
进程控制块是描述进程状态和特性的数据结构，一个进程() 。 

正确答案: D   你的答案: 空 (错误) 

可以有多个进程控制块； 

可以和其他进程共用一个进程控制块； 

可以没有进程控制块； 

只能有惟一的进程控制块。 

 

在操作系统中,把逻辑地址转变为内存的物理地址的过程称作()。 

正确答案: D   你的答案: 空 (错误) 

编译； 

连接； 

运行； 

重定位。 

 

某计算机系统中有 8 台打印机,由 K 个进程竞争使用,每个进程最多需要 3 台打印机。该

系统可能会发生死锁的 K 的最小值是() 

正确答案: C   你的答案: 空 (错误) 

2 

3 

4 

5 

 

下面关于线程的叙述中，正确的是( )。 

正确答案: C   你的答案: 空 (错误) 

不论是系统支持线程还是用户级线程，其切换都需要内核的支持 

线程是资源的分配单位，进程是调度和分配的单位 

不管系统中是否有线程，进程都是拥有资源的独立单位 

在引入线程的系统中，进程仍是资源分配和调度分派的基本单位 

 

程序动态链接发生时刻是在() 

正确答案: B   你的答案: 空 (错误) 

编译时 

装入时 

调用时 

程序执行时 

 

以下哪些进程状态转换是正确的 

正确答案: A B C E   你的答案: 空 (错误) 

就绪到运行 



运行到就绪 

运行到阻塞 

阻塞到运行 

阻塞到就绪 

 

IP 地址分类中,C 类地址的范围为： 

正确答案: C   你的答案: 空 (错误) 

以 0开头， 第一个字节范围：0~127 

以 10开头， 第一个字节范围：128~191； 

以 110开头， 第一个字节范围：192~223； 

以上答案都不正确 

 

FTP 服务和 SMTP 服务的端口默认分别是（） 

正确答案: C   你的答案: 空 (错误) 

20与 25 

21与 25 

20，21与 25 

20与 21 

 

一个 B 类网的子网掩码是 255.255.240.0，这个子网能拥有的最大主机数是： 

正确答案: C   你的答案: 空 (错误) 

240 

255 

4094 

65534 

 

如果在一个建立了 TCP 连接的 socket 上调用 recv 函数，返回值为 0，则表示（） 

正确答案: B   你的答案: 空 (错误) 

对端发送了一段长度为 0的数据 

对端关闭了连接 

还没有收到对端数据 

连接发生错误 

 

面有关 http keep-alive 说法错误的是？ 

正确答案: D   你的答案: 空 (错误) 

在 HTTP1.0和 HTTP1.1协议中都有对 KeepAlive的支持。其中 HTTP1.0需要在 requ

est中增加“Connection： keep-alive” header才能够支持，而 HTTP1.1默认支持 

当使用 Keep-Alive模式时，Keep-Alive功能使客户端到服 务器端的连接持续有效，

当出现对服务器的后继请求时，Keep-Alive功能避免了建立或者重新建立连接 



可以在服务器端设置是否支持 keep-alive 

当你的 Server多为动态请求，建议开启 keep-alive增加传输效率 

 

某台路由器有两个以太网接口，分别与不同网段的以太网相连，请问：该路由器最多可有几

组？（ ） 

正确答案: E   你的答案: 空 (错误) 

1 

2 

3 

4 

>4 

 

a 边长为 n 的正方形可以分成多个边长为 1 的正方形，如边长为 2 的正方形有 2×2 个边长

为 1 的正方形和 1 个边长为 2 的正方形；问边长为 5 的正方形有几个正方形。 

正确答案: C   你的答案: 空 (错误) 

25 

30 

55 

100 

 

A 市 B，C 两个区，人口比例为 3：5，据历史统计 B 区的犯罪率为 0.01%，C 区为 0.015%，

现有一起新案件发生在 A 市，那么案件发生在 B 区的可能性有多大？（） 

正确答案: C   你的答案: 空 (错误) 

37.5% 

32.5% 

28.6% 

76.9% 

 

下面程序的功能是输出数组的全排列,选择正确的选项,完成其功能。 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

void perm(int list[], int k, int m) 

{ 

if (    ) 

{ 

    copy(list,list+m,ostream_iterator<int>(cout," ")); 

    cout<<endl; 

    return; 

} 

for (int i=k; i<=m; i++) 

{ 

    swap(&list[k],&list[i]); 

    (    ); 
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14 

15 

    swap(&list[k],&list[i]); 

} 

} 

 

正确答案: B   你的答案: 空 (错误) 

k!=m 和 perm（list，k+1，m） 

k==m 和 perm（list，k+1，m） 

k!=m 和 perm（list，k，m） 

k==m 和 perm（list，k，m） 

 

在 Linux 中 crontab 文件由 6 个域组成，每个域之间用空格分隔，下列哪个排列方式是正确

的？ 

正确答案: B   你的答案: 空 (错误) 

MIN HOUR DAY MONTH YEAR COMMAND 

MIN HOUR DAY MONTH DAYOFWEEK COMMAND 

COMMAND HOUR DAY MONTH DAYOFWEEK 

COMMAND YEAR MONTH DAY HOUR MIN 

 

