，使用：



Node的输出
n console.log

p 最常用的输入内容的方式：console.log

n console.clear

p 清空控制台：console.clear

n console.trace

p 打印函数的调用栈：console.trace

n还有一些其他的方法，其他的一些console方法，可以自己在下面学习研究一下。

p https://nodejs.org/dist/latest-v14.x/docs/api/console.html

https://nodejs.org/dist/latest-v14.x/docs/api/console.html


常见的全局对象
n Node中给我们提供了一些全局对象，方便我们进行一些操作：

p 这些全局对象，我们并不需要从一开始全部一个个学习；

p 某些全局对象并不常用，某些全局对象我们会在后续学习中讲

到；

p 比如module、exports、require()会在模块化中讲到；

p 比如Buffer后续会专门讲到；



特殊的全局对象
n 为什么我称之为特殊的全局对象呢？

p 这些全局对象可以在模块中任意使用，但是在命令行交互中是不可以使用的；

p 包括：__dirname、__filename、exports、module、require()

n __dirname：获取当前文件所在的路径：

p 注意：不包括后面的文件名

n __filename：获取当前文件所在的路径和文件名称：

p 注意：包括后面的文件名称



常见的全局对象
n process对象：process提供了Node进程中相关的信息：

p 比如Node的运行环境、参数信息等；

p 后面在项目中，我也会讲解，如何将一些环境变量读取到 process 的 env 中；

n console对象：提供了简单的调试控制台，在前面讲解输入内容时已经学习过了。

p 更加详细的查看官网文档：https://nodejs.org/api/console.html

n 定时器函数：在Node中使用定时器有好几种方式：

p setTimeout(callback, delay[, ...args])：callback在delay毫秒后执行一次；

p setInterval(callback, delay[, ...args])：callback每delay毫秒重复执行一次；

p setImmediate(callback[, ...args])：callbackI / O事件后的回调的“立即”执行；

ü这里先不展开讨论它和setTimeout(callback, 0)之间的区别；

ü 因为它涉及到事件循环的阶段问题，我会在后续详细讲解事件循环相关的知识；

p process.nextTick(callback[, ...args])：添加到下一次tick队列中；

ü具体的讲解，也放到事件循环中说明；

https://nodejs.org/api/console.html


global对象
n global是一个全局对象，事实上前端我们提到的process、console、setTimeout等都有被放到global中：



global和window的区别
n 在浏览器中，全局变量都是在window上的，比如有document、setInterval、setTimeout、alert、console等等

n 在Node中，我们也有一个global属性，并且看起来它里面有很多其他对象。

n 但是在浏览器中执行的JavaScript代码，如果我们在顶级范围内通过var定义的一个属性，默认会被添加到window

对象上：

n 但是在node中，我们通过var定义一个变量，它只是在当前模块中有一个变量，不会放到全局中：


