
34 | 深入理解微服务架构：银弹 or 焦油坑？
2018-07-14 李运华

从0开始学架构 进入课程

讲述：黄洲君
时长 13:44 大小 6.29M

微服务是近几年非常火热的架构设计理念，大部分人认为是 Martin Fowler 提出了微服务

概念，但事实上微服务概念的历史要早得多，也不是 Martin Fowler 创造出来的，Martin

只是将微服务进行了系统的阐述（原文链接：

https://martinfowler.com/articles/microservices.html）。不过不能否认 Martin 在推动

微服务起到的作用，微服务能火，Martin 功不可没。

微服务的定义相信你早已耳熟能详，参考维基百科，我就来简单梳理一下微服务的历史吧

（https://en.wikipedia.org/wiki/Microservices#History）：



2005 年：Dr. Peter Rodgers 在 Web Services Edge 大会上提出了“Micro-Web-

Services”的概念。

2011 年：一个软件架构工作组使用了“microservice”一词来描述一种架构模式。



 下载APP 

https://martinfowler.com/articles/microservices.html
https://en.wikipedia.org/wiki/Microservices#History%EF%BC%89%EF%BC%9A

由于微服务的理念中也包含了“服务”的概念，而 SOA 中也有“服务”的概念，我们自然

而然地会提出疑问：微服务与 SOA 有什么关系？有什么区别？为何有了 SOA 还要提微服

务？这几个问题是理解微服务的关键，否则如果只是跟风拿来就用，既不会用，也用不好，

用了不但没有效果，反而还可能有副作用。

今天我们就来深入理解微服务，到底是银弹还是焦油坑。

微服务与 SOA 的关系

对于了解过 SOA 的人来说，第一次看到微服务这个概念肯定会有所疑惑：为何有了 SOA

还要提微服务呢？等到简单看完微服务的介绍后，可能很多人更困惑了：这不就是 SOA

吗？

关于 SOA 和微服务的关系和区别，大概分为下面几个典型的观点。

如下图所示，这种观点认为 SOA 是一种架构理念，而微服务是 SOA 理念的一种具体实现

方法。例如，“微服务就是使用 HTTP RESTful 协议来实现 ESB 的 SOA”“使用 SOA 来

构建单个系统就是微服务”和“微服务就是更细粒度的 SOA”。

2012 年：同样是这个架构工作组，正式确定用“microservice”来代表这种架构。

2012 年：ThoughtWorks 的 James Lewis 针对微服务概念在 QCon San Francisco

2012 发表了演讲。

2014 年：James Lewis 和 Martin Fowler 合写了关于微服务的一篇学术性的文章，详细

阐述了微服务。

微服务是 SOA 的实现方式

微服务是去掉 ESB 后的 SOA

如下图所示，这种观点认为传统 SOA 架构最广为人诟病的就是庞大、复杂、低效的 ESB，

因此将 ESB 去掉，改为轻量级的 HTTP 实现，就是微服务。

如下图所示，这种观点认为微服务和 SOA 只是有点类似，但本质上是不同的架构设计理

念。相似点在于下图中交叉的地方，就是两者都关注“服务”，都是通过服务的拆分来解决

可扩展性问题。本质上不同的地方在于几个核心理念的差异：是否有 ESB、服务的粒度、

架构设计的目标等。

以上观点看似都有一定的道理，但都有点差别，到底哪个才是准确的呢？单纯从概念上是难

以分辨的，我来对比一下 SOA 和微服务的一些具体做法，再来看看到底哪一种观点更加符

合实际情况。

1. 服务粒度

整体上来说，SOA 的服务粒度要粗一些，而微服务的服务粒度要细一些。例如，对一个大

型企业来说，“员工管理系统”就是一个 SOA 架构中的服务；而如果采用微服务架构，

则“员工管理系统”会被拆分为更多的服务，比如“员工信息管理”“员工考勤管理”“员

工假期管理”和“员工福利管理”等更多服务。

2. 服务通信

微服务是一种和 SOA 相似但本质上不同的架构理念

SOA 采用了 ESB 作为服务间通信的关键组件，负责服务定义、服务路由、消息转换、消息

传递，总体上是重量级的实现。微服务推荐使用统一的协议和格式，例如，RESTful 协议、

