
进程控制块是描述进程状态和特性的数据结构，一个进程() 。

正确答案: D 你的答案: 空 (错误)

可以有多个进程控制块；

可以和其他进程共用一个进程控制块；

可以没有进程控制块；

只能有惟一的进程控制块。

在操作系统中,把逻辑地址转变为内存的物理地址的过程称作()。

正确答案: D 你的答案: 空 (错误)

编译；

连接；

运行；

重定位。

某计算机系统中有 8 台打印机,由 K 个进程竞争使用,每个进程最多需要 3 台打印机。该

系统可能会发生死锁的 K 的最小值是()

正确答案: C 你的答案: 空 (错误)

2

3

4

5

下面关于线程的叙述中，正确的是()。

正确答案: C 你的答案: 空 (错误)

不论是系统支持线程还是用户级线程，其切换都需要内核的支持

线程是资源的分配单位，进程是调度和分配的单位

不管系统中是否有线程，进程都是拥有资源的独立单位

在引入线程的系统中，进程仍是资源分配和调度分派的基本单位

程序动态链接发生时刻是在()

正确答案: B 你的答案: 空 (错误)

编译时

装入时

调用时

程序执行时

以下哪些进程状态转换是正确的

正确答案: A B C E 你的答案: 空 (错误)

就绪到运行

运行到就绪

运行到阻塞

阻塞到运行

阻塞到就绪

IP 地址分类中,C 类地址的范围为：

正确答案: C 你的答案: 空 (错误)

以 0开头， 第一个字节范围：0~127

以 10开头， 第一个字节范围：128~191；

以 110开头， 第一个字节范围：192~223；

以上答案都不正确

FTP 服务和 SMTP 服务的端口默认分别是（）

正确答案: C 你的答案: 空 (错误)

20与 25

21与 25

20，21与 25

20与 21

一个 B 类网的子网掩码是 255.255.240.0，这个子网能拥有的最大主机数是：

正确答案: C 你的答案: 空 (错误)

240

255

4094

65534

如果在一个建立了 TCP 连接的 socket 上调用 recv 函数，返回值为 0，则表示（）

正确答案: B 你的答案: 空 (错误)

对端发送了一段长度为 0的数据

对端关闭了连接

还没有收到对端数据

连接发生错误

面有关 http keep-alive 说法错误的是？

正确答案: D 你的答案: 空 (错误)

在 HTTP1.0和 HTTP1.1协议中都有对 KeepAlive的支持。其中 HTTP1.0需要在 requ

est中增加“Connection： keep-alive” header才能够支持，而 HTTP1.1默认支持

当使用 Keep-Alive模式时，Keep-Alive功能使客户端到服 务器端的连接持续有效，

当出现对服务器的后继请求时，Keep-Alive功能避免了建立或者重新建立连接

可以在服务器端设置是否支持 keep-alive

当你的 Server多为动态请求，建议开启 keep-alive增加传输效率

某台路由器有两个以太网接口，分别与不同网段的以太网相连，请问：该路由器最多可有几

组？（ ）

正确答案: E 你的答案: 空 (错误)

1

2

3

4

>4

a 边长为 n 的正方形可以分成多个边长为 1 的正方形，如边长为 2 的正方形有 2×2 个边长

为 1 的正方形和 1 个边长为 2 的正方形；问边长为 5 的正方形有几个正方形。

正确答案: C 你的答案: 空 (错误)

25

30

55

100

A 市 B，C 两个区，人口比例为 3：5，据历史统计 B 区的犯罪率为 0.01%，C 区为 0.015%，

现有一起新案件发生在 A 市，那么案件发生在 B 区的可能性有多大？（）

正确答案: C 你的答案: 空 (错误)

37.5%

32.5%

28.6%

76.9%

下面程序的功能是输出数组的全排列,选择正确的选项,完成其功能。

1

2

3

4

5

6

7

8

9

10

11

12

void perm(int list[], int k, int m)

{

if ()

{

 copy(list,list+m,ostream_iterator<int>(cout," "));

 cout<<endl;

 return;

}

for (int i=k; i<=m; i++)

{

 swap(&list[k],&list[i]);

 ();

13

14

15

 swap(&list[k],&list[i]);

}

}

正确答案: B 你的答案: 空 (错误)

k!=m 和 perm（list，k+1，m）

k==m 和 perm（list，k+1，m）

k!=m 和 perm（list，k，m）

k==m 和 perm（list，k，m）

在 Linux 中 crontab 文件由 6 个域组成，每个域之间用空格分隔，下列哪个排列方式是正确

的？

正确答案: B 你的答案: 空 (错误)

