一、用户操作：
用户锁定和解锁/密码设置：

alter user [USER] account lock;

alter user [USER] account unlock;

alter user scott identified by tiger;

select * from dba_users; --查看用户信息表

创建用户：create user [USER] identified by [PASSWD];

删除用户：drop user [USER] cascade;

简单赋权

对于权限的赋予和收回语法如下:

grant [权限] to [用户]

revoke [权限] from [用户]

在oracle里有俩个最著名的角色: connect、resource 除了dba之外的最大角色。

查看当前用户的所有权限：select * from session_privs; 我们与scott用户下的权限进行对比，发现多了一个 unlimited，其含义是拥有所有表空间配合的使用权限，这个权限太大了，一般来讲需要进行回收，然后重新进行分配一个表空间配合。

revoke unlimited tablespace from [USER];

查看用户缺省表空间：select username,default_tablespace from user_users;

alter user [USER] quota 10m on users;。

我们想让新建用户拥有对scott.emp表的查询权限：grant select on scott.emp to [USER];

我们想让新建用户拥有对scott的建立表操作：grant create any table to tim;

我们想让新建用户拥有对scott.emp表的修改权限：grant select, update(sal) on emp to tim;

<注意：可以精确到字段>

[image: image1.png](1) FHRRITFESEY: WITH ADMIN OPTION EX <45 EABR>
—-FEFIES
SQL> create user timl identified by timl;
User created

SQL> create user timz identified by tim2;
User created

—-sysf FH/Roreate session &tinl, timiffFHRcreate session Hrinz; <EREERIREEETE>
SQL> grant create session to timl vith admin option;

Grant succeeded

SoL> grant create session to timz;

Grant succeeded

—-iZFffEeint . tinz A LIER. #/5sys W Btini fcreate sessionfUR, timi BETHER, (Brinzif TLHLZER.
SOL> revoke create session from timi;
Revoke succeeded

<BBR>
SoL> conn timi/timt
ERROR:

ORA-01045: fF/ TiM1 %% CREATE SESSION H/R: ERBELE
SgL> conn timz/tinz

S
<HB> RERIR: EXBEK

[image: image2.png](2) W RIRIRFIFESENL: WITH GRANT OPTION I <&£25: IREZE/LBH>
—-scott T Rselect Lrin1, timi TR Rselect Lrinz; <EEEFRIRIEEESE>

SgL> conn scott/scott

S

SQL> grant select on emp to timl with grant option;
FERATS-

SgL> conn timi/timt

S

SoL> select * from scott.emp -~ Y EEscott. enp

SQL> grant select on emp to timz:
SgL> conn timz/tinz

S

SoL> select * from scott.emp -~ Y EEscott. enp
SgL> conn scott/scott

S

SoL> revoke select on emp from timi;

AT

-- Bfptinl, tinz B REHscots.enp HELFIREE
<BBR>

SQL> select * from scott.emp:

F 1 THEEE:

ORA-00942: HHMETHE

<HE>HIRRIR: FEAKE

事务特性

事务必须具备以下四个属性，简称ACID 属性：

原子性（Atomicity）：事务是一个完整的操作。事务的各步操作是不可分的（原子的）；要么都执行，要么都不执行

场景: 银行转账,A-100 B+100 同时成功或同时失败

一致性（Consistency）：一个查询的结果必须与数据库在查询开始的状态一致（读不等待写，写不等待读）。

场景: 查询数据，9:00开始查询数据 9:15查询完毕,在这期间所查询的数据被其他操作更新,且在9:00-1:15之间查询结果显示的是9:00时候并没有被更改的数据. 一般oracle是把这个没有更新的数据放入'undo'里, 如果oracle在'undo'里没有找到数据,则宁可报错，也不会让你看到其他操作更新的新的数据.