RPC 协议，无须 ESB 这样的重量级实现。Martin Fowler 将微服务架构的服务通讯理念称

为“Smart endpoints and dumb pipes”，简单翻译为“聪明的终端，愚蠢的管道”。

之所以用“愚蠢”二字，其实就是与 ESB 对比的，因为 ESB 太强大了，既知道每个服务的

协议类型（例如，是 RMI 还是 HTTP），又知道每个服务的数据类型（例如，是 XML 还

是 JSON），还知道每个数据的格式（例如，是 2017-01-01 还是 01/01/2017），而微服

务的“dumb pipes”仅仅做消息传递，对消息格式和内容一无所知。

3. 服务交付

SOA 对服务的交付并没有特殊要求，因为 SOA 更多考虑的是兼容已有的系统；微服务的

架构理念要求“快速交付”，相应地要求采取自动化测试、持续集成、自动化部署等敏捷开

发相关的最佳实践。如果没有这些基础能力支撑，微服务规模一旦变大（例如，超过 20 个

微服务），整体就难以达到快速交付的要求，这也是很多企业在实行微服务时踩过的一个明

显的坑，就是系统拆分为微服务后，部署的成本呈指数上升。

4. 应用场景

SOA 更加适合于庞大、复杂、异构的企业级系统，这也是 SOA 诞生的背景。这类系统的

典型特征就是很多系统已经发展多年，采用不同的企业级技术，有的是内部开发的，有的是

外部购买的，无法完全推倒重来或者进行大规模的优化和重构。因为成本和影响太大，只能

采用兼容的方式进行处理，而承担兼容任务的就是 ESB。

微服务更加适合于快速、轻量级、基于 Web 的互联网系统，这类系统业务变化快，需要快

速尝试、快速交付；同时基本都是基于 Web，虽然开发技术可能差异很大（例如，Java、

C++、.NET 等），但对外接口基本都是提供 HTTP RESTful 风格的接口，无须考虑在接口

层进行类似 SOA 的 ESB 那样的处理。

综合上述分析，我将 SOA 和微服务对比如下：

因此，我们可以看到，SOA 和微服务本质上是两种不同的架构设计理念，只是在“服

务”这个点上有交集而已，因此两者的关系应该是上面第三种观点。

其实，Martin Fowler 在他的微服务文章中，已经做了很好的提炼：

（https://martinfowler.com/articles/microservices.html）

上述英文的三个关键词分别是：small、lightweight、automated，基本上浓缩了微服务

的精华，也是微服务与 SOA 的本质区别所在。

通过前面的详细分析和比较，似乎微服务本质上就是一种比 SOA 要优秀很多的架构模式，

那是否意味着我们都应该把架构重构为微服务呢？

其实不然，SOA 和微服务是两种不同理念的架构模式，并不存在孰优孰劣，只是应用场景

不同而已。我们介绍 SOA 时候提到其产生历史背景是因为企业的 IT 服务系统庞大而又复

杂，改造成本很高，但业务上又要求其互通，因此才会提出 SOA 这种解决方案。如果我们

将微服务的架构模式生搬硬套到企业级 IT 服务系统中，这些 IT 服务系统的改造成本可能远

远超出实施 SOA 的成本。

微服务的陷阱

单纯从上面的对比来看，似乎微服务大大优于 SOA，这也导致了很多团队在实践时不加思

考地采用微服务——既不考虑团队的规模，也不考虑业务的发展，也没有考虑基础技术的

支撑，只是觉得微服务很牛就赶紧来实施，以为实施了微服务后就什么问题都解决了，而一

旦真正实施后才发现掉到微服务的坑里面去了。

我们看一下微服务具体有哪些坑：

1. 服务划分过细，服务间关系复杂

In short, the microservice architectural style is an approach to

developing a single application as a suite of small services, each

running in its own process and communicating with lightweight

mechanisms, often an HTTP resource API. These services are built

around business capabilities and independently deployable by fully

automated deployment machinery.

