
搜狐员工小王最近利用假期在外地旅游，在某个小镇碰到一个马戏团表演，精彩的

表演结束后发现团长正和大伙在帐篷前激烈讨论，小王打听了下了解到， 马戏团正

打算出一个新节目“最高罗汉塔”，即马戏团员叠罗汉表演。考虑到安全因素，要求

叠罗汉过程中，站在某个人肩上的人应该既比自己矮又比自己瘦，或相等。 团长想

要本次节目中的罗汉塔叠的最高，由于人数众多，正在头疼如何安排人员的问题。

小王觉得这个问题很简单，于是统计了参与最高罗汉塔表演的所有团员的身高体重，

并且很快找到叠最高罗汉塔的人员序列。 现在你手上也拿到了这样一份身高体重表，

请找出可以叠出的最高罗汉塔的高度，这份表中马戏团员依次编号为 1 到 N。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

import java.util.Scanner;

public class Main {

 public static class Dis{

 int Num; //马戏团成员的编号

 int high; //身高

 int weight; //体重

 int max_high; //记录这个马戏团成员为最下面的一个人，最多可以叠

多少层罗汉

 }

 public static void main(String args[]){

 Scanner cin = new

Scanner(System.in);

 while(cin.hasNext()){

 int n = cin.nextInt();

 Dis map[] = new Dis[n];

 for(int i = 0;i < n;i++){

 map[i] = new Dis(); //每次进入的元素插入

队尾

 map[i].Num = cin.nextInt();

 map[i].weight = cin.nextInt();

 map[i].high = cin.nextInt();

 for(int j = i;j > 0;j--){ //使用冒泡排

序，对新插入的元素插入队列，按照体重从小到大的顺序排序

 if(map[j].weight < map[j-1].weight){

 int Num = map[j].Num;

 int high = map[j].high;

 int weight = map[j].weight;

 map[j].Num = map[j-1].Num;

 map[j].high = map[j-1].high;

 map[j].weight =

map[j-1].weight;

 map[j-1].Num = Num;

 map[j-1].high = high;

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

 map[j-1].weight = weight;

 }else if(map[j].weight ==

map[j-1].weight &&map[j].high > map[j-1].high){ //如果体重相同，身高矮的在后面

 int Num = map[j].Num;

 int high = map[j].high;

 int weight = map[j].weight;

 map[j].Num = map[j-1].Num;

 map[j].high = map[j-1].high;

 map[j].weight =

map[j-1].weight;

 map[j-1].Num = Num;

 map[j-1].high = high;

 map[j-1].weight = weight;

 }else

 break; //队列已经有序了，跳

出循环

 }

 }

 int max_high = getMaxHigh(map,n);

 System.out.println(max_high);

 }

 }

 private static int getMaxHigh(Dis[] map, int n) {

 // TODO Auto-generated method stub

 int max_high = 0;

 for(int i = 0;i < n;i++){

 map[i].max_high = 1;

 for(int j = 0; j < i;j++){

 if(map[i].high >= map[j].high && map[i].max_high <

map[j].max_high+1){

 map[i].max_high = map[j].max_high + 1;

 }

 }

 max_high = Math.max(max_high, map[i].max_high);

 }

 return max_high;

 }

}

两个搜狐的程序员加了一个月班，终于放假了，于是他们决定扎金花渡过愉快的假

期 。

游戏规则：

共 52张普通牌，牌面为 2,3,4,5,6,7,8,9,10,J,Q,K,A之一，大小递增，各

四张； 每人抓三张牌。两人比较手中三张牌大小，大的人获胜。

对于牌型的规则如下：

1.三张牌一样即为豹子

2.三张牌相连为顺子（A23不算顺子）

3.有且仅有两张牌一样为对子 豹子>顺子>对子>普通牌型 在牌型一样时，比较牌

型数值大小（如 AAA>KKK,QAK>534，QQ2>10104） 在二人均无特殊牌型时，依

次比较三张牌中最大的。大的人获胜，如果最大的牌一样，则比较第二大，以此类

推（如 37K>89Q） 如二人牌面相同，则为平局。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

/*

 * 对于扑克牌,将不在附近的 JQKA和 10,交换成 IJKLM<=>10,J,Q,K,A,则替换后非常

好处理.