隔离性（Isolation）：对于其他会话来说，未完成的（也就是未提交的）事务必须不可见。

场景: 事务和事务之间相互隔离,2个session 一个查询 一个更新,那么在更新操作没有 commit之前, 查询所看到的数据是没有提交之前的,相互没有影响。

持久性（Durability）：事务一旦提交完成后，数据库就不可以丢失这个事务的结果，数据库通过日志能够保持事务的持久性。

场景: 事务提交之后不可逆, 提交数据是由内存的数据刷新到磁盘上,这个过程的快慢和性能有关。那么oracle主要是靠 'rudo' 日志,先记录日志,在写到磁盘上。

事务采用隐性的方式，起始于session的第一条DML语句，注意登录的用户需要使用sysdba形式：conn system/tiger@orcl as sysdba;

查看事务：select * from v$transaction;

事务结束于：

 1）COMMIT（提交）或ROLLBACK（回滚）

 2）DDL语句被执行（提交）

 3）DCL语句被执行（提交）

 4）用户退出SQLPLUS（正常退出是提交，非正常退出是回滚）

 5）机器故障或系统崩溃（回滚）

 6）shutdowm immediate(回滚）

锁

 锁大概分为：共享锁与排他锁。

 排他锁（独占），排斥其他排他锁和共享锁。

 共享锁，排斥其他排他锁，但不排斥其他共享锁。

锁类型：

DML锁（data locks，数据锁），用于保护数据的完整性。 TX(行级锁),TM(表级锁)，我们日常所使用的DML操作就会产生事物和锁。

查看事物：select * from v$transaction;

查看锁：select * from v$lock;

DDL锁（dictionary locks，数据字典锁），用于保护数据库对象的结构，如表、索引等的结构定义。

SYSTEM锁（internal locks and latches），保护数据库的内部结构

锁用途：只有有事物才会产生锁，保证数据的完整性和正确性。

[image: image3.png]T ¢ TAVED
™ : A : RS. RE. S. SRA. X

mode : z 3 4 5 &
ROW SHARE {7%%F (RS), RHEMEFEN EFAMT, AFEMESFIFRES, TLFERS FERE) 78
ROW EXCLUSIVE {7#FME (Rx), JCHFEM/E [G8f EFEMIT, AR FEME iR EdaEF b

sHaRE HF (5), TRHHFEME S EI ESEET, RarEeEr A misdaEsraszs

SHARE ROW EXCLUSIVE (SRX) HE/THEME, TRHEMEF E AR, KA eEr memirasEs
EXCLUSIVE (x) #f, EfE BT, FULEMGE G TR,

et FTH AP IER
seiect + from tavlename EE semnssx
insexe, update, delete DNLEH/E) ax &5,
seisct + from table_name for update s &s,mx

lock

lock

lock

lock

lock

table table name in rov shars mode s RS,RX, S, SRX
table table name in rov exclusive mode R RS, RX
table table name in share mode s 7S,
table table name in share row exclusive mode srx s

table table name in exclusive mode 2 A

自动加锁，做DML操作时，如insert，update，delete，以及select....for update由oracle自动完成加锁.

select * from emp1 where deptno = 10 for update;

修改其部门为10的记录则会被锁定，我们可以进行试探要修改数据记录是否被加锁。如下三种形式均可：

select * from emp1 where empno = 7782 for update nowait;

select * from emp1 where empno = 7782 for update wait 5;

select * from emp1 where job= 'CLERK' for update skip locked;

如果这个锁占用的时间太长，我们可以通过管理员杀掉session用户。

首先要找到是哪个sid占用了太长时间，查看v$lock表

然后根据v$lock表的SID，去v$session里面去找到，进行kill操作。

 select sid, serial# from v$session where sid = 170;

 alter system kill session 'sid,serial';

死锁问题：

[image: image4.png]CREATE TABLE A(id int,
insert into a values(100):
insert into a values(200):
insert into a values(300):
commit;

select * from a;

BT
Y

update a set id = 1000 where id = 100;

- BAF

update a set id = 2000 where id = 200;

- 2R AR S EFEEFH i = 200 FIEHE

update a set id = 3000 where id = 200;
- AP lA A EFEEFH i = 100 FIEHE
update a set id = 4000 where id = 100

- BHERLBRATTH, oracle £ B R ITAERITTH .

索引

[image: image5.png]ESAFALER:

1 B E S/ f<palance> (BELITFAEY, FEEleas block FHIELBrovia WEHT)
1) HERZEERGEERE, AT TUBEEY.
z) HERTHESGRELES, BRLZEFEEL, FTHYENIIETE.
5) FEFH R T RERTEEN 1l EE.

