
编程功底基础

计算机及相关专业考研考博课程

计算机等级考试课程

程序员考试课程

为什么要学习数据结构 点此获取更多资源

http:www.itjc8.com

课程学习指导

• 1.提前预习、认真听课、按时完成书面及上机作业
• 2.注意先修课程的知识准备
离散数学、C语言

• 3.注意循序渐进：
基本概念、基本思想、基本步骤、算法设计

• 4.注意培养算法设计的能力
理解所讲算法、对此多做思考：若问题要求不同，应如何

选择数据结构，设计有效的算法

课程特点：内容抽象、概念性强、内容灵活、不易掌握

数据结构参考书

第01讲 数据结构与算法设计开篇基础

六星教育首席架构师：Vico老师

官方助理冰芯老师QQ：1930070991

1.1 数据结构的研究内容

1.2 基本概念和术语

1.3 抽象数据类型的表示与实现

1.4 算法与算法分析

教学内容

N.沃思（Niklaus Wirth)教授提出：

 程序=算法+数据结构

电子计算机的主要用途：

 早期：
 主要用于数值计算

 后来：
 处理逐渐扩大到非数值计算领域，能处理多种复杂的

具有一定结构关系的数据

1.1 数据结构的研究内容

书目自动检索系统

登录号：

书名：

作者名：

分类号：

出版单位：

出版时间：

价格：

书目卡片 001 高等数学 樊映川 S01

002 理论力学 罗远祥 L01

003 高等数学 华罗庚 S01

004 线性代数 栾汝书 S02

…… …… …… ……

书目文件

按书名 按作者名 按分类号

高等数学 001，003……

理论力学 002，……..

线性代数 004，……

…… ……..

樊映川 001,…

华罗庚 002,….

栾汝书 004,….

……. …….

L 002,…

S 001,003,

…… ……

索引表

线性表

人机对奕问题 树

…….. ……..

…... …... …... …...

文件系统的系统结构图 树

/ (root)

bin lib user etc

math ds sw yin tao xie

Stack.cpp Queue.cpp Tree.cpp

多叉路口交通灯管理问题 图

顶点：一条通路
连线：不能同时通行
染色：有连线的两个顶点不能具有相同颜色

求解非数值计算的问题：

 设计出合适的数据结构及相应的算法

 即：首先要考虑对相关的各种信息如何表示、组织和存储？

 数据结构的研究内容为：
 研究非数值计算的程序设计问题中计算机的操作对象以及

它们之间的关系和操作。

数据结构课程的形成和发展：

 形成阶段：
 60年代初期，“数据结构”有关的内容散见于操作系统、编

译原理和表处理语言等课程。1968年，“数据结构”被列入
美国一些大学计算机科学系的教学计划。

 发展阶段：
 数据结构的概念不断扩充，包括了网络、集合代数论、关系

等“离散数学结构”的内容。
 70年代后期，我国高校陆续开设该课程。

《数据结构》所处的地位：

 介于数学、计算机硬
件和计算机软件三者
之间的一门核心课程

数据结构在计算机学科中的地位

概率统计 计算概论 集合论与图论

程序设计语言

 数据结构与算法算法分析与设计 计算复杂性理论

操作系统
队列、存储管理

表、排序、目录树

编译原理
字符串、栈、哈希

表、语法树

数据库
线性表、多链表、

排序、B+树

图形图像
队列、栈、图、矩阵、

空间索引树、检索

人工智能
广义表、集合、有

向图、搜索树

Web信息处理
队列、图、字符、矩阵、哈

希表、排序、索引、检索

课程目的

• 能够分析研究计算机加工的对象的特性，获得其逻辑
结构，根据需求，选择合适存贮结构及其相应的算法；

• 学习一些常用的算法；

• 复杂程序设计的训练过程，要求编写的程序结构清楚
和正确易读；

• 初步掌握算法的时间分析和空间分析技术

1、数据（data)—所有能输入到计算机中去的描述客观
事物的符号
 数值性数据
 非数值性数据（多媒体信息处理）

2、数据元素（data element）—数据的基本单位，也称
结点（node）或记录（record）
3、数据项（data item）—有独立含义的数据最小单位，

也称域(field)

