
实力IT教育

MySQL多表操作
王红元

coderwhy

聚合函数
n 聚合函数表示对值集合进行操作的组（集合）函数。

华为手机价格的平均值
SELECT AVG(price) FROM `products` WHERE brand = '华为';
计算所有手机的平均分
SELECT AVG(score) FROM `products`;

手机中最低和最高分数
SELECT MAX(score) FROM `products`;
SELECT MIN(score) FROM `products`;

计算总投票人数
SELECT SUM(voteCnt) FROM `products`;

计算所有条目的数量
SELECT COUNT(*) FROM `products`;
华为手机的个数
SELECT COUNT(*) FROM `products` WHERE brand = '华为';

认识Group By
n 事实上聚合函数相当于默认将所有的数据分成了一组：

p 我们前面使用avg还是max等，都是将所有的结果看成一组来计算的；

p 那么如果我们希望划分多个组：比如华为、苹果、小米等手机分别的平均价格，应该怎么来做呢？

p 这个时候我们可以使用 GROUP BY；

n GROUP BY通常和聚合函数一起使用：

p 表示我们先对数据进行分组，再对每一组数据，进行聚合函数的计算；

n 我们现在来提一个需求：

p 根据品牌进行分组；

p 计算各个品牌中：商品的个数、平均价格

p 也包括：最高价格、最低价格、平均评分；

SELECT brand,
COUNT(*) as count,
ROUND(AVG(price),2) as avgPrice,
MAX(price) as maxPrice,
MIN(price) as minPrice,
AVG(score) as avgScore

FROM `products` GROUP BY brand;

Group By的约束
n 使用我们希望给Group By查询到的结果添加一些约束，那么我们可以使用：HAVING。

n 比如：如果我们还希望筛选出平均价格在4000以下，并且平均分在7以上的品牌：

SELECT brand,
COUNT(*) as count,
ROUND(AVG(price),2) as avgPrice,
MAX(price) as maxPrice,
MIN(price) as minPrice,
AVG(score) as avgScore

FROM `products` GROUP BY brand
HAVING avgPrice < 4000 and avgScore > 7;

创建多张表
n 假如我们的上面的商品表中，对应的品牌还需要包含其他的信息：

p 比如品牌的官网，品牌的世界排名，品牌的市值等等；

n 如果我们直接在商品中去体现品牌相关的信息，会存在一些问题：

p 一方面，products表中应该表示的都是商品相关的数据，应该又另外一张表来表示brand的数据；

p 另一方面，多个商品使用的品牌是一致时，会存在大量的冗余数据；

n 所以，我们可以将所有的批评数据，单独放到一张表中，创建一张品牌的表：

CREATE TABLE IF NOT EXISTS `brand`(
id INT PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(20) NOT NULL,
website VARCHAR(100),
worldRank INT

);

插入模拟数据
n 插入模拟的数据：

p 这里我是刻意有一些商品数据的品牌是没有添加的；

p 并且也可以添加了一些不存在的手机品牌；

INSERT INTO `brand` (name, website, worldRank) VALUES ('华为', 'www.huawei.com', 1);
INSERT INTO `brand` (name, website, worldRank) VALUES ('小米', 'www.mi.com', 10);
INSERT INTO `brand` (name, website, worldRank) VALUES ('苹果', 'www.apple.com', 5);
INSERT INTO `brand` (name, website, worldRank) VALUES ('oppo', 'www.oppo.com', 15);
INSERT INTO `brand` (name, website, worldRank) VALUES ('京东', 'www.jd.com', 3);
INSERT INTO `brand` (name, website, worldRank) VALUES ('Google', 'www.google.com', 8);

创建外键
n 将两张表联系起来，我们可以将products中的brand_id关联到brand中的id：

p 如果是创建表添加外键约束，我们需要在创建表的()最后添加如下语句；

p 如果是表已经创建好，额外添加外键：

n 现在我们可以将products中的brand_id关联到brand中的id的值：

FOREIGN KEY (brand_id) REFERENCES brand(id)

ALTER TABLE `products` ADD FOREIGN KEY (brand_id) REFERENCES brand(id);

UPDATE `products` SET `brand_id` = 1 WHERE `brand` = '华为';
UPDATE `products` SET `brand_id` = 4 WHERE `brand` = 'OPPO';
UPDATE `products` SET `brand_id` = 3 WHERE `brand` = '苹果';
UPDATE `products` SET `brand_id` = 2 WHERE `brand` = '小米';

外键存在时更新和删除数据
n 我们来思考一个问题：

p 如果products中引用的外键被更新了或者删除了，这个时候会出现什么情况呢？

n 我们来进行一个更新操作：比如将华为的id更新为100

n 这个时候执行代码是报错的：

UPDATE `brand` SET id = 100 WHERE id = 1;