2 FEFEFEfwimap> (HEEHERGE FEEFLEES, BHEENZELR HEEFNEES))
create bitmap index job bitmap on empl(job) ; (B Ajor HEEEHHHHEE , B ELER)
EFEFEH T

@B/ 1z 3 45 67 8 9 1011121314

ANALYST 0 0 0 0 0 0 0 1 0 0 0 0 1 0O
CLERK 1 0 0 0 0 0 0 0 0 0 1 1 01
MANAGER ©0 0 0 1 0 1 1 0 0 0 0 0 0 0
PRESIDENT 0 0 0 0 0 0 0 0 1 0 0 0 0 0
CAIESMAN 0 1 1 0 1 0 0 0 0 0 0 0 0 0

索引的说明：

索引是与表相关的一个可选结构，在逻辑上和物理上都独立于表的数据，索引能优化查询，不能优化DML操作，Oracle自动维护索引，频繁的DML操作反而会引起大量的索引维护。

如果SQL语句仅访问被索引的列，那么数据库只需从索引中读取数据，而不用读取表，

如果该语句同时还要访问除索引列之外的列，那么，数据库会使用rowid来查找表中的行，

通常，为检索表数据，数据库以交替方式先读取索引块，然后读取相应的表块。

索引的目的是： 主要是减少IO,这是本质,这样才能体现索引的效率。

1 大表，返回的行数<5%

2 经常使用where子句查询的列

3 离散度高的列

4 更新键值代价低

5 逻辑AND、OR效率高

6 查看索引在建在那表、列：

 select * from user_indexes;

 select * from user_ind_columns;

建立索引的方式：

[image: image6.png](1) M—#F5/ (unique or non unique) : B—HF/HERETES.
create unique index empno_idx on empl(empno) ;
~~drop index empno_idx;

(2) —HEEF]: EIEEETLUER
create index empno_idx on empi(empno) ;

(3) #HEFEF| (composite) : HETHIHEZAHFES/
create index job_deptno_idx on empl(job, deptno):
~~drop index job_deptno_idx:

(4) RIGEES (reverse) K TEZFEHWESFE, H e HFEFLIE 7"
BREERIEE S AT (EIEE AR R RS REE, EERGE
TEEFERR, EZUEEEE, FEFWAHESHFET.
create index mgr_idx on empl(ngr) reverse:

——drop index mgr_idw:

(5) E#FF| (function index) : EHIILTIFEZEE, FEE/HF2.
create index fun_idx on empl(lower (ename)) ;
--select * from empl vhere lover(ename) = 'scott':
~~drop index fun_idx:

(6) [F#EFEF] (compress)
create index comp_idx on empl(sal) compress:
——drop index comp_idw:

(1) FAFEFES
create index deptno job idx on emp(deptno desc, job asc):
--arop index deptno_job_idx:

索引碎片问题：

查看执行计划：set autotrace traceonly explain;

索引碎片问题：由于对基表做DML操作，导致索引表块的自动更改操作，尤其是基表的delete操作会引起index表的index_entries的逻辑删除，注意只有当一个索引块中的全部index_entry都被删除了，才会把这个索引块删除，索引对基表的delete、insert操作都会产生索引碎片问题。

在Oracle文档里并没有清晰的给出索引碎片的量化标准,Oracle建议通过Segment Advisor(段顾问）解决表和索引的碎片问题（053课程会涉及），如果你想自行解决，可以通过查看index_stats视图，当以下三种情形之一发生时，说明积累的碎片应该整理了（仅供参考）。

1.HEIGHT >=4

2 PCT_USED< 50%

3 DEL_LF_ROWS/LF_ROWS>0.2

建立表、索引：

create table t (id int);

create index ind_1 on t(id);

执行插入记录：

begin

 for i in 1..1000000 loop

insert into t values (i);

if mod(i, 100)=0 then

commit;

end if;

 end loop;

end;

/

分析索引：

analyze index ind_1 validate structure;

select name,HEIGHT,PCT_USED,DEL_LF_ROWS/LF_ROWS from index_stats;

delete t where rownum<700000;

alter index ind_1 rebuild [online] [tablespace name];