https://martinfowler.com/articles/microservices.html

服务划分过细，单个服务的复杂度确实下降了，但整个系统的复杂度却上升了，因为微服务

将系统内的复杂度转移为系统间的复杂度了。

从理论的角度来计算，n 个服务的复杂度是 n×(n-1)/2，整体系统的复杂度是随着微服务数

量的增加呈指数级增加的。下图形象了说明了整体复杂度：

粗粒度划分服务时，系统被划分为 3 个服务，虽然单个服务较大，但服务间的关系很简

单；细粒度划分服务时，虽然单个服务小了一些，但服务间的关系却复杂了很多。

2. 服务数量太多，团队效率急剧下降

微服务的“微”字，本身就是一个陷阱，很多团队看到“微”字后，就想到必须将服务拆分

得很细，有的团队人员规模是 5 ~ 6 个人，然而却拆分出 30 多个微服务，平均每个人要维

护 5 个以上的微服务。

这样做给工作效率带来了明显的影响，一个简单的需求开发就需要涉及多个微服务，光是微

服务之间的接口就有 6 ~ 7 个，无论是设计、开发、测试、部署，都需要工程师不停地在

不同的服务间切换。

3. 调用链太长，性能下降

由于微服务之间都是通过 HTTP 或者 RPC 调用的，每次调用必须经过网络。一般线上的业

务接口之间的调用，平均响应时间大约为 50 毫秒，如果用户的一起请求需要经过 6 次微服

开发工程师要设计多个接口，打开多个工程，调试时要部署多个程序，提测时打多个包。

测试工程师要部署多个环境，准备多个微服务的数据，测试多个接口。

运维工程师每次上线都要操作多个微服务，并且微服务之间可能还有依赖关系。

务调用，则性能消耗就是 300 毫秒，这在很多高性能业务场景下是难以满足需求的。为了

支撑业务请求，可能需要大幅增加硬件，这就导致了硬件成本的大幅上升。

4. 调用链太长，问题定位困难

系统拆分为微服务后，一次用户请求需要多个微服务协同处理，任意微服务的故障都将导致

整个业务失败。然而由于微服务数量较多，且故障存在扩散现象，快速定位到底是哪个微服

务故障是一件复杂的事情。下面是一个典型样例。

Service C 的数据库出现慢查询，导致 Service C 给 Service B 的响应错误，Service B 给

Service A 的响应错误，Service A 给用户的响应错误。我们在实际定位时是不会有样例图

中这么清晰的，最开始是用户报错，这时我们首先会去查 Service A。导致 Service A 故障

的原因有很多，我们可能要花半个小时甚至 1 个小时才能发现是 Service B 返回错误导致

的。于是我们又去查 Service B，这相当于重复 Service A 故障定位的步骤……如此循环下

去，最后可能花费了几个小时才能定位到是 Service C 的数据库慢查询导致了错误。

如果多个微服务同时发生不同类型的故障，则定位故障更加复杂，如下图所示。

Service C 的数据库发生慢查询故障，同时 Service C 到 Service D 的网络出现故障，此时

到底是哪个原因导致了 Service C 返回 Error 给 Service B，需要大量的信息和人力去排

查。

5. 没有自动化支撑，无法快速交付

如果没有相应的自动化系统进行支撑，都是靠人工去操作，那么微服务不但达不到快速交付

的目的，甚至还不如一个大而全的系统效率高。例如：

6. 没有服务治理，微服务数量多了后管理混乱

信奉微服务理念的设计人员总是强调微服务的 lightweight 特性，并举出 ESB 的反例来证

明微服务的优越之处。但具体实践后就会发现，随着微服务种类和数量越来越多，如果没有

服务治理系统进行支撑，微服务提倡的 lightweight 就会变成问题。主要问题有：

如果以上场景都依赖人工去管理，整个系统将陷入一片混乱，最终的解决方案必须依赖自动

化的服务管理系统，这时就会发现，微服务所推崇的“lightweight”，最终也发展成和

ESB 几乎一样的复杂程度。

小结

没有自动化测试支撑，每次测试时需要测试大量接口。

没有自动化部署支撑，每次部署 6 ~ 7 个服务，几十台机器，运维人员敲 shell 命令逐台

部署，手都要敲麻。

没有自动化监控，每次故障定位都需要人工查几十台机器几百个微服务的各种状态和各种

日志文件。

服务路由：假设某个微服务有 60 个节点，部署在 20 台机器上，那么其他依赖的微服务

如何知道这个部署情况呢？

服务故障隔离：假设上述例子中的 60 个节点有 5 个节点发生故障了，依赖的微服务如何

处理这种情况呢？

服务注册和发现：同样是上述的例子，现在我们决定从 60 个节点扩容到 80 个节点，或

者将 60 个节点缩减为 40 个节点，新增或者减少的节点如何让依赖的服务知道呢？

今天我为你讲了微服务与 SOA 的关系以及微服务实践中的常见陷阱，希望对你有所帮助。

这就是今天的全部内容，留一道思考题给你吧，你们的业务有采用微服务么？谈谈具体实践

过程中有什么经验和教训。

欢迎你把答案写到留言区，和我一起讨论。相信经过深度思考的回答，也会让你对知识的理

解更加深刻。（编辑乱入：精彩的留言有机会获得丰厚福利哦！）

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 33 | 传统的可扩展架构模式：分层架构和SOA

下一篇 35 | 微服务架构最佳实践 - 方法篇

Tom 置顶

2018-08-10
 3

我们公司的实践是比较粗粒度的子系统或服务，基本上没有太细粒度的微服务，以webapi
为主。感觉更像微服务架构，只是服务粒度比较粗，从概念上算是SOA还是微服务架构

