
实力IT教育

包管理工具详解
王红元

coderwhy

共享你的代码
n 我们已经学习了在JavaScript中可以通过模块化的方式将代码划分成一个个小的结构：

p 在以后的开发中我们就可以通过模块化的方式来封装自己的代码，并且封装成一个工具；

p 这个工具我们可以让同事通过导入的方式来使用，甚至你可以分享给世界各地的程序员来使用；

n 如果我们分享给世界上所有的程序员使用，有哪些方式呢？

n 方式一：上传到GitHub上、其他程序员通过GitHub下载我们的代码手动的引用；

p 缺点是大家必须知道你的代码GitHub的地址，并且从GitHub上手动下载；

p 需要在自己的项目中手动的引用，并且管理相关的依赖；

p 不需要使用的时候，需要手动来删除相关的依赖；

p 当遇到版本升级或者切换时，需要重复上面的操作；

p 显然，上面的方式是有效的，但是这种传统的方式非常麻烦，并且容易出错；

n 方式二：使用一个专业的工具来管理我们的代码

p 我们通过工具将代码发布到特定的位置；

p 其他程序员直接通过工具来安装、升级、删除我们的工具代码；

包管理工具npm
n 显然，通过第二种方式我们可以更好的管理自己的工具包，其他人也可以更好的使用我们的工具包。

n 包管理工具npm：

p Node Package Manager，也就是Node包管理器；

p 但是目前已经不仅仅是Node包管理器了，在前端项目中我们也在使用它来管理依赖的包；

p 比如express、koa、react、react-dom、axios、babel、webpack等等；

n npm管理的包可以在哪里查看、搜索呢？

p https://www.npmjs.com/

p 这是我们安装相关的npm包的官网；

n npm管理的包存放在哪里呢？

p 我们发布自己的包其实是发布到registry上面的；

p 当我们安装一个包时其实是从registry上面下载的包；

https://www.npmjs.com/

项目配置文件
n 事实上，我们每一个项目都会有一个对应的配置文件，无论是前端项目还是后端项目：

p 这个配置文件会记录着你项目的名称、版本号、项目描述等；

p 也会记录着你项目所依赖的其他库的信息和依赖库的版本号；

n 这个配置文件在Node环境下面（无论是前端还是后端）就是package.json

n 我们这里来看几个例子：

p Vue cli4创建的项目

p Vue cli2创建的项目

p npm init –y创建的package.json

几个配置文件

npm init #创建时填写信息
npm init -y # 所有信息使用默认的

常见的属性
n必须填写的属性：name、version

p name是项目的名称；

p version是当前项目的版本号；

p description是描述信息，很多时候是作为项目的基本描述；

p author是作者相关信息（发布时用到）；

p license是开源协议（发布时用到）；

n private属性：

p private属性记录当前的项目是否是私有的；

p 当值为true时，npm是不能发布它的，这是防止私有项目或模块发布出去的方式；

常见的属性
nmain属性：

p 设置程序的入口。

p 很多人会有疑惑，webpack不是会自动找到程序的入口吗？

ü 这个入口和webpack打包的入口并不冲突；

ü 它是在你发布一个模块的时候会用到的；

ü 比如我们使用axios模块 const axios = require('axios');

ü 实际上是找到对应的main属性查找文件的；

常见的属性
n scripts属性

p scripts属性用于配置一些脚本命令，以键值对的形式存在；

p 配置后我们可以通过 npm run 命令的key来执行这个命令；

p npm start和npm run start的区别是什么？

ü 它们是等价的；

ü 对于常用的 start、 test、stop、restart可以省略掉run直接通过 npm start等方式运行；

n dependencies属性

p dependencies属性是指定无论开发环境还是生成环境都需要依赖的包；

p 通常是我们项目实际开发用到的一些库模块；

p 与之对应的是devDependencies；

n devDependencies属性

p 一些包在生成环境是不需要的，比如webpack、babel等；

p 这个时候我们会通过 npm install webpack --save-dev，将它安装到devDependencies属性中；

疑问：那么在生成环境如何保证不安装这些包呢？
生成环境不需要安装时，我们需要通过
npm install --production 来安装文件的依赖；

版本管理的问题
n 我们会发现安装的依赖版本出现：^2.0.3或~2.0.3，这是什么意思呢？

n npm的包通常需要遵从semver版本规范：

p semver：https://semver.org/lang/zh-CN/

p npm semver：https://docs.npmjs.com/misc/semver

n semver版本规范是X.Y.Z：

p X主版本号（major）：当你做了不兼容的 API 修改（可能不兼容之前的版本）；

p Y次版本号（minor）：当你做了向下兼容的功能性新增（新功能增加，但是兼容之前的版本）；

p Z修订号（patch）：当你做了向下兼容的问题修正（没有新功能，修复了之前版本的bug）；

n 我们这里解释一下 ^和~的区别：

p ^x.y.z：表示x是保持不变的，y和z永远安装最新的版本；

p ~x.y.z：表示x和y保持不变的，z永远安装最新的版本；

https://semver.org/lang/zh-CN/
https://docs.npmjs.com/misc/semver

常见的属性
n engines属性

p engines属性用于指定Node和NPM的版本号；

p 在安装的过程中，会先检查对应的引擎版本，如果不符合就会报错；

p 事实上也可以指定所在的操作系统 "os" : ["darwin", "linux"]，只是很少用到；

n browserslist属性

p 用于配置打包后的JavaScript浏览器的兼容情况，参考；

p 否则我们需要手动的添加polyfills来让支持某些语法；

p 也就是说它是为webpack等打包工具服务的一个属性（这里不是详细讲解webpack等工具的工作原理，所以

不再给出详情）；

npm install 命令
n 安装npm包分两种情况：

p 全局安装（global install）： npm install yarn -g;