MIN HOUR DAY MONTH YEAR COMMAND

MIN HOUR DAY MONTH DAYOFWEEK COMMAND

COMMAND HOUR DAY MONTH DAYOFWEEK

COMMAND YEAR MONTH DAY HOUR MIN

在 Linux 系统中哪个文件定义了服务搜索顺序？ 。

正确答案: C 你的答案: 空 (错误)

/etc/services

/etc/nsorder

/etc/nsswitch.conf

/etc/hosts

下列关于链接描述，正确的的是（）

正确答案: A C D 你的答案: 空 (错误)

硬链接就是让链接文件的 i节点号指向被链接文件的 i节点

硬链接和符号连接都是产生一个新的 i节点

链接分为硬链接和符号链接

硬连接不能链接目录文件

在 Linux 系统中,下列哪个命令是用来统计一个文件中的行数？

正确答案: B 你的答案: 空 (错误)

lc

wc – l

cl

count

Linux 执行 ls，会引起哪些系统调用（）

正确答案: B C 你的答案: 空 (错误)

nmap

read

execve

fork

卢卡斯的驱逐者大军已经来到了赫柏的卡诺萨城，赫柏终于下定决心,集结了大军,与驱逐者

全面开战。

卢卡斯的手下有 6 名天之驱逐者，这 6 名天之驱逐者各赋异能，是卢卡斯的主力。

为了击败卢卡斯，赫柏必须好好考虑如何安排自己的狂战士前去迎战。

狂战士的魔法与一些天之驱逐者的魔法属性是相克的，第 i 名狂战士的魔法可以克制的天之

驱逐者的集合为 Si(Si 中的每个元素属于[0,5])。

为了公平，两名狂战士不能攻击同一个天之驱逐者。

现在赫柏需要知道共有多少种分派方案。

例：

S1={01},S2={23}，代表编号为 0 的狂战士的魔法可以克制编号为 0 和编号为 1 的天之驱逐

者，编号为 1 的狂战士的魔法可以克制编号为 2 和编号为 3 的天之驱逐者，共有四种方案：

02,03,12,13。

02---代表第一个狂战士负责编号为 0 的驱逐者，第二个狂战士负责编号为 2 的驱逐者；

03---代表第一个狂战士负责编号为 0 的驱逐者，第二个狂战士负责编号为 3 的驱逐者；

12---代表第一个狂战士负责编号为 1 的驱逐者，第二个狂战士负责编号为 2 的驱逐者;

13---代表第一个狂战士负责编号为 1 的驱逐者，第二个狂战士负责编号为 3 的驱逐者;

S1={01},S2={01}，代表编号为 0 的狂战士的魔法可以克制编号为 0 和编号为 1 的天之驱逐

者，编号为 1 的狂战士的魔法可以克制编号为 0 和编号为 1 的天之驱逐者，共有两种方案：

01,10。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

//非递归解法和递归解法，有兴趣的可以参考下

// letv1.cpp : 定义控制台应用程序的入口点。

//这道题的非递归解法，有兴趣的可以参考一下

//#include "stdafx.h"

#include <iostream>

#include <vector>

#include <string>

using namespace std;

struct node

{

 string * ps;

 int i;

};

int findNum(vector<string> data)

{

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

 if (data.size() == 1)

 {

 return data[0].size();

 }

 vector<struct node *> stk;

 vector<struct node *>::iterator it;

 struct node * pNode = new struct node;

 struct node * pTmp;

 pNode->ps = &data[0];

 pNode->i = 0;

 int j = 1;

 string * now = &data[1];

 int k = 0;

 int num = 0;

 stk.push_back(pNode);

 int m;

 while (true)

 {//while1

 for (m = k; m < now->size(); m++)

 {

 bool flag = true;

 for (it = stk.begin(); it != stk.end(); it++)

 {

 if ((*((*it)->ps))[(*it)->i] == (*now)[m])

 {

 flag = false;

 break;

 }

 }

 if (flag == true)

 {

 pNode = new struct node;

 pNode->ps = now;

 pNode->i = m;

 stk.push_back(pNode);

 break;

 }

 }

 if (m < now->size())

 {

 if (j < data.size() - 1)

 {

 j++;

 k = 0;

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

 now = &data[j];

 }

 else

 {

 if (m == now->size() - 1)

 {

 it = stk.end() - 1;

 pTmp = *it;

 stk.erase(it);

 delete pTmp;

 it = stk.end() - 1;

 pTmp = *it;

 k = (*it)->i + 1;

 now = (*it)->ps;

 stk.erase(it);

 delete pTmp;

 j--;

 num++;

 if (stk.size() == 0 && k==now->size())

 {

 break;