三者之间的关系：数据 > 数据元素 > 数据项

例：学生表 > 个人记录 > 学号、姓名……

1.2 基本概念和术语

整数数据对象

 N = { 0, 1, 2, … }

学生数据对象
• 学生记录的集合

4、数据对象(Data Object)：相同特性数据元素的集合，是
数据的一个子集

5、数据结构（Data Structure）是相互之间存在一种或多种
特定关系的数据元素的集合。

数据结构是带“结构”的数据元素的集合，“结构”就是
指数据元素之间存在的关系。

数据结构的两个层次：

逻辑结构---
 数据元素间抽象化的相互关系，与数据的存储无关，独

立于计算机，它是从具体问题抽象出来的数学模型。

存储结构（物理结构）----
 数据元素及其关系在计算机存储器中的存储方式。

划分方法一

 （1）线性结构----
 有且仅有一个开始和一个终端结点，并且所有结点都最多只

有一个直接前趋和一个后继。
 例如：线性表、栈、队列、串

 （2）非线性结构----
 一个结点可能有多个直接前趋和直接后继。
 例如：树、图

逻辑结构

线性结构——一个对一个，如线性表、栈、队列

树形结构——一个对多个，如树

集合——数据元素间除“同属于一个集合”外，无其它关系

图形结构——多个对多个，如图

逻辑结构

划分方法二

存储结构分为：
顺序存储结构——借助元素在存储器中的相对位置来表示
 数据元素间的逻辑关系
链式存储结构——借助指示元素存储地址的指针表示数据
 元素间的逻辑关系 可以连续 可以不连续

存储结构

元素n

……..

元素i

……..

元素2

元素1 Lo

Lo+m

Lo+(i-1)*m

Lo+（n-1)*m

存储地址 存储内容

Loc(元素i)=Lo+（i-1)*m

顺序存储

1536 元素2 1400 元素1 1346 元素3 ∧ 元素4

1345

h

存储地址 存储内容 指针

 1345 元素1 1400

 1346 元素4 ∧

 ……. …….. …….

 1400 元素2 1536

 ……. …….. …….

 1536 元素3 1346

 链式存储 h

• 逻辑结构和存储结构都相同, 但运算不同, 则数据结构不同. 例
如, 栈与队列

• 对于一种数据结构, 常见的运算
• 插入
• 删除
• 修改
• 查找
• 排序

数据的运算

 数据的逻辑结构

 数据的存储结构

数据的运算：插入、删除、修改、查找、排序

 线性结构

 非线性结构

 顺序存储

 链式存储

线性表

 栈、队列

 串、数组

树形结构

图形结构

逻辑结构

唯一

存储结构

不唯一

运算的实现

依赖于

存储结构

 定义：在一种程序设计语言中，变量所具有的数据种类

数据类型

FORTRAN语言：整型、实型、和复数型
C语言：

 基本数据类型： char int float double void
 构造数据类型：数组、结构体、共用体、文件

 数据类型是一组性质相同的值的集合, 以及定义于这个集

合上的一组运算的总称

抽象数据类型
(ADT: Abstract Data Types)

更高层次的数据抽象

由用户定义，用以表示应用问题的数据模型

由基本的数据类型组成, 并包括一组相关的操作

抽象数据类型

抽象数据类型可以用以下的三元组来表示：
 ADT = （D，S，P）

 数据对象 D上的关系集 D上的操作集

ADT抽象数据类型名{

 数据对象：<数据对象的定义>

 数据关系：<数据关系的定义>

 基本操作 ：<基本操作的定义>

 } ADT抽象数据类型名

ADT常用
定义格式

信息隐蔽和数据封装，使用与实现相分离

抽
象
数
据
类
型

查找 插入 删除 修改

线性表

接口或用户界
面

数据类型的物
理实现封装

1.3 抽象数据类型的表示与实现

抽象数据类型可以通过固有的数据类型（如整型、实型、字符
型等）来表示和实现。

它有些类似C语言中的结构（struct)类型，但增加了相关的操作

教材中用的是类C语言（介于伪码和C语言之间）作为描述工具

但上机时要用具体语言实现，如C或C++等

• (1) 预定义常量及类型

• //函数结果状态代码
#define OK 1
#define ERROR 0
#define OVERFLOW -2

• // Status是函数返回值类型，其值是函数结果状态代码。
typedef int Status;

(2)数据元素被约定为ElemType 类型，用户需要根据具体情
况，自行定义该数据类型。

(3)算法描述为以下的函数形式：
 函数类型 函数名（函数参数表）
 {

 语句序列；
 }

（4）内存的动态分配与释放
 使用new和delete动态分配和释放内存空间
 分配空间 指针变量=new数据类型;
 释放空间 delete指针变量;
 malloc/calloc/free

（5）赋值语句 x+=18;
（6）选择语句 if switch
（7）循环语句 for while goto

（8）使用的结束语句形式有：
 函数结束语句 return
 循环结束语句 break;
 异常结束语句 exit（异常代码）；

（9）输入输出语句形式有：

输入语句 cin (scanf()) getchar gets等

输出语句 cout (printf()) putchar puts等

（10）扩展函数有：

求最大值 max

求最小值 min

 算法定义：一个有穷的指令集，这些指令为解决某一特定任务
规定了一个运算序列

 算法的描述：
 自然语言
 流程图
 程序设计语言
 伪码

1.4 算法和算法分析

 算法的特性：
 输入 有0个或多个输入
 输出 有一个或多个输出(处理结果)
 确定性 每步定义都是确切、无歧义的
 有穷性 算法应在执行有穷步后结束
 有效性 每一条运算应足够基本

