
第04讲线性表的循环链表和双向链表

六星教育首席架构师：Vico老师

官方助理冰芯老师QQ：1930070991

点此获取更多资源

http:www.itjc8.com

2.1 线性表的定义和特点

2.2 案例引入

2.3 线性的类型定义

2.4 线性表的顺序表示和实现

2.5 线性表的循环链表和双向链表

2.6 顺序表和链表的比较

2.7 线性表的应用

2.5.3 循环链表

L->next=L

...H

(a) 非空单循环链表

L

H

(b) 空表

L

说明
从循环链表中的任何一个结点的位置都可以找到其他所

有结点，而单链表做不到；

循环条件：p!=NULLp!=L

 p->next!=NULLp->next!=L

循环链表中没有明显的尾端

如何避免死循环

...H

对循环链表，有时不给出头指针，而给出尾指针

可以更方便的找到第一个和最后一个结点

rear

a1 ai-1 an ai

如何查找开始结点和终端结点？

开始结点：rear->next->next

终端结点：rear

说明

Ta a1 an

Tb b1 bn

循环链表的合并

a1 an

b1 bn

① p

②

③

④

Ta

Tb

说明

a1 an

b1 bn

① p

②

③

④

Ta

Tb

LinkList Connect(LinkList Ta,LinkList Tb)

{//假设Ta、Tb都是非空的单循环链表

 //①p存表头结点

 //②Tb表头连结Ta表尾

 //③释放Tb表头结点

 //④修改指针

 return Tb;

}

p=Ta->next;

Ta->next=Tb->next->next;

deleteTb->next;

 Tb->next=p;

案例

prior data next

data next

typedef struct DuLNode{

 ElemType data;

 struct DuLNode *prior;

 struct DuLNode *next;

}DuLNode, *DuLinkList

2.5.4 双向链表

L

(a) 空双向循环链表

L A B C

(b) 双向循环链表

c->next->prior c->prior->next c

L->next=L

a b

p

x s

双向链表的插入

1. s->prior=p->prior;

a b

x

... ...

1

p

s

双向链表的插入

1. s->prior=p->prior;

2. p->prior->next=s;

a b

x

... ...

1 2

p

s

双向链表的插入

a b

x

......

1 2 3

p

s

1. s->prior=p->prior;

2. p->prior->next=s;

3. s->next=p;

双向链表的插入

4. p->prior=s;

a b

x

... ...

1 2 3 4

p

s

1. s->prior=p->prior;

2. p->prior->next=s;

3. s->next=p;

双向链表的插入

Status ListInsert_DuL(DuLinkList &L,int i,ElemType e){

 if(!(p=GetElemP_DuL(L,i))) return ERROR;

 s= new DuLNode;

 s->data=e;

 s->prior=p->prior;

 p->prior->next=s;

 s->next=p;

 p->prior=s;

 return OK;

}

双向链表的插入

a b

p

c

双向链表的删除

a b

1
p

c

1. p->prior->next = p->next;

双向链表的删除

a b

1

2

p

c

1. p->prior->next=p->next;

2. p->next->prior=p->prior;

双向链表的删除

Status ListDelete_DuL(DuLinkList &L,int i, ElemType &e){

 if(!(p=GetElemP_DuL(L,i))) return ERROR;

 e= p->data;

 p->prior->next=p->next;

 p->next->prior=p->prior;

 delete p;

 return OK;

}

双向链表的删除

2.6 顺序表和链表的比较
存储结构

比较项目 顺序表 链表

空间

存储空间 预先分配，会导致空间闲置或溢出现
象

动态分配，不会出现存储空间闲置
或溢出现象

存储密度

不用为表示结点间的逻辑关系而增加
额外的存储开销，存储密度等于1

需要借助指针来体现元素间的逻辑
关系，存储密度小于1

时间

存取元素
随机存取，按位置访问元素的时间复
杂度为O(1)

顺序存取，按位置访问元素时间复
杂度为O(n)

插入、删除 平均移动约表中一半元素，时间复杂
度为O(n)

不需移动元素，确定插入、删除位
置后，时间复杂度为O(1)

适用情况

① 表长变化不大，且能事先确定变化
的范围

② 很少进行插入或删除操作，经常按
元素位置序号访问数据元素

① 长度变化较大

② 频繁进行插入或删除操作

2.7 线性表的应用

1 2

2.7.1 线性表的合并

问题描述：

 假设利用两个线性表La和Lb分别表示两个集合A和B,现

要求一个新的集合

 A=AB

La=(7, 5, 3, 11)

Lb=(2, 6, 3)

La=(7, 5, 3, 11, 2, 6)

依次取出Lb 中的每个元素，执行以下操作：

 在La中查找该元素

 如果找不到，则将其插入La的最后

【算法步骤】

void union(List &La, List Lb){

 m=ListLength(La);

 n=ListLength(Lb);

 for(i=1;i<=n;i++){

 GetElem(Lb,i,e);

 if(!LocateElem(La,e))

 ListInsert(La,++m,e);

 }

}

【算法描述】

问题描述：

 已知线性表La 和Lb中的数据元素按值非递减有序排列

,现要求将La和Lb归并为一个新的线性表Lc,且Lc中的数据

元素仍按值非递减有序排列。

La=(1 ,7, 8)

