
蚂蚁 Java 一面

1. 二叉搜索树和平衡二叉树有什么关系，强平衡二叉树（AVL 树）和弱平衡二叉树

（红黑树）有什么区别

二叉搜索树：也称二叉查找树，或二叉排序树。定义也比较简单，要么是一颗空

树，要么就是具有如下性质的二叉树：

（1）若任意节点的左子树不空，则左子树上所有结点的值均小于它的根结点的

值；

（2）若任意节点的右子树不空，则右子树上所有结点的值均大于它的根结点的

值；

（3）任意节点的左、右子树也分别为二叉查找树；

（4）没有键值相等的节点。

平衡二叉树：在二叉搜索树的基础上多了两个重要的特点

（1）左右两子树的高度差的绝对值不能超过 1；
（2）左右两子树也是一颗平衡二叉树。

红黑书：红黑树是在普通二叉树上，对每个节点添加一个颜色属性形成的，需要

同时满足一下五条性质

（1）节点是红色或者是黑色；

（2）根节点是黑色；

（3）每个叶节点（NIL 或空节点）是黑色；

（4）每个红色节点的两个子节点都是黑色的（也就是说不存在两个连续的红色节

点）；

（5）从任一节点到其没个叶节点的所有路径都包含相同数目的黑色节点。

区别：AVL 树需要保持平衡，但它的旋转太耗时，而红黑树就是一个没有 AVL 树
那样平衡，因此插入、删除效率会高于 AVL 树，而 AVL 树的查找效率显然高于红黑树。

参考文章 1：https://blog.csdn.net/qq_25940921/article/details/82183093
参考文章 2：https://blog.csdn.net/yang_yulei/article/details/26066409

2. B 树和 B+树的区别，为什么 MySQL 要使用 B+树
B 树：

（1）关键字集合分布在整颗树中；

（2）任何一个关键字出现且只出现在一个结点中；

（3）搜索有可能在非叶子结点结束；

（4）其搜索性能等价于在关键字全集内做一次二分查找；

B+树：

（1）有 n 棵子树的非叶子结点中含有 n 个关键字（b 树是 n-1 个），这些关键字不保

存数据，只用来索引，所有数据都保存在叶子节点（b 树是每个关键字都保存数据）；

（2）所有的叶子结点中包含了全部关键字的信息，及指向含这些关键字记录的指针，

且叶子结点本身依关键字的大小自小而大顺序链接；

（3）所有的非叶子结点可以看成是索引部分，结点中仅含其子树中的最大（或最小）

关键字；

（4）通常在 b+树上有两个头指针，一个指向根结点，一个指向关键字最小的叶子结

点；

（5）同一个数字会在不同节点中重复出现，根节点的最大元素就是 b+树的最大元

素。

B+树相比于 B 树的查询优势：



（1）B+树的中间节点不保存数据，所以磁盘页能容纳更多节点元素，更“矮胖”；
（2）B+树查询必须查找到叶子节点，B 树只要匹配到即可不用管元素位置，因此 B+

树查找更稳定（并不慢）；

（3）对于范围查找来说，B+树只需遍历叶子节点链表即可，B 树却需要重复地中序遍

历

参考文章：https://www.cnblogs.com/xueqiuqiu/articles/8779029.html
3. HashMap 如何解决 Hash 冲突

通过引入单向链表来解决 Hash 冲突。当出现 Hash 冲突时，比较新老 key 值是否相等，

如果相等，新值覆盖旧值。如果不相等，新值会存入新的 Node 结点，指向老节点，形成

链式结构，即链表。

当 Hash 冲突发生频繁的时候，会导致链表长度过长，以致检索效率低，所以 JDK1.8 之

后引入了红黑树，当链表长度大于 8 时，链表会转换成红黑书，以此提高查询性能。

参考文章：https://blog.csdn.net/qedgbmwyz/article/details/79908333
4. epoll 和 poll 的区别，及其应用场景

select 和 epoll 都是 I/O 多路复用的方式，但是 select 是通过不断轮询监听 socket 实
现，epoll 是当 socket 有变化时通过回掉的方式主动告知用户进程实现