精选留言 (59)  写留言

呢？

作者回复: 我理解算微服务，千万不要理解为微服务就是将服务拆的很细，后面有具体实践技巧介

绍这部分

鹅米豆发
2018-07-16

 30

对于一个新事物的诞生，本能地套用已有的知识。特别是一个并不简单的东西，这算是一
种高效的入门方法。微服务架构其实相当复杂，我是分成好几个阶段理解。

1、第一阶段，微服务架构就是去掉了ESB的SOA架构，只不过是通信的方式和结构变了。
对于初级的使用者而言，这样理解没有太大问题。 …
展开

作者回复: 他们架构师是水货😂你的理解和分析是对的，后一篇就讲了

空档滑行
2018-07-14

 18

之前一家公司搞了一次完整的微服务改造，享受到了一些好处，但是文中说到的问题，大
部分都碰上了。
先说下好处，原来的单体应用都服务化了，扩容简单很多。功能隔离后之前一个bug导致
系统挂掉的现象没了。问题责任定位划分的更清楚，比如之前大量慢sql无人管，现在通过
监控快速找到开发责任人。 …
展开

凡凡
2018-07-16

 7

说到微服务，切分的粒度和基础设施都致关重要。

经历的项目有创业初期的单体服务，也有不太完善的服务切分的系统，也有微服务基础设
施相对完善的公司。
 …
展开

作者回复: 把HTTP转RPC做成规则，别硬编码每个接口，例如，规定HTTP URL

为/service/interface/method?para1=xxx¶2=yyy

ant
2018-07-16

 6

我们是一家社交公司，后端加厚的演变符合dubbo官网的那张图，在Mvc架构坚持了一年
后，业务越来越大，工程越来越臃肿。后面我们一致同意进行服务话，开始用了dubbo。
后面由于决策层的原因没有上，后面来了个架构师，又重启了服务拆分，到现在已经用于
生产。我们使用的是Spring cloud，现在拆分暴露了很多问题:
1、个别服务没有熔断出来，出现过雪崩效应 …
展开

作者回复: 用户会用脚投票的😂😂

Neal
2018-07-16

 4

1. 数据库拆不开
2. 人手不够就两人

孤独患者
2018-07-15

 4

我们公司的平台就是使用微服务架构，十多二十个微服务，但是没有自动化部署，监控，
自动化测试这些，而且每次报错日志也特别难找，但是我们那架构师却不重视这些，只想
继续升级平台的功能

作者回复: 让你们架构师来订阅架构专栏😂😂😂

木头旮瘩
2018-12-12

 3

让我想起了一次面试经历，一家小公司，技术团队大概7 8个人，然后他们要进行微服务架

构改造，我问他们:你们这样满足康威定理么？他们一脸懵逼……我就果断闪人了

作者回复: 你可以去改造他们😂

Jussi Lee
2018-09-18

 3

我们项目之前是把数据采集，和展示都是我们Java组去写的。后面公司为了统一，把采集
部分交给了.net组。我们Java只负责数据展示。但是我们这边又按照领导的要求把整个业
务拆分为模板解析层-》api层——》终端层。现在每次最烦的事就是找bug。一直感觉现
阶段我们的任务和目标没有这么庞大，这与架构中的简单和合适原则想违背。搞的整个项
目组一直在反复的开发工作中。都很心累

展开

作者回复: 很好的案例👍

正是那朵玫...
2018-07-14

 3

我们的业务也算是微服务吧， 接手项目时，已经有好多服务，主要采用的语言有java，
php，nodejs，存在以下问题：
1、没有一个统一的网关服务，前端请求后端服务都需要后端的服务A来充当安全校验，权
限校验等，A服务充当了多重职责，变的职责不明确了，后来抽出网关系统，负责平台统一
的流量入口。在构建微服务网关系统是至关重要的。 …
展开

