
实力IT教育

Stream
王红元

coderwhy



认识Stream
n 什么是流呢？

p 我们的第一反应应该是流水，源源不断的流动；

p 程序中的流也是类似的含义，我们可以想象当我们从一个文件中读取数据时，文件的二进制（字节）数据会源源不
断的被读取到我们程序中；

p 而这个一连串的字节，就是我们程序中的流；

n 所以，我们可以这样理解流：

p 是连续字节的一种表现形式和抽象概念；

p 流应该是可读的，也是可写的；

n 在之前学习文件的读写时，我们可以直接通过 readFile或者 writeFile方式读写文件，为什么还需要流呢？

p 直接读写文件的方式，虽然简单，但是无法控制一些细节的操作；

p 比如从什么位置开始读、读到什么位置、一次性读取多少个字节；

p 读到某个位置后，暂停读取，某个时刻恢复读取等等；

p 或者这个文件非常大，比如一个视频文件，一次性全部读取并不合适；



文件读写的Stream
n 事实上Node中很多对象是基于流实现的：

p http模块的Request和Response对象；

p process.stdout对象；

n 官方：另外所有的流都是EventEmitter的实例：

n Node.js中有四种基本流类型：

p Writable：可以向其写入数据的流（例如 fs.createWriteStream()）。

p Readable：可以从中读取数据的流（例如 fs.createReadStream()）。

p Duplex：同时为Readable和的流Writable（例如 net.Socket）。

p Transform：Duplex可以在写入和读取数据时修改或转换数据的流（例如zlib.createDeflate()）。

n 这里我们通过fs的操作，讲解一下Writable、Readable，另外两个大家可以自行学习一下。

https://nodejs.org/dist/latest-v15.x/docs/api/stream.html
https://nodejs.org/dist/latest-v15.x/docs/api/fs.html
https://nodejs.org/dist/latest-v15.x/docs/api/stream.html
https://nodejs.org/dist/latest-v15.x/docs/api/fs.html
https://nodejs.org/dist/latest-v15.x/docs/api/stream.html
https://nodejs.org/dist/latest-v15.x/docs/api/net.html
https://nodejs.org/dist/latest-v15.x/docs/api/stream.html
https://nodejs.org/dist/latest-v15.x/docs/api/zlib.html


Readable
n 之前我们读取一个文件的信息：

n 这种方式是一次性将一个文件中所有的内容都读取到程序（内存）中，但是这种读取方式就会出现我们之前提到的

很多问题：

p 文件过大、读取的位置、结束的位置、一次读取的大小；

n 这个时候，我们可以使用 createReadStream，我们来看几个参数，更多参数可以参考官网：

p start：文件读取开始的位置；

p end：文件读取结束的位置；

p highWaterMark：一次性读取字节的长度，默认是64kb；



Readable的使用
n 创建文件的Readable

n 我们如何获取到数据呢？

p 可以通过监听data事件，获取读取到的数据；

n 也可以做一些其他的操作：监听其他事件、暂停或者恢复



Writable
n 之前我们写入一个文件的方式是这样的：

n 这种方式相当于一次性将所有的内容写入到文件中，但是这种方式也有很多问题：

p 比如我们希望一点点写入内容，精确每次写入的位置等；

n 这个时候，我们可以使用 createWriteStream，我们来看几个参数，更多参数可以参考官网：

p flags：默认是w，如果我们希望是追加写入，可以使用 a或者 a+；

p start：写入的位置；



Writable的使用
n 我们进行一次简单的写入

n 你可以监听open事件：



close的监听
n 我们会发现，我们并不能监听到 close 事件：

p 这是因为写入流在打开后是不会自动关闭的；

p 我们必须手动关闭，来告诉Node已经写入结束了；

p 并且会发出一个 finish 事件的；

n 另外一个非常常用的方法是 end：end方法相当于做了两步操作： write传入的数据和调用close方法；



pipe方法
n正常情况下，我们可以将读取到的 输入流，手动的放到 输出流中进行写入：

n 我们也可以通过pipe来完成这样的操作：