参考文章:https://www.cnblogs.com/hsmwlyl/p/10652503.html
5. 简述线程池原理，FixedThreadPool 用的阻塞队列是什么？

Java 线程池的实现原理其实就是一个线程集合 workerSet 和一个阻塞队列 workQueue。
当用户向线程池提交一个任务(也就是线程)时，线程池会先将任务放入 workQueue 中。

workerSet 中的线程会不断的从 workQueue 中获取线程然后执行。当 workQueue 中没有

任务的时候，worker 就会阻塞，直到队列中有任务了就取出来继续执行。

FixedThreadPool 使用的是“无界队列”LinkedBlockingQueue
参考文章：https://blog.csdn.net/wanghao112956/article/details/99938893
6. sychronized 和 ReentrantLock 的区别

（1）ReentrantLock 显示获得、释放锁，synchronized 隐式获得释放锁

（2）ReentrantLock 可响应中断、可轮回，synchronized 是不可以响应中断的，为处理

锁的不可用性提供了更高的灵活性

（3）ReentrantLock 是 API 级别的，synchronized 是 JVM 级别的

（4）ReentrantLock 可以实现公平锁

（5）ReentrantLock 通过 Condition 可以绑定多个条件

参考文章：https://blog.csdn.net/zxd8080666/article/details/83214089
7. sychronized 的自旋锁、偏向锁、轻量级锁、重量级锁，分别介绍和联系

自旋锁：果持有锁的线程能在很短时间内释放锁资源，那么那些等待竞争锁的线程就不

需要做内核态和用户态之间的切换进入阻塞挂起状态，它们只需要等一等（自旋），

等持有锁的线程释放锁后即可立即获取锁，这样就避免用户线程和内核的切换的消耗。

偏向锁：顾名思义，它会偏向于第一个访问锁的线程，如果在运行过程中，同步锁只

有一个线程访问，不存在多线程争用的情况，则线程是不需要触发同步的，减少加锁／解

锁

的一些 CAS 操作（比如等待队列的一些 CAS 操作），这种情况下，就会给线程加一个

偏向锁。 如果在运行过程中，遇到了其他线程抢占锁，则持有偏向锁的线程会被挂起，

JVM 会

消除它身上的偏向锁，将锁恢复到标准的轻量级锁。



轻量级锁：轻量级锁是由偏向所升级来的，偏向锁运行在一个线程进入同步块的情况

下，当第二个线程加入锁争用的时候，偏向锁就会升级为轻量级锁；

重量级锁：我们知道，我们要进入一个同步、线程安全的方法时，是需要先获得这个

方法的锁的，退出这个方法时，则会释放锁。如果获取不到这个锁的话，意味着有别的线

程在

执行这个方法，这时我们就会马上进入阻塞的状态，等待那个持有锁的线程释放锁，

然后再把我们从阻塞的状态唤醒，我们再去获取这个方法的锁。这种获取不到锁就马上进

入阻

塞状态的锁，我们称之为重量级锁。

参考文章：https://blog.csdn.net/zqz_zqz/article/details/70233767
参考文章：https://www.cnblogs.com/myseries/p/10773078.html

