
以下哪个协议属于传输层协议？

正确答案: B 你的答案: 空 (错误)

FTP

UDP

IP

HTTP

以下哪个算法不是对称加密算法()

正确答案: D 你的答案: 空 (错误)

DES

RC5

AES

RSA

在多线程系统中，线程在它的生命周期中会处于不同的状态，其中不是线程状态的

是:()

正确答案: B 你的答案: 空 (错误)

Ready

Busied

Blocked

Running

设数组 data[m]作为循环队列的存储空间。front 为队头指针，rear 为队尾指针，则

执行出队操作后其头指针 front 值为()

正确答案: D 你的答案: 空 (错误)

front=front+1

front=(front+1)%(m-1)

front=(front-1)%m

front=(front+1)%m

下列关于管道(Pipe)通信的叙述中，正确的是()

正确答案: C 你的答案: 空 (错误)

一个管道可以实现双向数据传输

管道的容量仅受磁盘容量大小限制

进程对管道进行读操作和写操作都可能被阻塞

一个管道只能有一个读进程或一个写进程对其操作

已知数组元素基本有序的情况下，下面采用那个算法对数组排序时间复杂度最低()

正确答案: D 你的答案: 空 (错误)

直接选择排序

堆排序

快速排序

插入排序

下面关于 B 和 B+树的描述中，不正确的是()

正确答案: C 你的答案: 空 (错误)

B树和 B+树都是平衡的多叉树

B树和 B+树都可用于文件的索引结构

B树和 B+树都能有效的支持顺序检索

B树和 B+树都能有效的支持随机检索

关于依赖注入，下列选项中说法错误的是()

正确答案: B 你的答案: 空 (错误)

依赖注入能够独立开发各组件，然后根据组件间关系进行组装

依赖注入使组件之间相互依赖，相互制约

依赖注入提供使用接口编程

依赖注入指对象在使用时动态注入

下列哪个地址不可能是子网掩码()

正确答案: D 你的答案: 空 (错误)

255.224.0.0

255.255.240.0

255.255.255.248

255.255.255.250

若一颗二叉树具有 10 个度为 2 的节点，5 个度为 1 的节点，度为 0 的节点个数为()

正确答案: B 你的答案: 空 (错误)

9

11

15

不确定

在 Java 中，以下关于方法重载和方法重写描述正确的是？

正确答案: D 你的答案: 空 (错误)

方法重载和方法的重写实现的功能相同

方法重载出现在父子关系中，方法重写是在同一类中

方法重载的返回值类型必须一致，参数项必须不同

方法重写的返回值类型必须相同或相容。（或是其子类）

下面有关 JVM 内存，说法错误的是？

正确答案: C 你的答案: 空 (错误)

程序计数器是一个比较小的内存区域，用于指示当前线程所执行的字节码执行到了

第几行，是线程隔离的

Java方法执行内存模型，用于存储局部变量，操作数栈，动态链接，方法出口等

信息，是线程隔离的

方法区用于存储 JVM加载的类信息、常量、静态变量、即使编译器编译后的代码等

数据，是线程隔离的

原则上讲，所有的对象都在堆区上分配内存，是线程之间共享的

C++中，下面四个表达式中错误的一项是()

正确答案: C 你的答案: 空 (错误)

a+=(a++)

a+=(++a)

(a++)+=a

(++a)+=(a++)

多线程中栈与堆是公有的还是私有的()

正确答案: C 你的答案: 空 (错误)

栈公有，堆私有

栈公有，堆公有

栈私有，堆公有

栈私有，堆私有

有如下 4 条语句：()

1

2

3

4

Integer i01=59;

int i02=59;

Integer i03=Integer.valueOf(59);

Integer i04=new Integer(59);

以下输出结果为 false 的是:

正确答案: C 你的答案: 空 (错误)

System.out.println(i01==i02);

System.out.println(i01==i03);

System.out.println(i03==i04);

System.out.println(i02==i04);

设有 5000 个待排序的记录的关键字，如果需要用最快的方法选出其中最小的 10 个

记录关键字，则用下列哪个方法可以达到此目的()

正确答案: B 你的答案: 空 (错误)

快速排序

堆排序

归并排序

插入排序

三个程序 a,b,c,它们使用同一个设备进行 I/O 操作，并按 a,b,c 的优先级执行(a 优先

级最高，c 最低).这三个程序的计算和 I/O 时间如下图所示。假设调度的时间可忽略。

则在单道程序环境和多道程序环境下(假设内存中可同时装入这三个程序，系统采用

不可抢占的调度策略).运行总时间分别为()