 }

 }

 else

 {

 k=m+1;

 it = stk.end() - 1;

 pTmp = *it;

 stk.erase(it);

 delete pTmp;

 num++;

 }

 }

 }

 else

 {

 it = stk.end() - 1;

 pTmp = *it;

 now = (*it)->ps;

 k = (*it)->i+1;

 stk.erase(it);

 delete pTmp;

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

 j--;

 if (stk.size() == 0 && k == now->size())

 {

 break;

 }

 }

 }//while

 return num;

}

int main()

{

 vector<string> data;

 int n;

 string tmp;

 while (cin >> n)

 {

 for (int i = 0; i < n; i++)

 {

 string tmp;

 cin >> tmp;

 data.push_back(tmp);

 }

 cout << findNum(data) << endl;

 data.clear();

 }

 return 0;

}

//以下是递归的解法

// letv1Recursion.cpp : 定义控制台应用程序的入口点。

//

//#include "stdafx.h"

#include <iostream>

#include <vector>

#include <string>

using namespace std;

int getNum(vector<string> data, int i, string &s)

{

 int num = 0;

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

 int j;

 for (j = 0; j < data[i].size(); j++)

 {

 char a = data[i][j];

 if (s.find(a)== string::npos)

 {

 s.push_back(a);

 if (i == data.size() - 1)

 {

 num++;

 s.pop_back();

 }

 else

 {

 num+=getNum(data, i + 1, s);

 s.pop_back();

 }

 }

 }

 //s.pop_back();

 return num;

}

int main()

{

 vector<string> data;

 int n;

 while (cin>>n)

 {

 int i = 0;

 string s = "";

 int num = 0;

 for (int j = 0; j < n; j++)

 {

 string tmp;

 cin >> tmp;

 data.push_back(tmp);

 }

 cout<<getNum(data, i, s)<<endl;

 data.clear();

 }

 return 0;

}

在最近几场魔兽争霸赛中，赫柏对自己的表现都不满意。

为了尽快提升战力，赫柏来到了雷鸣交易行并找到了幻兽师格丽，打算让格丽为自己的七阶

幻兽升星。

经过漫长的等待以后，幻兽顺利升到了满星，赫柏很满意，打算给格丽一些小费。

赫柏给小费是有原则的：

1.最终给格丽的钱必须是 5 的倍数；

2.小费必须占最终支付费用的 5%~10%之间（包含边界）。

升星总共耗费 A 魔卡，赫柏身上带了 B 魔卡，赫柏想知道他有多少种支付方案可供选择。

注：魔卡是一种货币单位，最终支付费用=本该支付的+小费

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

#include<iostream>

#include<math.h>

using namespace std;

int main(){

 int A,B,R;

 while(cin>>A&&cin>>B){

 R=0;

 int a=ceil(A/0.95),b=floor(A/0.9);

 if(a<=B){

 if(b>B){

 R=B/5-a/5;

 }else{

 R=b/5-a/5;

 }

 if(a%5==0)

 R++;

 }

 cout<<R<<endl;

 }

 return 0;

}

赫柏在绝域之门击败鲁卡斯后，从鲁卡斯身上掉落了一本高级技能书，赫柏打开后惊喜地发

现这是一个早已失传的上古技能---禁忌雷炎。

该技能每次发动只需扣很少的精神值，而且输出也非常高。

具体魔法描述如下：

把地图抽象为一个二维坐标，技能发动者位于(0,0)位置。以技能发动者为中心，做一个半

径为 r 的圆，满足 r^2=S，如果敌人位于这个圆上，且位置为整点坐标，这个敌人将收到该

技能的输出伤害。。

例如当 S=25 时，将有 12 个敌人受到该技能的输出伤害，如下图所示：

更厉害的是，禁忌雷炎可以通过改变魔法输入来控制 S 的大小，因此数学好的魔法师可以

通过该技能攻击到更多的敌人。

赫柏想将这个技能学会并成为自己的主技能，可数学是他的硬伤，所以他请求你为他写一个

程序，帮帮他吧，没准他就把禁忌雷炎与你分享了 :)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

只需要按一个方向遍历一遍 利用勾股定理 x*x+y*y = r*r 即可解决四分之一圆周的点 *4 即为结果

 #include<iostream>

 #include<cstring>

 #include<cstdio>

 #include<cmath>

 using namespace std;

 int n;

 int main()

 {

 while(cin>>n)

 {

 int ans = 0;

 for(int i = 0; i*i < n; i ++)

 {

 int j = n - i*i;

 int s = sqrt(j);

 if(s*s == j)ans++;

18

19

20

21

 }

 cout<<4*ans<<endl;

 }

 }