8. HTTP 有哪些问题，加密算法有哪些，针对不同加密方式可能产生的问题，及其

HTTPS 是如何保证安全传输的

HTTP 的不足：

通信使用明文，内容可能会被窃听；

不验证通信方的身份，因此有可能遭遇伪装；

无法证明报文的完整性，有可能已遭篡改；

常用加密算法：MD5 算法、DES 算法、AES 算法、RSA 算法

参考文章：https://blog.csdn.net/baidu_22254181/article/details/82594072
蚂蚁 Java 二面

1. 设计模式有哪些大类，及熟悉其中哪些设计模式

创建型模式、结构型模式、行为型模式

参考文章：http://c.biancheng.net/design_pattern/
2. volatile 关键字，他是如何保证可见性，有序性

volatile 可以保证线程可见性且提供了一定的有序性，但是无法保证原子性。在 JVM 底

层 volatile 是采用“内存屏障”来实现的。

观察加入 volatile 关键字和没有加入 volatile 关键字时所生成的汇编代码发现，加入

volatile 关键字时，会多出一个 lock 前缀指令，

lock 前缀指令实际上相当于一个内存屏障（也成内存栅栏），内存屏障会提供 3 个功

能：

I. 它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置，也不会把前面

的指令排到内

存屏障的后面；即在执行到内存屏障这句指令时，在它前面的操作已经全部完成；

II. 它会强制将对缓存的修改操作立即写入主存；

III. 如果是写操作，它会导致其他 CPU 中对应的缓存行无效。

参考文章：https://blog.csdn.net/summerZBH123/article/details/80547516
3. Java 的内存结构，堆分为哪几部分，默认年龄多大进入老年代

Java 的内存结构：程序计数器、虚拟机栈、本地方法栈、堆、方法区。

Java 虚拟机根据对象存活的周期不同，把堆内存划分为几块，一般分为新生代、老年代

和永久代。

默认的设置下，当对象的年龄达到 15 岁的时候，也就是躲过 15 次 Gc 的时候，他就

会转移到老年代中去躲过 15 次 GC 之后进入老年代。

4. ConcurrentHashMap 如何保证线程安全，jdk1.8 有什么变化

JDK1.7：使用了分段锁机制实现 ConcurrentHashMap，ConcurrentHashMap 在对象中保



存了一个 Segment 数组，即将整个 Hash 表划分为多个分段；

而每个 Segment 元素，即每个分段则类似于一个 Hashtable；这样，在执行 put 操作时

首先根据 hash 算法定位到元素属于哪个 Segment，然后对该

Segment 加锁即可。因此，ConcurrentHashMap 在多线程并发编程中可是实现多线程

put 操作，不过其最大并发度受 Segment 的个数限制。

JDK1.8： 底层采用数组+链表+红黑树的方式实现，而加锁则采用 CAS 和 synchronized
实现

参考文章：https://blog.csdn.net/weixin_44460333/article/details/86770169
5. 为什么 ConcurrentHashMap 底层为什么要红黑树

因为发生 hash 冲突的时候，会在链表上新增节点，但是链表过长的话会影响检索效

率，引入红黑书可以提高插入和查询的效率。

6. 如何做的 MySQL 优化

MySQL 的优化有多种方式，我们可以从以下几个方面入手：

存储引擎的选择、字段类型的选择、索引的选择、分区分表、主从复制、读写分离、

SQL优化。详细优化请查看参考文章

参考文章：https://blog.csdn.net/zls986992484/article/details/52860496
7. 讲一下 oom 以及遇到这种情况怎么处理的，是否使用过日志分析工具

OOM，全称“Out Of Memory”，翻译成中文就是“内存用完了”，当 JVM 因为没有足够的

内存来为对象分配空间并且垃圾回收器也已经没有空间可回收时，就会抛出这个 error。
处理过程：首先通过内存映射分析工具 如 Eclipse Memory Analyzer 堆 dump 出的异常