如何进行更新呢？
n 如果我希望可以更新呢？我们需要修改on delete或者on update的值；

n 我们可以给更新或者删除时设置几个值：

p RESTRICT（默认属性）：当更新或删除某个记录时，会检查该记录是否有关联的外键记录，有的话会报错的，

不允许更新或删除；

p NO ACTION：和RESTRICT是一致的，是在SQL标准中定义的；

p CASCADE：当更新或删除某个记录时，会检查该记录是否有关联的外键记录，有的话：

ü更新：那么会更新对应的记录；

ü删除：那么关联的记录会被一起删除掉；

p SET NULL：当更新或删除某个记录时，会检查该记录是否有关联的外键记录，有的话，将对应的值设置为

NULL；

如果修改外键的更新时的动作呢？
n第一步：查看表结构：

p 这个时候，我们可以知道外键的名称是products_ibfk_1。

n第二步：删除之前的外键

n第三步：添加新的外键，并且设置新的action

执行命令
SHOW CREATE TABLE `products`;

删除之前的外键
ALTER TABLE `products` DROP FOREIGN KEY products_ibfk_1;

ALTER TABLE `products` ADD FOREIGN KEY (brand_id)
REFERENCES brand(id)
ON UPDATE CASCADE ON DELETE CASCADE;

什么是多表查询？
n 如果我们希望查询到产品的同时，显示对应的品牌相关的信息，因为数据是存放在两张表中，所以这个时候就需要

进行多表查询。

n 如果我们直接通过查询语句希望在多张表中查询到数据，这个时候是什么效果呢？

SELECT * FROM `products`, `brand`;

默认多表查询的结果
n 我们会发现一共有648条数据，这个数据量是如何得到的呢？

p 第一张表的108条 * 第二张表的6条数据；

p 也就是说第一张表中每一个条数据，都会和第二张表中的每一条数据结合一次；

p 这个结果我们称之为 笛卡尔乘积，也称之为直积，表示为 X*Y；

n但是事实上很多的数据是没有意义的，比如华为和苹果、小米的品牌结合起来的数据就是没有意义的，我们可不可

以进行筛选呢？

p 使用where来进行筛选；

p 这个表示查询到笛卡尔乘积后的结果中，符合products.brand_id = brand.id条件的数据过滤出来；

SELECT * FROM `products`, `brand` WHERE `products`.brand_id = `brand`.id;

多表之间的连接
n 事实上我们想要的效果并不是这样的，而且表中的某些特定的数据，这个时候我们可以使用 SQL JOIN 操作：

p 左连接

p 右连接

p 内连接

p 全连接

左连接
n 如果我们希望获取到的是左边所有的数据（以左表为主）：

p 这个时候就表示无论左边的表是否有对应的brand_id的值对应右边表的id，左边的数据都会被查询出来；

p 这个也是开发中使用最多的情况，它的完整写法是LEFT [OUTER] JOIN，但是OUTER可以省略的；

SELECT * FROM `products` LEFT JOIN `brand` ON `products`.brand_id = `brand`.id;

SELECT * FROM `products` LEFT JOIN `brand` ON `products`.brand_id = `brand`.id
WHERE brand.id IS NULL;

右连接
n 如果我们希望获取到的是右边所有的数据（以由表为主）：

p 这个时候就表示无论左边的表中的brand_id是否有和右边表中的id对应，右边的数据都会被查询出来；

p 右连接在开发中没有左连接常用，它的完整写法是RIGHT [OUTER] JOIN，但是OUTER可以省略的；

SELECT * FROM `products` RIGHT JOIN `brand` ON `products`.brand_id = `brand`.id;

SELECT * FROM `products` RIGHT JOIN `brand` ON `products`.brand_id = `brand`.id
WHERE products.id IS NULL;

内连接
n 事实上内连接是表示左边的表和右边的表都有对应的数据关联：

p 内连接在开发中偶尔也会常见使用，看自己的场景。

p 内连接有其他的写法：CROSS JOIN或者 JOIN都可以；

n 我们会发现它和之前的下面写法是一样的效果：

n但是他们代表的含义并不相同：

p SQL语句一：内连接，代表的是在两张表连接时就会约束数据之间的关系，来决定之后查询的结果；

p SQL语句二：where条件，代表的是先计算出笛卡尔乘积，在笛卡尔乘积的数据基础之上进行where条件的帅

选；

SELECT * FROM `products` INNER JOIN `brand` ON `products`.brand_id = `brand`.id;

SELECT * FROM `products`, `brand` WHERE `products`.brand_id = `brand`.id;

全连接
n SQL规范中全连接是使用FULL JOIN，但是MySQL中并没有对它的支持，我们需要使用 UNION 来实现：

(SELECT * FROM `products` LEFT JOIN `brand` ON `products`.brand_id = `brand`.id)
UNION
(SELECT * FROM `products` RIGHT JOIN `brand` ON `products`.brand_id = `brand`.id);