Lb=(2, 4, 6, 8, 10, 11)

Lc=(1, 2, 4, 6, 7 , 8, 8, 10, 11)

2.7.2 有序表的合并

（1）创建一个空表Lc

（2）依次从 La 或 Lb 中“摘取”元素值较小的结点插入到

Lc 表的最后，直至其中一个表变空为止

（3）继续将 La 或 Lb 其中一个表的剩余结点插入在 Lc 表

的最后

【算法步骤】－有序的顺序表合并

void MergeList_Sq(SqList LA,SqList LB,SqList &LC){

 pa=LA.elem; pb=LB.elem; //指针pa和pb的初值分别指向两个表的第一个元素

 LC.length=LA.length+LB.length; //新表长度为待合并两表的长度之和

 LC.elem=new ElemType[LC.length]; //为合并后的新表分配一个数组空间

 pc=LC.elem; //指针pc指向新表的第一个元素

 pa_last=LA.elem+LA.length-1; //指针pa_last指向LA表的最后一个元素

 pb_last=LB.elem+LB.length-1; //指针pb_last指向LB表的最后一个元素

 while(pa<=pa_last && pb<=pb_last){ //两个表都非空

 if(*pa<=*pb) *pc++=*pa++; //依次“摘取”两表中值较小的结点 else

*pc++=*pb++; }

 while(pa<=pa_last) *pc++=*pa++; //LB表已到达表尾

 while(pb<=pb_last) *pc++=*pb++; //LA表已到达表尾

}//MergeList_Sq

【算法描述】－有序的顺序表合并

将这两个有序链表合并成一个有序的单链表。

要求结果链表仍使用原来两个链表的存储空间, 不另外占
用其它的存储空间。

表中允许有重复的数据。

有序链表合并－－重点掌握

La 1 7 8

2 4 6 8 10 11
Lb

La 1

2 4 6

7 8

8 10 11

合并后

有序链表合并－－重点掌握

（1）Lc指向La

（2）依次从 La 或 Lb 中“摘取”元素值较小的结点插入到

Lc 表的最后，直至其中一个表变空为止

（3）继续将 La 或 Lb 其中一个表的剩余结点插入在 Lc 表

的最后

（4）释放 Lb 表的表头结点

【算法步骤】－有序的链表合并

有序链表合并（初始化）

pa

La 1 7 8

2 4 6 8 10 11
Lb

pb

Lc = pc

pa

La(Lc ,pc) 1 7 8

2 4 6 8 10 11
Lb

pb

有序链表合并(pa->data < ＝pb->data)

pc->next = pa;

Pa

La(Lc) 1 7 8

2 4 6 8 10 11
Lb

pb

有序链表合并(pa->data < ＝pb->data)

pc->next = pa;

pc= pa;

1

Pc

La(Lc) 1 7 8

2 4 6 8 10 11
Lb

pb

有序链表合并(pa->data < ＝pb->data)

pc->next = pa;

pc= pa;

1

Pc

pa = pa->next;

Pa

La(Lc) 1 7 8

2 4 6 8 10 11
Lb

pb

有序链表合并(pa->data >pb->data)

pc->next = pb;

1

Pc pa

La(Lc) 1 7 8

2 4 6 8 10 11
Lb

pb

有序链表合并(pa->data >pb->data)

pc->next = pb;

1

pa

Pc

pc= pb;

2

La(Lc) 1 7 8

2 4 6 8 10 11
Lb

有序链表合并(pa->data >pb->data)

pc->next = pb;

1

pa

Pc

pc= pb;

2

pb =pb->next;

pb

La(Lc)
1

2 4 6

7 8

8 10 11

有序链表合并

pc-> next=pa ? pa : pb;

pa(NULL)

pb pc

La(Lc)
1

2 4 6

7 8

8 10 11

合并后

delete Lb;

有序链表合并

void MergeList_L(LinkList &La,LinkList &Lb,LinkList &Lc){

 pa=La->next; pb=Lb->next;

 pc=Lc=La; //用La的头结点作为Lc的头结点

 while(pa && pb){

 if(pa->data<=pb->data){ pc->next=pa;pc=pa;pa=pa->next;}

 else{pc->next=pb; pc=pb; pb=pb->next;}

 pc->next=pa?pa:pb; //插入剩余段

 delete Lb; //释放Lb的头结点

}

【算法描述】－有序的链表合并

思考1：要求合并后的表无重复数据，如何实现？

提示：要单独考虑

pa->data = =pb->data

La(Lc)
1

2 4 6

7 8

8 10 11

要求结果链表仍使用原来两个链表的存储空间, 不另外占用
其它的存储空间。

表中允许有重复的数据。

思考2：将两个非递减的有序链表合并为一个非递增的有序链表
，如何实现？

（1）Lc指向La

（2）依次从 La 或 Lb 中“摘取”元素值较小的结点插入到

Lc 表的表头结点之后，直至其中一个表变空为止

（3）继续将 La 或 Lb 其中一个表的剩余结点插入在 Lc 表

的表头结点之后

（4）释放 Lb 表的表头结点

【算法步骤】