在 Linux 系统中哪个文件定义了服务搜索顺序？ 。 

正确答案: C   你的答案: 空 (错误) 

/etc/services 

/etc/nsorder 

/etc/nsswitch.conf 

/etc/hosts 

 

下列关于链接描述，正确的的是（）  

正确答案: A C D   你的答案: 空 (错误) 

硬链接就是让链接文件的 i节点号指向被链接文件的 i节点 

硬链接和符号连接都是产生一个新的 i节点 

链接分为硬链接和符号链接 

硬连接不能链接目录文件 

 

在 Linux 系统中,下列哪个命令是用来统计一个文件中的行数？ 

正确答案: B   你的答案: 空 (错误) 

lc 

wc – l 

cl 

count 

 



Linux 执行 ls，会引起哪些系统调用（） 

正确答案: B C   你的答案: 空 (错误) 

nmap 

read 

execve 

fork 

 

卢卡斯的驱逐者大军已经来到了赫柏的卡诺萨城，赫柏终于下定决心,集结了大军,与驱逐者

全面开战。 

卢卡斯的手下有 6 名天之驱逐者，这 6 名天之驱逐者各赋异能，是卢卡斯的主力。 

为了击败卢卡斯，赫柏必须好好考虑如何安排自己的狂战士前去迎战。 

狂战士的魔法与一些天之驱逐者的魔法属性是相克的，第 i 名狂战士的魔法可以克制的天之

驱逐者的集合为 Si(Si 中的每个元素属于[0,5])。 

为了公平，两名狂战士不能攻击同一个天之驱逐者。 

现在赫柏需要知道共有多少种分派方案。 

例： 

S1={01},S2={23}，代表编号为 0 的狂战士的魔法可以克制编号为 0 和编号为 1 的天之驱逐

者，编号为 1 的狂战士的魔法可以克制编号为 2 和编号为 3 的天之驱逐者，共有四种方案：

02,03,12,13。 

02---代表第一个狂战士负责编号为 0 的驱逐者，第二个狂战士负责编号为 2 的驱逐者； 

03---代表第一个狂战士负责编号为 0 的驱逐者，第二个狂战士负责编号为 3 的驱逐者； 

12---代表第一个狂战士负责编号为 1 的驱逐者，第二个狂战士负责编号为 2 的驱逐者; 

13---代表第一个狂战士负责编号为 1 的驱逐者，第二个狂战士负责编号为 3 的驱逐者; 

S1={01},S2={01}，代表编号为 0 的狂战士的魔法可以克制编号为 0 和编号为 1 的天之驱逐

者，编号为 1 的狂战士的魔法可以克制编号为 0 和编号为 1 的天之驱逐者，共有两种方案：

01,10。 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

//非递归解法和递归解法，有兴趣的可以参考下 

// letv1.cpp : 定义控制台应用程序的入口点。 

//这道题的非递归解法，有兴趣的可以参考一下 

  

//#include "stdafx.h" 

#include <iostream> 

#include <vector> 

#include <string> 

using namespace std; 

struct node 

{ 

    string * ps; 

    int i; 

}; 

int findNum(vector<string> data) 

{ 
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31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

    if (data.size() == 1) 

    { 

        return data[0].size(); 

    } 

    vector<struct node *> stk; 

    vector<struct node *>::iterator it; 

    struct node * pNode = new struct node; 

    struct node * pTmp; 

    pNode->ps = &data[0]; 

    pNode->i = 0; 

    int j = 1; 

    string * now = &data[1]; 

    int k = 0; 

    int num = 0; 

    stk.push_back(pNode); 

    int m;  

    while (true) 

    {//while1 

        for (m = k; m < now->size(); m++) 

        { 

            bool flag = true; 

            for (it = stk.begin(); it != stk.end(); it++) 

            { 

                if ((*((*it)->ps))[(*it)->i] == (*now)[m]) 

                { 

                    flag = false; 

                    break; 

                } 

            } 

            if (flag == true) 

            { 

                pNode = new struct node; 

                pNode->ps = now; 

                pNode->i = m; 

                stk.push_back(pNode); 

                break; 

            } 

        } 

        if (m < now->size()) 

        { 

            if (j < data.size() - 1) 

            { 

                j++; 

                k = 0; 
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80 

81 

82 

83 

84 
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86 
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88 

89 
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94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

                now = &data[j]; 

            } 

            else 

            { 

                if (m == now->size() - 1) 

                { 

                      

                    it = stk.end() - 1; 

                    pTmp = *it; 

                    stk.erase(it); 

                    delete pTmp; 

                    it = stk.end() - 1; 

                    pTmp = *it; 

                    k = (*it)->i + 1; 

                    now = (*it)->ps; 

                    stk.erase(it); 

                    delete pTmp; 

                    j--; 

                    num++; 

                    if (stk.size() == 0 && k==now->size()) 

                    { 

                        break; 

