
搜狐员工小王最近利用假期在外地旅游，在某个小镇碰到一个马戏团表演，精彩的

表演结束后发现团长正和大伙在帐篷前激烈讨论，小王打听了下了解到， 马戏团正

打算出一个新节目“最高罗汉塔”，即马戏团员叠罗汉表演。考虑到安全因素，要求

叠罗汉过程中，站在某个人肩上的人应该既比自己矮又比自己瘦，或相等。 团长想

要本次节目中的罗汉塔叠的最高，由于人数众多，正在头疼如何安排人员的问题。

小王觉得这个问题很简单，于是统计了参与最高罗汉塔表演的所有团员的身高体重，

并且很快找到叠最高罗汉塔的人员序列。 现在你手上也拿到了这样一份身高体重表，

请找出可以叠出的最高罗汉塔的高度，这份表中马戏团员依次编号为 1 到 N。 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

import java.util.Scanner; 

  

public class Main { 

    public static class Dis{ 

        int Num;     //马戏团成员的编号 

        int high;    //身高 

        int weight;    //体重 

        int max_high;  //记录这个马戏团成员为最下面的一个人，最多可以叠

多少层罗汉 

    } 

      

    public static void main(String args[]){      

         Scanner cin = new 

Scanner(System.in);              

         while(cin.hasNext()){       

             int n = cin.nextInt(); 

             Dis map[] = new Dis[n]; 

             for(int i = 0;i < n;i++){ 

                 map[i] = new Dis();   //每次进入的元素插入

队尾 

                 map[i].Num = cin.nextInt(); 

                 map[i].weight = cin.nextInt(); 

                 map[i].high = cin.nextInt(); 

                 for(int j = i;j > 0;j--){    //使用冒泡排

序，对新插入的元素插入队列，按照体重从小到大的顺序排序 

                     if(map[j].weight < map[j-1].weight){ 

                         int Num = map[j].Num; 

                         int high = map[j].high; 

                         int weight = map[j].weight; 

                         map[j].Num = map[j-1].Num; 

                         map[j].high = map[j-1].high; 

                         map[j].weight = 

map[j-1].weight; 

                         map[j-1].Num = Num; 

                         map[j-1].high = high; 
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                         map[j-1].weight = weight; 

                     }else if(map[j].weight == 

map[j-1].weight &&map[j].high > map[j-1].high){  //如果体重相同，身高矮的在后面 

                         int Num = map[j].Num; 

                         int high = map[j].high; 

                         int weight = map[j].weight; 

                         map[j].Num = map[j-1].Num; 

                         map[j].high = map[j-1].high; 

                         map[j].weight = 

map[j-1].weight; 

                         map[j-1].Num = Num; 

                         map[j-1].high = high; 

                         map[j-1].weight = weight; 

                     }else 

                         break;  //队列已经有序了，跳

出循环 

                 } 

             }           

             int max_high = getMaxHigh(map,n); 

             System.out.println(max_high); 

         }                       

    } 

  

    private static int getMaxHigh(Dis[] map, int n) { 

        // TODO Auto-generated method stub 

        int max_high = 0; 

        for(int i = 0;i < n;i++){ 

            map[i].max_high = 1; 

            for(int j = 0; j < i;j++){ 

                if(map[i].high >= map[j].high && map[i].max_high < 

map[j].max_high+1){ 

                    map[i].max_high = map[j].max_high + 1; 

                }               

            } 

            max_high = Math.max(max_high, map[i].max_high); 

        } 

        return max_high; 

    } 

} 
 

两个搜狐的程序员加了一个月班，终于放假了，于是他们决定扎金花渡过愉快的假

期 。 



 

游戏规则： 

共 52张普通牌，牌面为 2,3,4,5,6,7,8,9,10,J,Q,K,A之一，大小递增，各

四张； 每人抓三张牌。两人比较手中三张牌大小，大的人获胜。  

 

对于牌型的规则如下：  

1.三张牌一样即为豹子  

2.三张牌相连为顺子（A23不算顺子）  

3.有且仅有两张牌一样为对子 豹子>顺子>对子>普通牌型 在牌型一样时，比较牌

型数值大小（如 AAA>KKK,QAK>534，QQ2>10104） 在二人均无特殊牌型时，依

次比较三张牌中最大的。大的人获胜，如果最大的牌一样，则比较第二大，以此类

推（如 37K>89Q） 如二人牌面相同，则为平局。  
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/* 

  

 * 对于扑克牌,将不在附近的 JQKA和 10,交换成 IJKLM<=>10,J,Q,K,A,则替换后非常

好处理. 

