
2016 金山wps 技术岗

1.笔试题

2016.4.11 晚上在中山大学东校区（大学城校区）参加了金山WPS的笔

试。记忆较为深刻的有如下几题。

题目一：

以下代码片段，输出的结果是什么？

vector<int> vec(5);

cout<<vec.size()<<endl; //1

vec.reserve(100);

cout<<vec.size()<<endl; //2

vec.resize(50);

cout<<vec.size()<<endl; //3

cout<<vec.capacity()<<endl;//4

 1

 2

 3

 4

 5

 6

 7

 1

 2

 3

 4

 5

 6

 7

本题考察的是vector向量容器的成员函数 reserve()和 resize()的作用和

区别。reserve()用来改变 vector 向量容器的容量，即 vec.capacity()的

返回值。resize()用于改变 vector 的元素数量。所以代码中 1,2,3,4 的输

出依次是：5，5，50，100。

题目二：

这是一道编程题，求三个矩形的交集矩形。

给定矩形的定义如下：

struct Rect{

int x; //表示矩形的左上水平坐标

int y; //表示矩形的左上垂直坐标

int w; //表示矩形宽度

int h; //表示矩形高度

};

 1

 2

 3

 4

 5

 6

 1

 2

 3

 4

 5

 6

现在给三个矩形，求三个矩形的交集，如果没有交集，那么矩形的 x，y，

w和 h均赋值为-1。例如下面示例图，求出三个矩形相交的粗线线框表示

的矩形。

解题思路：

解题思路很重要，没有集体思路，题目肯定是做出不来的。下面给出本人

的解题思路：

（1）判断三个矩形有没有交集。这个是难点，该怎么做呢？可以在 x轴

方向将三个矩形按 x的大小从左到右排列，判断两两矩形在 x轴方向是否

有交集，如果有任意一对没有相交那么三个矩形没有交集。判断方法是如

果 rectB.x>=rectA.x+rectA.w 的话，那么说明 rectA 和 rectB 之间没有

交集。

同理，在 y轴方向做同样的判断；

（2）求出任意两个矩形的交集矩形，再将交集矩形与第三个矩形再求交

集，可得最后的交集矩形。

有了正确和清晰的思路，就可以写代码了，下面给出本人的实现，可供网

友参考。

#include <iostream>

using namespace std;

#include <vector>

#include <algorithm>

struct Rect{

int x; //表示矩形的左上水平坐标

int y; //表示矩形的左上垂直坐标

int w; //表示矩形宽度

int h; //表示矩形高度

};

//按照 x 递增排序

bool compareX(const Rect& rectA,const Rect& rectB){

return rectA.x<rectB.x;

}

//按照 y 递增排序

bool compareY(const Rect& rectA,const Rect& rectB){

return rectA.y<rectB.y;

}

//判断三个矩形是否相交

bool isIntersect(const Rect& rectA,const Rect& rectB,const Re

ct& rectC){

Rect rectLeft,rectXMid,rectRight; //从左向右的矩形

Rect rectTop,rectYMid,rectBelow; //从上到下的矩形

//将矩形按照 x由左向右排序

vector<const Rect> vec;

vec.push_back(rectA);

vec.push_back(rectB);

vec.push_back(rectC);

sort(vec.begin(),vec.end(),compareX);

rectLeft=vec[0],rectXMid=vec[1],rectRight=vec[2];

//水平方向任意两个矩形没有交集

if(rectXMid.x>=rectLeft.x+rectLeft.w||rectRight.x>=rectXMid.x

+rectXMid.w||rectRight.x>=rectLeft.x+rectLeft.w)

return false;

//同理将矩形按照 y由上往下排序

sort(vec.begin(),vec.end(),compareY);

rectTop=vec[0],rectYMid=vec[1],rectBelow=vec[2];

//垂直方向任意两个矩形没有交集

if(rectYMid.y>=rectTop.y+rectTop.h||rectBelow.y>=rectYMid.y

+rectYMid.h||rectBelow.y>=rectTop.y+rectTop.h)

return false;

return true; //三个矩形有交集

}

//两个矩形的交集，前提是两个矩形一定有交集

Rect intersection(const Rect& rectA,const Rect& rectB){

Rect resRect;

resRect.x=rectA.x>rectB.x?rectA.x:rectB.x; //选最右边的矩形

的 x作为交集的 x

resRect.y=rectA.y>rectB.y?rectA.y:rectB.y; //选最下面的矩形

的 y作为交集的 y

//选择左边矩形（x坐标较小者）的右边的作为交集矩形的右边，这样

就可以求出交集矩形的宽度

resRect.w=rectA.x+rectA.w<rectB.x+rectB.w?rectA.x+rectA.

w-resRect.x:rectB.x+rectB.w-resRect.x;

//同理，选择上面矩形（y坐标较小者）的下边的作为交集矩形的下边，

这样就可以求出交集矩形的高度

resRect.h=rectA.y+rectA.h<rectB.y+rectB.y?rectA.y+rectA.h-

resRect.y:rectB.y+rectB.h-resRect.y;

return resRect;

}

//求三个矩形的交集

Rect threeIntersection(const Rect& rectA,const Rect& rectB,co

nst Rect& rectC){

Rect res;

bool isIntersectBool=isIntersect(rectA,rectB,rectC);

if(isIntersectBool){ //有相交

Rect rectAB=intersection(rectA,rectB);

res=intersection(rectAB,rectC);

}

else

res.x=res.y=res.w=res.h=-1;

return res;

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

测试结果如下：

int main(){

Rect rectA,rectB,rectC;

//测试案例 1

//rectA.x=0,rectA.y=0,rectA.w=1,rectA.h=1;

//rectB.x=1,rectB.y=1,rectB.w=1,rectB.h=1;

//rectC.x=2,rectC.y=2,rectC.w=1,rectC.h=1;

//测试案例 2

rectA.x=0,rectA.y=0,rectA.w=2,rectA.h=2;

rectB.x=1,rectB.y=1,rectB.w=1,rectB.h=1;

rectC.x=1,rectC.y=1,rectC.w=1,rectC.h=1;

Rect resRect=threeIntersection(rectA,rectB,rectC);

if(resRect.x!=-1){ //有相交

cout<<"resRect.x:"<<resRect.x<<endl;

cout<<"resRect.y:"<<resRect.x<<endl;

cout<<"resRect.w:"<<resRect.x<<endl;

cout<<"resRect.h:"<<resRect.x<<endl;

}

else

http://lib.csdn.net/base/softwaretest

cout<<"not intersect"<<endl;

getchar();

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

测试案例 1输出：not intersect；

测试案例 2输出：

resRect.x:1

resRect.y:1

resRect.w:1

resRect.h:1