堆转储进行快照解析确认内存中的对象是否是必要的，

也就是先分清楚是 内存泄漏 Memory Leak 还是 Memory Overflow 如果是内存泄漏 可

通过工具进一步查看泄露的对象到 GC Roots 的引用链，

就能找到泄露对象是怎么通过路径与 GC Roots 相关联导致垃圾收集器无法回收他们如

果不存在泄露 就检查堆参数 -Xmx 与 -Xms 与机器物理

内存对比是否还可以调大 从代码上检测 是否是某些对象的生命周期过长持有状态时间

过长 尝试减少代码运行期间的内存消耗。

参考文章：https://www.cnblogs.com/ThinkVenus/p/6805495.html
蚂蚁 Java 三面

1. 项目介绍

2. 你们怎么保证 Redis 缓存和数据库的数据一致性？

可以通过双删延时策略来保证他们的一致性。

参考文章：https://blog.kido.site/2018/12/07/db-and-cache-02/
3. Redis 缓存雪崩？击穿？穿透？

缓存雪崩：缓存同一时间大面积的失效，所以，后面的请求都会落到数据库上，造成数

据库短时间内承受大量请求而崩掉。

缓存击穿：key 对应的数据存在，但在 redis 中过期，此时若有大量并发请求过来，这

些请求发现缓存过期一般都会从后端 DB 加载数据并回设到缓存，这个时候大并发的请求

可能会瞬间把后端 DB 压垮。

缓存穿透：key 对应的数据在数据源并不存在，每次针对此 key 的请求从缓存获取不

到，请求都会到数据源，从而可能压垮数据源。比如用一个不存在的用户 id 获取用户信

息，不论缓存还是数据库都没有，若黑客利用此漏洞进行攻击可能压垮数据库。

4. 你熟悉哪些消息中间件,有做过性能比较?
RocketMQ、RabbitMQ、ActiveMQ、Kafka



参考文章：https://blog.csdn.net/wqc19920906/article/details/82193316


	3660-1575692496573
	8340-1575692517938
	1821-1575692517939
	7281-1575692517941
	5955-1575692517943
	8082-1575692517946
	1243-1575692517947
	4045-1575692517948
	5087-1575692517950
	2244-1575692517950
	6612-1575692517951
	7513-1575692517953
	6320-1575692517954
	7569-1575692517955
	3220-1575692517956
	6041-1575692517958
	1144-1575692517959
	1133-1575692517961
	4071-1575692517963
	2129-1575692517964
	2638-1575692517965
	9184-1575692517965
	3326-1575692517966
	6029-1575692517968
	8057-1575692517968
	2687-1575692517968
	9656-1575692517969
	2299-1575692517970
	9060-1575692517971
	7589-1575692517973
	5927-1575692517973
	1495-1575692517975
	5925-1575692517975
	1440-1575692517975
	3782-1575692517976
	1437-1575692517977
	6310-1575692517978
	3539-1575692517979
	6623-1575692517980
	8674-1575692517981
	7879-1575692517981
	9450-1575692517982
	5054-1575692517983
	3229-1575692517984
	5228-1575692517984
	8626-1575692517986
	7325-1575692517987
	8551-1575692517987
	7688-1575692517987
	4551-1575692517987
	6564-1575692517989
	3943-1575692517989
	3530-1575692517990
	0040-1575692517990
	6539-1575692517990
	7821-1575692517991
	7190-1575692517993
	2449-1575692517993
	3019-1575692517993
	5874-1575692517994
	4212-1575692517995
	2338-1575692517996
	4369-1575692517996
	6143-1575692517997
	3253-1575692517998
	3837-1575692517999
	3055-1575692517999
	4515-1575692517999
	2512-1575692518000
	5794-1575692518001
	8366-1575692518002
	8296-1575692518002
	1068-1575692518002
	5153-1575692518003
	0030-1575692518003
	7096-1575692518004
	8674-1575692518004
	3456-1575692518004
	3549-1575692518004
	3093-1575692518005
	3360-1575692518005
	2884-1575692518005
	6299-1575692518006
	5878-1575692518007
	9080-1575692518008
	4252-1575692518008
	7086-1575692518009
	9189-1575692518009
	6619-1575692518009
	2367-1575692518010
	4460-1575692518010
	7820-1575692518011
	4980-1575692518011
	1587-1575692518012
	4229-1575692518013
	2379-1575692518014
	4725-1575692518015
	7176-1575692518015
	5320-1575692518016
	6965-1575692518016
	6017-1575692518017
	4354-1575692518017
	3926-1575692518017
	2538-1575692518018
	4137-1575692518018
	1058-1575692518018
	9139-1575692518019
	9200-1575692518022
	2765-1575692518023
	8070-1575692518024
	0040-1575692518025
	6048-1575692518025
	4022-1575692518026
	8461-1575692518026
	2117-1575692518026
	1338-1575692518026
	2357-1575692518027
	5189-1575692518027
	3032-1575692518028
	8664-1575692518028
	2054-1575692518029
	3859-1575692518029
	5657-1575692518030