p 项目（局部）安装（local install）： npm install

n全局安装

p 全局安装是直接将某个包安装到全局：

p 比如yarn的全局安装：

n 但是很多人对全局安装有一些误会：

p 通常使用npm全局安装的包都是一些工具包：yarn、webpack等；

p 并不是类似于 axios、express、koa等库文件；

p 所以全局安装了之后并不能让我们在所有的项目中使用 axios等库；

npm install yarn -g

项目安装
n 项目安装会在当前目录下生产一个 node_modules 文件夹，我们之前讲解require查找顺序时有讲解过这个包在什

么情况下被查找；

n局部安装分为开发时依赖和生产时依赖：

安装开发和生产依赖
npm install axios
npm i axios

开发依赖
npm install webpack --save-dev
npm install webpack -D
npm i webpack –D

根据package.json中的依赖包
npm install

npm install 原理
n 很多同学之前应该已经会了 npm install <package>，但是你是否思考过它的内部原理呢？

p 执行 npm install它背后帮助我们完成了什么操作？

p 我们会发现还有一个成为package-lock.json的文件，它的作用是什么？

p 从npm5开始，npm支持缓存策略（来自yarn的压力），缓存有什么作用呢？

n 这是一幅我画出的根据 npm install 的原理图：

npm install 原理图解析
n npm install会检测是有package-lock.json文件：

p 没有lock文件

ü分析依赖关系，这是因为我们可能包会依赖其他的包，并且多个包之间会产生相同依赖的情况；

ü 从registry仓库中下载压缩包（如果我们设置了镜像，那么会从镜像服务器下载压缩包）；

ü获取到压缩包后会对压缩包进行缓存（从npm5开始有的）；

ü将压缩包解压到项目的node_modules文件夹中（前面我们讲过，require的查找顺序会在该包下面查找）

p 有lock文件

ü检测lock中包的版本是否和package.json中一致（会按照semver版本规范检测）；

Ø 不一致，那么会重新构建依赖关系，直接会走顶层的流程；

ü 一致的情况下，会去优先查找缓存

Ø没有找到，会从registry仓库下载，直接走顶层流程；

ü 查找到，会获取缓存中的压缩文件，并且将压缩文件解压到node_modules文件夹中；

package-lock.json
n package-lock.json文件解析：

n name：项目的名称；

n version：项目的版本；

n lockfileVersion：lock文件的版本；

n requires：使用requires来跟着模块的依赖关系；

n dependencies：项目的依赖

p 当前项目依赖axios，但是axios依赖follow-
redireacts；

p axios中的属性如下：

ü version表示实际安装的axios的版本；

ü resolved用来记录下载的地址，registry仓库
中的位置；

ü requires记录当前模块的依赖；

ü integrity用来从缓存中获取索引，再通过索引
去获取压缩包文件；

npm其他命令
n 我们这里再介绍几个比较常用的：

n 卸载某个依赖包：

n 强制重新build

n 清除缓存

n npm的命令其实是非常多的：

p https://docs.npmjs.com/cli-documentation/cli

p 更多的命令，可以根据需要查阅官方文档

npm uninstall package
npm uninstall package --save-dev
npm uninstall package -D

npm rebuild

npm cache clean

https://docs.npmjs.com/cli-documentation/cli

Yarn工具
n 另一个node包管理工具yarn：

p yarn是由Facebook、Google、Exponent 和 Tilde 联合推出了一个新的 JS 包管理工具；

p yarn 是为了弥补 npm 的一些缺陷而出现的；

p 早期的npm存在很多的缺陷，比如安装依赖速度很慢、版本依赖混乱等等一系列的问题；

p 虽然从npm5版本开始，进行了很多的升级和改进，但是依然很多人喜欢使用yarn；

cnpm工具
n由于一些特殊的原因，某些情况下我们没办法很好的从 https://registry.npmjs.org下载下来一些需要的包。

n 查看npm镜像：

n 我们可以直接设置npm的镜像：

n 但是对于大多数人来说（比如我），并不希望将npm镜像修改了：

p 第一，不太希望随意修改npm原本从官方下来包的渠道；

p 第二，担心某天淘宝的镜像挂了或者不维护了，又要改来改去；

n 这个时候，我们可以使用cnpm，并且将cnpm设置为淘宝的镜像：

npm config get registry # npm config get registry

npm config set registry https://registry.npm.taobao.org

npm install -g cnpm --registry=https://registry.npm.taobao.org
cnpm config get registry # https://r.npm.taobao.org/

npx工具
n npx是npm5.2之后自带的一个命令。

p npx的作用非常多，但是比较常见的是使用它来调用项目中的某个模块的指令。

n 我们以webpack为例：

p 全局安装的是webpack5.1.3

p 项目安装的是webpack3.6.0

n 如果我在终端执行 webpack --version使用的是哪一个命令呢？

p 显示结果会是 webpack 5.1.3，事实上使用的是全局的，为什么呢？

p 原因非常简单，在当前目录下找不到webpack时，就会去全局找，并且执行命令；

n 如何解决这个问题呢？

解决局部命令执行
n 那么如何使用项目（局部）的webpack，常见的是两种方式：

p 方式一：明确查找到node_module下面的webpack

p 方式二：在 scripts定义脚本，来执行webpack；

n 方式一：在终端中使用如下命令（在项目根目录下）

n 方式二：修改package.json中的scripts

n 方式三：使用npx

n npx的原理非常简单，它会到当前目录的node_modules/.bin目录下查找对应的命令；

./node_modules/.bin/webpack --version

"scripts": {
"webpack": "webpack --version"

}

npx webpack --version