算法的评价

正确性

可读性

健壮性

高效性（时间代价和空间代价）

• 算法效率：用依据该算法编制的程序在计算机上执行所消耗
的时间来度量

算法的效率的度量

事后统计
事前分析估计

1.事后统计：利用计算机内的计时功能，不同算法的程序可
以用一组或多组相同的统计数据区分

缺点：
必须先运行依据算法编制的程序
所得时间统计量依赖于硬件、软件等环境因素，掩盖算法

本身的优劣

2.事前分析估计：
一个高级语言程序在计算机上运行所消耗的时间取决于：
 依据的算法选用何种策略
 问题的规模
 程序语言
 编译程序产生机器代码质量
 机器执行指令速度

同一个算法用不同的语言、不同的编译程序、在不同的计算机
上运行，效率均不同，———使用绝对时间单位衡量算法效
率不合适

•算法中基本语句重复执行的次数是问题规模n的某个函数f(n),算法的
时间量度记作：

T(n)=O(f(n))

时间复杂度的渐进表示法

数学符号“O”的定义为：
若T(n)和f(n)是定义在正整数集合上的两个
函数，则T(n) = O(f(n))表示存在正的常数C
和n0，使得当n≥n0时都满足0≤T(n)≤Cf(n)。

表示随着n的增大，算法执行的时间的增长率和f(n)的增长率相同，
称渐近时间复杂度。

n越大算法的执行时间越长
 排序 ：n为记录数
 矩阵 ：n为矩阵的阶数
 多项式：n为多项式的项数
 集合 ：n为元素个数
 树 ：n为树的结点个数
 图 ：n为图的顶点数或边数

 算法中重复执行次数
和算法的执行时间成

正比的语句
 对算法运行时间的贡

献最大

n * n阶矩阵加法：

for(i = 0; i < n; i++)

 for(j = 0; j < n; j++)

 c[i][j] = a[i][j] + b[i][j];

语句的频度（Frequency Count): 重复执行的次数：n*n;

T(n) = O (n 2)

即：矩阵加法的运算量和问题的规模n的平方是同一个量级

x = 0; y = 0;

for (int k = 0; k < n; k ++)

 x ++;

for (int i = 0; i < n; i++)

 for (int j = 0; j < n; j++)

 y ++;

•找出语句频度最大的那条语句作为基本语句
•计算基本语句的频度得到问题规模n的某个函数f(n)
•取其数量级用符号“O”表示

分析算法时间复杂度的基本方法

f(n)=n2

T(n) = O(n2)

 void exam (float x[][], int m, int n) {

 float sum [];

 for (int i = 0; i < m; i++) {

 sum[i] = 0.0;

 for (int j = 0; j < n; j++)

 sum[i] += x[i][j];

 }

 for (i = 0; i < m; i++)

 cout << i << “ : ” <<sum [i] << endl;

 }

时间复杂度是由嵌套最深层语句的频度决定的

f(n)=m*n

T(n) = O(m*n)

例1：N×N矩阵相乘

for(i=1;i<=n;i++)

 for(j=1;j<=n;j++)

 {c[i][j]=0;

 for(k=1;k<=n;k++)

 c[i][j]=c[i][j]+a[i][k]*b[k][j];

 }

算法中的基本操作语句为c[i][j]=c[i][j]+a[i][k]*b[k][j];

2 3 3

1 1 1 1 1 1

() 1 ()
n n n n n n

i j k i j i

T n n n n o n
     

      

   3T n O n

时间复杂度T(n)按数量级递增顺序为：
复杂度高 复杂度低

• 当n取得很大时，指数时间算
法和多项式时间算法在所需
时间上非常悬殊

• 空间复杂度:算法所需存储空间的度量，记作: S(n)=O(f(n))

其中n为问题的规模(或大小)

算法要占据的空间

算法本身要占据的空间，输入/输出，指令，常数，变量等

算法要使用的辅助空间

渐进空间复杂度

【算法1】
for(i=0;i<n/2;i++)
{ t=a[i];
 a[i]=a[n-i-1];
 a[n-i-1]=t;
}

【算法2】
for(i=0;i<n;i++)
 b[i]=a[n-i-1];
for(i=0;i<n;i++)
 a[i]=b[i];

例2：将一维数组a中的n个数逆序存放到原数组中。

S(n) = O(n) S(n) = O(1)
原地工作

 1、数据、数据元素、数据项、数据结构等基本概念
 2、对数据结构的两个层次的理解

• 逻辑结构
• 存储结构

 3、抽象数据类型的表示方法
 4、算法、算法的时间复杂度及其分析的简易方法

本章小结