作者回复: spring全家桶，你值得拥有😂

冬阳(Wolf...
2018-11-08

 2

我个人比较认同康威定律，微服务的拆分粒度一定要和组织结构匹配起来，组织结构和开
发管理模式是微服务粒度的最重要参考指标之一。

展开

作者回复: 是的，康威定律和微服务拆分是相关的

三棱镜
2018-08-17

 2

我们目前全部微服务，踩坑踩了不少，拆分服务同时要把自动化运维系统和多维度监控系
统，包括问题定位跟踪系统建立起来，要不然拆了就是噩梦。

展开

作者回复: 感同身受啊😄

旭东
2018-08-09

 2

个人觉得SOA只是提出了面向服务的编程，到但没有对服务粒度的定义，以及服务的治理
问题做深入的分析。
提出微服务主要是为了解决面向服务架构后如何能够在实际工程中带来真正的红利。
微服务对SOA的技术关键点给出了指导意见。
 …
展开

作者回复: SOA是完整的解决方案哦，IBM等公司卖ESB都卖了好多钱😀

波波安
2018-07-15

 2

我们用的是dubbo。最开始系统要快速上线，所以服务拆分的不彻底。订单，商品，店铺
等这些服务都没有进行拆分。就把支付和营销两个服务拆分出来了。服务拆分不彻底经常
导致一个业务有问题。整个系统都用不了。

展开

作者回复: 不是拆分有问题，是配套基础设施有问题

narry
2018-07-14

 2

我弄微服务遇到最大的坑，就是jvm与docker兼容性不好，导致每个微服务会消耗过多不
必要的内存，我感觉从资源消耗上来说，java开发的微服务都不能算是微服务了，最近在
转向go来改造

作者回复: 这还真是第一次听说jvm与docker不兼容，看看是不是有bug

乘风
2018-12-11

 1

16年时，架构师引入了微服务架构，架构设计分为三层：网关层、业务处理层、数据处理
层（getaway->ls>ds），自上而下依赖，业务层之间也互相依赖，构建过程中发现引入了
分布式事务和调用链长（调用链的消耗时间无法接受），经常无故报错，定位问题慢，测
试复杂等问题，而我们的大多数业务相对简单，所以重新划分服务粒度，分为两层：网关
层：提供路由功能，业务处理层：处理请求，业务层中间可以相互调用，当出现有出现…
展开

作者回复: 是的，粒度太重要了

小寞子。(...
2018-09-21

 1

我看现在istio还有 kubernetes好像就是为了解决上面微服务的毛病的。 包括服务之间的
关系 自动化测试部署，服务可视化差错。容错。熔断等等。 。 还有关于soa和微服务的区
别，有个说法是 soa基于企业系统差分，微服务基于business服务拆分

展开

作者回复: 是的，istio就是想屏蔽微服务的基础设施，让业务系统不需要感知基础设施。

bussiness可大可小，甚至可以比soa还大，因此不要这样理解微服务

森林
2018-09-20

 1

概念是会一直演化的，我相信最初的SOA的概念就是作者所说的形式，但是仅仅从"面向服

务的架构"这几个字来说，难道他就不能是微服务的超集么？在微服务名字出来前，用
dubbo的系统是怎么称呼其架构的？微服务定义一开始还要求一定是基于Rest的，难道用
dubbo的就不是了？所以个人觉得，理解历史可以，但限定于SOA就一定是基于ESB做协
议转换联通各个系统的一种架构是不妥的。

展开

作者回复: 如果从历史产生的背景去理解，那就每个人都有自己的理解，没法沟通交流呢😊

孙振超
2018-09-09

 1

之前是一个系统承载所有功能，对应几十个开发，每次的发布都会有一个痛苦的冲突解决
的过程。

采用微服务首先是理念转变的过程，从一个系统一个数据库切分为多个系统多个数据库，
确实会给问题定位排查带上很大的麻烦，每次一个业务功能的更迭需要多个系统共同参…
展开

作者回复: spring全家桶，你值得拥有😀

诗坤
2018-08-21

 1

我记得有一次做业务，当时不知道什么原因，整体使用微服务，当时是个新业务，完全从0
开始，没有任何用户基础，当时按照业务把服务拆成了7.8个微服务，但没有自动化，服务
还是部署在一台机器上，服务之间也没有服务治理，服务之间的调用链很长，开发就4.5个
人，定位问题花费时间长，典型的基础服务也跟不上。现在想想，当时团队不知道咋想
的，觉得微服务比较新就上了，完全没有考虑到产生的问题。还好后来这块业务黄了。…
展开

作者回复: 你们缺少一个真正的架构师😂