                    } 

                } 

                else 

                { 

                    k=m+1; 

                    it = stk.end() - 1; 

                    pTmp = *it; 

                    stk.erase(it); 

                    delete pTmp; 

                    num++; 

                } 

                  

            } 

        } 

        else 

        { 

            it = stk.end() - 1; 

            pTmp = *it; 

            now = (*it)->ps; 

            k = (*it)->i+1; 

            stk.erase(it); 

            delete pTmp; 
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            j--; 

            if (stk.size() == 0 && k == now->size()) 

            { 

                break; 

            } 

        } 

    }//while 

    return num; 

} 

  

int main() 

{ 

    vector<string> data; 

      

    int n; 

    string tmp; 

    while (cin >> n) 

    { 

        for (int i = 0; i < n; i++) 

        { 

            string tmp; 

            cin >> tmp; 

            data.push_back(tmp); 

        } 

          

        cout << findNum(data) << endl; 

        data.clear(); 

    } 

  

    return 0; 

} 

//以下是递归的解法 

// letv1Recursion.cpp : 定义控制台应用程序的入口点。 

// 

  

//#include "stdafx.h" 

#include <iostream> 

#include <vector> 

#include <string> 

using namespace std; 

  

int getNum(vector<string> data, int i, string &s) 

{ 

    int num = 0; 
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171 

172 

173 
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    int j; 

    for (j = 0; j < data[i].size(); j++) 

    { 

        char a = data[i][j]; 

        if (s.find(a)== string::npos) 

        { 

            s.push_back(a); 

            if (i == data.size() - 1) 

            { 

                num++; 

                s.pop_back(); 

            } 

            else 

            { 

                num+=getNum(data, i + 1, s); 

                s.pop_back(); 

            } 

        } 

    } 

    //s.pop_back(); 

    return num; 

} 

  

int main() 

{ 

    vector<string> data; 

  

    int n; 

    while (cin>>n) 

    { 

        int i = 0; 

        string s = ""; 

        int num = 0; 

        for (int j = 0; j < n; j++) 

        { 

            string tmp; 

            cin >> tmp; 

            data.push_back(tmp); 

        } 

        cout<<getNum(data, i, s)<<endl; 

        data.clear(); 

    } 

    return 0; 

} 



在最近几场魔兽争霸赛中，赫柏对自己的表现都不满意。 

为了尽快提升战力，赫柏来到了雷鸣交易行并找到了幻兽师格丽，打算让格丽为自己的七阶

幻兽升星。 

经过漫长的等待以后，幻兽顺利升到了满星，赫柏很满意，打算给格丽一些小费。 

赫柏给小费是有原则的： 

1.最终给格丽的钱必须是 5 的倍数； 

2.小费必须占最终支付费用的 5%~10%之间（包含边界）。 

升星总共耗费 A 魔卡，赫柏身上带了 B 魔卡，赫柏想知道他有多少种支付方案可供选择。 

注：魔卡是一种货币单位，最终支付费用=本该支付的+小费 
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#include<iostream> 

#include<math.h> 

using namespace std; 

int main(){ 

    int A,B,R; 

    while(cin>>A&&cin>>B){ 

        R=0; 

        int a=ceil(A/0.95),b=floor(A/0.9); 

        if(a<=B){ 

            if(b>B){ 

                R=B/5-a/5; 

            }else{ 

                R=b/5-a/5; 

            } 

            if(a%5==0) 

                R++; 

    } 

        cout<<R<<endl; 

    } 

    return 0; 

} 
 

赫柏在绝域之门击败鲁卡斯后，从鲁卡斯身上掉落了一本高级技能书，赫柏打开后惊喜地发

现这是一个早已失传的上古技能---禁忌雷炎。 

该技能每次发动只需扣很少的精神值，而且输出也非常高。 

具体魔法描述如下： 

把地图抽象为一个二维坐标，技能发动者位于(0,0)位置。以技能发动者为中心，做一个半

径为 r 的圆，满足 r^2=S，如果敌人位于这个圆上，且位置为整点坐标，这个敌人将收到该

技能的输出伤害。。 

例如当 S=25 时，将有 12 个敌人受到该技能的输出伤害，如下图所示： 



 

更厉害的是，禁忌雷炎可以通过改变魔法输入来控制 S 的大小，因此数学好的魔法师可以

通过该技能攻击到更多的敌人。 

赫柏想将这个技能学会并成为自己的主技能，可数学是他的硬伤，所以他请求你为他写一个

程序，帮帮他吧，没准他就把禁忌雷炎与你分享了 : ) 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

只需要按一个方向遍历一遍 利用勾股定理 x*x+y*y = r*r 即可解决四分之一圆周的点 *4 即为结果 

 #include<iostream> 

 #include<cstring> 

 #include<cstdio> 

 #include<cmath> 

 using namespace std; 

 int n; 

 int main() 

 { 

     while(cin>>n) 

     { 

         int ans = 0; 

         for(int i = 0; i*i < n; i ++) 

         { 

             int j = n - i*i; 

             int s = sqrt(j); 

             if(s*s == j)ans++; 
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         } 

         cout<<4*ans<<endl; 

     } 

 } 
 