  

 */ 

  

#include <iostream> 

  

#include <string> 

  

#include <algorithm> 

  

using namespace std; 

  

   

  

/* return a <type, first_max_element> */ 

  

pair<int, int> judgeType(string& s) 

  

{ 

  

    intlen = s.size(); 
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    sort(s.begin(), s.end()); 

  

    if(s[0] == s[1] && s[1] == s[2]) 

  

        returnmake_pair(6, s[0]);  // KKK 

  

    elseif(s[1]-s[0] == 1&& s[2]-s[1] == 1) 

  

        returnmake_pair(5, s[0]);     // JQK 

  

    if(s[0] == s[1]) 

  

        returnmake_pair(4, s[0]);  // JJA 

  

    elseif(s[0] == s[2]) 

  

        returnmake_pair(4, s[0]); 

  

    elseif(s[1] == s[2]) 

  

        returnmake_pair(4, s[1]); 

  

    returnmake_pair(3, *max_element(s.begin(), s.end())); 

  

} 

  

   

  

string& exchange(string& raw, string ns, string ne) 

  

{ 

  

    intlen = raw.size(); 

  

    intp1 = raw.find(ns); 

  

    while(p1 < len && p1 >= 0) 

  

    { 

  

        raw.replace(raw.begin()+p1, raw.begin()+p1+ns.size(), ne); 

  

        p1 = raw.find(ns, p1); 
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    } 

  

    returnraw; 

  

} 

  

   

  

   

  

intmain() 

  

{ 

  

    string s1; 

  

    string s2; 

  

    while(cin >> s1 >> s2) 

  

    { 

  

        //I-J-K-L-M-N <=> 10, J, Q, K ,A 

  

        s1 = exchange(s1, "10", "I"); 

  

        s1 = exchange(s1, "K", "L"); 

  

        s1 = exchange(s1, "Q", "K"); 

  

        s1 = exchange(s1, "A", "M"); 

  

        s2 = exchange(s2, "10", "I"); 

  

        s2 = exchange(s2, "K", "L"); 

  

        s2 = exchange(s2, "Q", "K"); 

  

        s2 = exchange(s2, "A", "M"); 

  

        pair<int, int> t1 = judgeType(s1); 

  

        pair<int, int> t2 = judgeType(s2); 
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        if(s1 == s2) 

  

            cout << "0"<< endl; 

  

        else 

  

        { 

  

            if(t1.first > t2.first) 

  

                cout << "1"<< endl; 

  

            elseif(t1.first < t2.first) 

  

                cout << "-1"<< endl; 

  

            else 

  

            { 

  

                if(t2.second != t1.second) 

  

                    cout << (t1.second > 

t2.second ? "1": "-1") << endl; 

  

                elseif(s1[1] != s2[1]) 

  

                    cout << (s1[1] > s2[1] ? "1": "-1") 

<< endl; 

  

                elseif(s1[0] != s2[0]) 

  

                    cout << (s1[0] > s2[0] ? "1": "-1") 

<< endl; 

  

                else 

  

                    cout << "0"<< endl; 

  

            } 

  

        } 

  



157     } 

  

    return0; 

  

} 
 

狐进行了一次黑客马拉松大赛，全公司一共分为了 N个组，每组一个房间排成一排

开始比赛，比赛结束后没有公布成绩，但是每个组能够看到自己相邻的两个组里比

自己成绩低的组的成绩，比赛结束之后要发奖金，以 1w为单位，每个组都至少会

发 1w的奖金，另外，如果一个组发现自己的奖金没有高于比自己成绩低的组发的

奖金，就会不满意，作为比赛的组织方，根据成绩计算出至少需要发多少奖金才能

让所有的组满意。  
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import java.util.Scanner; 

public class Main { 

    public static void main(String[] args) { 

        Scanner scanner = new Scanner(System.in); 

        while (scanner.hasNext()) { 

            int N = scanner.nextInt(); 

            int[] grades = new int[N]; 

            for (int i = 0; i < N; i++) { 

                grades[i] = scanner.nextInt(); 

            } 

              

            int[] bonus = new int[N]; 

            int[] cobonus = new int[N]; 

            bonus[0] = 1; 

            cobonus[N-1] = 1; 

            for (int i = 1; i < grades.length; i++) { 

                if (grades[i] > grades[i-1]) 

                    bonus[i] = bonus[i-1] + 1; 

                else 

                    bonus[i] = 1; 

            } 

            for (int i = N-1; i > 0; i--) { 

                if (grades[i-1] > grades[i]) 

                    cobonus[i-1] = cobonus[i] + 1; 

                else 

                    cobonus[i-1] = 1; 

            } 

              

            int sum = 0; 
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            for (int i = 0; i < N; i++) { 

                int temp = 

bonus[i]>cobonus[i]?bonus[i]:cobonus[i]; 

                sum += temp; 

            } 

            System.out.println(sum); 

        } 

    } 

} 

从头到尾，从尾到头都来一遍，结果分别存在两个数组里，最后取两个数组中米一

个元素较大的一个，相加得到最后结果。 

 