计算 I/O 计算

a 30 40 10

b 60 30 10

c 20 40 20

正确答案: A 你的答案: 空 (错误)

260,180

240,180

260,190

240,190

6 支笔，其笔身和笔帽颜色相同：但 6 支笔颜色各不相同，求全部笔身都戴错笔帽

的可能性有多少种？

正确答案: A 你的答案: 空 (错误)

265

266

267

268

已知有序序列 b c d e f g q r s t,则在二分查找关键字 b 的过程中，先后进行比较的

关键字依次是多少?()

正确答案: B 你的答案: 空 (错误)

f d b

f c b

g c b

g d b

如果待排序的数组已经近似递增排序，则此时快排算法的时间复杂度为()

正确答案: B 你的答案: 空 (错误)

O(n)

O(n^2)

O(nlogn)

O((n^2)*logn)

1000 以内与 105 互质的偶数有多少个?

正确答案: C 你的答案: 空 (错误)

227

228

229

230

函数 x 的定义如下,问 x(x(8)需要调用几次函数 x(int n)?

1

2

3

4

5

6

7

8

9

10

11

int x(int n){

 cnt++;

 if (n<=3)

 {

 return 1;

 }

 else

 {

 return x(n-2)+x(n-4)+1;

 }

}

正确答案: B 你的答案: 空 (错误)

16

18

20

22

2015!后面有几个 0?

正确答案: C 你的答案: 空 (错误)

500

501

502

503

输入一个字符串 ,要求输出字符串中字符所有的排列 ,例如输入 "abc",得到

"abc","acb","bca","bac","cab","cba"

//递归实现，30 行，clean

#include<iostream>

#include<vector>

#include<string>

using namespace std;

vector<string> result;

void permute(string& str, int depth, int n){

 if(depth == n){

 result.push_back(str);

 return ;

 }

 for(int i = depth; i< n; i++){

 swap(str[depth],str[i]);

 permute(str, depth+1, n);

 swap(str[depth],str[i]);

 }

}

int main(){

 string str;

 cin>>str;

 permute(str, 0, str.size());

 for(int i = 0; i < result.size(); i++){

 cout << result[i] << endl;

 }

 return 0;

}

编写一个程序,将小于 n 的所有质数找出来。

1 #include <iostream>

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

#include <cmath>

#include <vector>

using namespace std;

bool isprime(int x)

{

 if (x <= 1) return false;

 else if (x == 2) return true;

 for (int i = 2; i <= sqrt(x); ++i)

 {

 if (x % i == 0) return false;

 }

 return true;

}

vector<int> getAllPrimes(int n)

{

 vector<int> res;

 if (n < 2) return res;

 for (int i = 2; i < n; ++i)

 {

 if (isprime(i))

 res.push_back(i);

 }

 return res;

}

int main(void)

{

 int n;

 cin >> n;

 vector<int> prms = getAllPrimes(n);

 for (auto p : prms)

 cout << p << " ";

 cout << endl;

 return 0;

}

在一次活动中,我们需要按可控的比例来随机发放我们的奖品,假设需要随机的物品

id和概率都在给定的 Map<String,Double>prizeMap 中,请实现如下这个函数: String

getRandomPrize(Map<String,Double>prizeMap){}使得返回的结果为参与者 即将

得到的一个随机物品 id.

prizeMap 中的数据为:

物品 id 投放概率

1 0.5

2 0.3

3 0.1

4 0.95

5. 0.05

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

#include <iostream>

#include <map>

#include <string>

#include <ctime>

using namespace std;

string getRandomPrize(map<string, double> hm)

{

 double all = 0.0;

 map<double, string> mp;

 map<string, double>::iterator it = hm.begin();

 while (it != hm.end())

 {

 all += (*it).second;

 mp.insert(pair<double, string>(all, (*it).first));

 ++it;

 }

 srand((unsigned)time(NULL));

 double total = rand() / double(RAND_MAX) * all;

 map<double, string>::iterator mpit = mp.begin();

 while (mpit != mp.end())

 {

 if (total < (*mpit).first)

 return (*mpit).second;

 ++mpit;

 }

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

 return "";

}

int main(void)

{

 map<string, double> hm;

 hm.insert(pair<string, double>("1", 0.5));

 hm.insert(pair<string, double>("2", 0.3));

 hm.insert(pair<string, double>("3", 0.1));

 hm.insert(pair<string, double>("4", 0.95));

 hm.insert(pair<string, double>("5", 0.05));

 while (1)

 cout << getRandomPrize(hm);

 return 0;

}