(SELECT * FROM `products` LEFT JOIN `brand` ON `products`.brand_id = `brand`.id WHERE `brand`.id IS NULL)
UNION
(SELECT * FROM `products` RIGHT JOIN `brand` ON `products`.brand_id = `brand`.id WHERE `products`.id IS NULL);

多对多关系数据准备
n 在开发中我们还会遇到多对多的关系：

p 比如学生可以选择多门课程，一个课程可以被多个学生选择；

p 这种情况我们应该在开发中如何处理呢？

n 我们先建立好两张表

创建学生表
CREATE TABLE IF NOT EXISTS `students`(

id INT PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(20) NOT NULL,
age INT

);

创建课程表
CREATE TABLE IF NOT EXISTS `courses`(

id INT PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(20) NOT NULL,
price DOUBLE NOT NULL

);

INSERT INTO `students` (name, age) VALUES('why', 18);
INSERT INTO `students` (name, age) VALUES('tom', 22);
INSERT INTO `students` (name, age) VALUES('lilei', 25);
INSERT INTO `students` (name, age) VALUES('lucy', 16);
INSERT INTO `students` (name, age) VALUES('lily', 20);

INSERT INTO `courses` (name, price) VALUES ('英语', 100);
INSERT INTO `courses` (name, price) VALUES ('语文', 666);
INSERT INTO `courses` (name, price) VALUES ('数学', 888);
INSERT INTO `courses` (name, price) VALUES ('历史', 80);

创建关系表
n 我们需要一个关系表来记录两张表中的数据关系：

创建关系表
CREATE TABLE IF NOT EXISTS `students_select_courses`(

id INT PRIMARY KEY AUTO_INCREMENT,
student_id INT NOT NULL,
course_id INT NOT NULL,
FOREIGN KEY (student_id) REFERENCES students(id) ON UPDATE CASCADE,
FOREIGN KEY (course_id) REFERENCES courses(id) ON UPDATE CASCADE

);

why 选修了 英文和数学
INSERT INTO `students_select_courses` (student_id, course_id) VALUES (1, 1);
INSERT INTO `students_select_courses` (student_id, course_id) VALUES (1, 3);

lilei选修了 语文和数学和历史
INSERT INTO `students_select_courses` (student_id, course_id) VALUES (3, 2);
INSERT INTO `students_select_courses` (student_id, course_id) VALUES (3, 3);
INSERT INTO `students_select_courses` (student_id, course_id) VALUES (3, 4);

查询多对多数据（一）
n 查询多条数据：

查询所有的学生选择的所有课程
SELECT

stu.id studentId, stu.name studentName, cs.id courseId, cs.name courseName, cs.price coursePrice
FROM `students` stu
JOIN `students_select_courses` ssc

ON stu.id = ssc.student_id
JOIN `courses` cs

ON ssc.course_id = cs.id;

查询所有的学生选课情况
SELECT

stu.id studentId, stu.name studentName, cs.id courseId, cs.name courseName, cs.price coursePrice
FROM `students` stu
LEFT JOIN `students_select_courses` ssc

ON stu.id = ssc.student_id
LEFT JOIN `courses` cs

ON ssc.course_id = cs.id;

查询多对多数据（二）
n 查询单个学生的课程：

why同学选择了哪些课程
SELECT

stu.id studentId, stu.name studentName, cs.id courseId, cs.name courseName, cs.price coursePrice
FROM `students` stu
JOIN `students_select_courses` ssc

ON stu.id = ssc.student_id
JOIN `courses` cs

ON ssc.course_id = cs.id
WHERE stu.id = 1;

lily同学选择了哪些课程(注意，这里必须用左连接，事实上上面也应该使用的是左连接)
SELECT

stu.id studentId, stu.name studentName, cs.id courseId, cs.name courseName, cs.price coursePrice
FROM `students` stu
LEFT JOIN `students_select_courses` ssc

ON stu.id = ssc.student_id
LEFT JOIN `courses` cs

ON ssc.course_id = cs.id
WHERE stu.id = 5;

查询多对多数据（三）
n 查询哪些学生没有选择和哪些课程没有被选择：

哪些学生是没有选课的
SELECT

stu.id studentId, stu.name studentName, cs.id courseId, cs.name courseName, cs.price coursePrice
FROM `students` stu
LEFT JOIN `students_select_courses` ssc

ON stu.id = ssc.student_id
LEFT JOIN `courses` cs

ON ssc.course_id = cs.id
WHERE cs.id IS NULL;

查询哪些课程没有被学生选择
SELECT

stu.id studentId, stu.name studentName, cs.id courseId, cs.name courseName, cs.price coursePrice
FROM `students` stu
RIGHT JOIN `students_select_courses` ssc

ON stu.id = ssc.student_id
RIGHT JOIN `courses` cs

ON ssc.course_id = cs.id
WHERE stu.id IS NULL;