 */

#include <iostream>

#include <string>

#include <algorithm>

using namespace std;

/* return a <type, first_max_element> */

pair<int, int> judgeType(string& s)

{

 intlen = s.size();

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

 sort(s.begin(), s.end());

 if(s[0] == s[1] && s[1] == s[2])

 returnmake_pair(6, s[0]); // KKK

 elseif(s[1]-s[0] == 1&& s[2]-s[1] == 1)

 returnmake_pair(5, s[0]); // JQK

 if(s[0] == s[1])

 returnmake_pair(4, s[0]); // JJA

 elseif(s[0] == s[2])

 returnmake_pair(4, s[0]);

 elseif(s[1] == s[2])

 returnmake_pair(4, s[1]);

 returnmake_pair(3, *max_element(s.begin(), s.end()));

}

string& exchange(string& raw, string ns, string ne)

{

 intlen = raw.size();

 intp1 = raw.find(ns);

 while(p1 < len && p1 >= 0)

 {

 raw.replace(raw.begin()+p1, raw.begin()+p1+ns.size(), ne);

 p1 = raw.find(ns, p1);

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

 }

 returnraw;

}

intmain()

{

 string s1;

 string s2;

 while(cin >> s1 >> s2)

 {

 //I-J-K-L-M-N <=> 10, J, Q, K ,A

 s1 = exchange(s1, "10", "I");

 s1 = exchange(s1, "K", "L");

 s1 = exchange(s1, "Q", "K");

 s1 = exchange(s1, "A", "M");

 s2 = exchange(s2, "10", "I");

 s2 = exchange(s2, "K", "L");

 s2 = exchange(s2, "Q", "K");

 s2 = exchange(s2, "A", "M");

 pair<int, int> t1 = judgeType(s1);

 pair<int, int> t2 = judgeType(s2);

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

 if(s1 == s2)

 cout << "0"<< endl;

 else

 {

 if(t1.first > t2.first)

 cout << "1"<< endl;

 elseif(t1.first < t2.first)

 cout << "-1"<< endl;

 else

 {

 if(t2.second != t1.second)

 cout << (t1.second >

t2.second ? "1": "-1") << endl;

 elseif(s1[1] != s2[1])

 cout << (s1[1] > s2[1] ? "1": "-1")

<< endl;

 elseif(s1[0] != s2[0])

 cout << (s1[0] > s2[0] ? "1": "-1")

<< endl;

 else

 cout << "0"<< endl;

 }

 }

157 }

 return0;

}

狐进行了一次黑客马拉松大赛，全公司一共分为了 N个组，每组一个房间排成一排

开始比赛，比赛结束后没有公布成绩，但是每个组能够看到自己相邻的两个组里比

自己成绩低的组的成绩，比赛结束之后要发奖金，以 1w为单位，每个组都至少会

发 1w的奖金，另外，如果一个组发现自己的奖金没有高于比自己成绩低的组发的

奖金，就会不满意，作为比赛的组织方，根据成绩计算出至少需要发多少奖金才能

让所有的组满意。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

import java.util.Scanner;

public class Main {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 while (scanner.hasNext()) {

 int N = scanner.nextInt();

 int[] grades = new int[N];

 for (int i = 0; i < N; i++) {

 grades[i] = scanner.nextInt();

 }

 int[] bonus = new int[N];

 int[] cobonus = new int[N];

 bonus[0] = 1;

 cobonus[N-1] = 1;

 for (int i = 1; i < grades.length; i++) {

 if (grades[i] > grades[i-1])

 bonus[i] = bonus[i-1] + 1;

 else

 bonus[i] = 1;

 }

 for (int i = N-1; i > 0; i--) {

 if (grades[i-1] > grades[i])

 cobonus[i-1] = cobonus[i] + 1;

 else

 cobonus[i-1] = 1;

 }

 int sum = 0;

30

31

32

33

34

35

36

37

 for (int i = 0; i < N; i++) {

 int temp =

bonus[i]>cobonus[i]?bonus[i]:cobonus[i];

 sum += temp;

 }

 System.out.println(sum);

 }

 }

}

从头到尾，从尾到头都来一遍，结果分别存在两个数组里，最后取两个数组中米一

个元素较大的一个，相加得到最后结果。

