腾讯 2019 秋招后台研发工程师面试经验

后台研发工程师，C++和 Java 方向。

腾讯先是腾讯云，存储方向的部门面的，全程在问 C++，我说明自己很久不用 C++了，面试官开始问我很多基础，不过当我说到 Java 一些术语，面试官一脸懵逼，他说的一些术语，我也一脸懵逼，就这么尴尬了一个小时，哈哈，不过算法题和基础知识答得还不错。

字符串判断包含判断一棵树是不是另一个子树

大头传输和小头传输三次握手，滑动窗口

epoll，select 模型

TCP 和 UDP Linux top 和 ps

操作日志的一些指令红黑树

SortSet

进程通信的方式，哪种方式速度最快后来部门转到了 TEG，直播方向，这次是 Java，全程很顺利，面试官的问题基本答得都不错。

主要是 Java 相关的技术，包括 JVM，还有 hashmap 原理，1.7 和 1.8 的区别，字节移位，主要涉及一道 bitmap 的题目。

MapReduce 是一种编程模型，用于大规模数据集（大于 1TB）的并行运算。概念"Map（映射）"和"Reduce（归约）"

Bit-map 空间压缩和快速排序去重

1. Bit-map 的基本思想

32 位机器上，对于一个整型数，比如 int a=1 在内存中占 32bit 位，这是为了方便计

算机的运算。但是对于某些应用场景而言，这属于一种巨大的浪费，因为我们可以用对应的 32bit 位对应存储十进制的 0-31 个数，而这就是 Bit-map 的基本思想。Bit-map 算法利用这种思想处理大量数据的排序、查询以及去重。

Bitmap 在用户群做交集和并集运算的时候也有极大的便利。

2. Bit-map 应用之快速排序

假设我们要对 0-7 内的 5 个元素(4,7,2,5,3)排序（这里假设这些元素没有重复）,我们就可以采用 Bit-map 的方法来达到排序的目的。要表示 8 个数，我们就只需要 8 个 Bit （1Bytes），首先我们开辟 1Byte 的空间，将这些空间的所有 Bit 位都置为 0，

对应位设置为 1:

遍历一遍 Bit 区域，将该位是一的位的编号输出（2，3，4，5，7），这样就达到了排序的目的，时间复杂度 O(n)。

优点：

运算效率高，不需要进行比较和移位；

占用内存少，比如 N=10000000；只需占用内存为 N/8=1250000Byte=1.25M。

缺点：

所有的数据不能重复。即不可对重复的数据进行排序和查找。

3. Bit-map 应用之快速去重

2.5 亿个整数中找出不重复的整数的个数，内存空间不足以容纳这 2.5 亿个整数。

首先，根据“内存空间不足以容纳这 2.5 亿个整数”我们可以快速的联想到 Bit-map。下边关键的问题就是怎么设计我们的 Bit-map 来表示这 2.5 亿个数字的状态了。其实这个问题很简单，一个数字的状态只有三种，分别为不存在，只有一个，有重复。因此，我们只需要 2bits 就可以对一个数字的状态进行存储了，假设我们设定一个数字不存在为 00，存在一次 01，存在两次及其以上为 11。那我们大概需要存储空间几十兆左右。

接下来的任务就是遍历一次这 2.5 亿个数字，如果对应的状态位为 00，则将其变为

01；如果对应的状态位为 01，则将其变为 11；如果为 11，,对应的转态位保持不变。最后，我们将状态位为 01 的进行统计，就得到了不重复的数字个数，时间复杂度为

O(n)。

4. Bit-map 应用之快速查询

同样，我们利用 Bit-map 也可以进行快速查询，这种情况下对于一个数字只需要一个 bit 位就可以了，0 表示不存在，1 表示存在。假设上述的题目改为，如何快速判断一个数字是够存在于上述的 2.5 亿个数字集合中。

同之前一样，首先我们先对所有的数字进行一次遍历，然后将相应的转态位改为 1。

遍历完以后就是查询，由于我们的 Bit-map 采取的是连续存储（整型数组形式，一个数组元素对应 32bits），我们实际上是采用了一种分桶的思想。一个数组元素可以存储 32 个状态位，那将待查询的数字除以 32，定位到对应的数组元素（桶），然后再求余（%32），就可以定位到相应的状态位。如果为 1，则代表改数字存在；否则，该数字不存在。

5. Bit-map 扩展——Bloom Filter(布隆过滤器)

当一个元素被加入集合中时,通过 k 各散列函数将这个元素映射成一个位数组中的 k 个

点,并将这 k 个点全部置为 1.

有一定的误判率--在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误判为属于这个集合.因此,它不适合那些"零误判"的应用场合.在能容忍低误判的应用场景下,布隆过滤器通过极少的误判换区了存储空间的极大节省.

Bloom Filter 使用 k 个相互独立的哈希函数（Hash Function），它们分别将集合中的每个元素映射到{1,…m},的范围中。对任意一个元素 x，第 i 个哈希函数映射的位置 hi(x)就

会被置为 1（1≤i≤k）。注：如果一个位置多次被置为 1，那么只有第一次会起作用，后面几次将没有任何效果。

在判断 y 是否属于这个集合时，对 y 应用 k 次哈希函数，若所有 hi(y)的位置都是 1

（1≤i≤k），就认为 y 是集合中的元素，否则就认为 y 不是集合中的元素。

6. 总结

使用 Bit-map 的思想，我们可以将存储空间进行压缩，而且可以对数字进行快速排序、去重和查询的操作。Bloom Fliter 是 Bit-map 思想的一种扩展，它可以在允许低错误率的场景下，大大地进行空间压缩，是一种拿错误率换取空间的数据结构。

7. 应用

适用范围：可进行数据的快速查找，判重，删除，一般来说数据范围是 int 的 10 倍以

下

基本原理及要点：使用 bit 数组来表示某些元素是否存在，比如 8 位电话号码扩展：bloom filter 可以看做是对 bit-map 的扩展

问题实例：

1、已知某个文件内包含一些电话号码，每个号码为 8 位数字，统计不同号码的个数。

8 位最多 99 999 999，大概需要 99m 个 bit，大概 10 几 M 字节的内存即可。

2、在 2.5 亿个整数中找出不重复的整数，内存不足以容纳这 2.5 亿个整数。

方案 1：采用 2-Bitmap（每个数分配 2bit，00 表示不存在，01 表示出现一次，10 表示多

次，11 无意义）进行，共需内存 232*2bit

=1GB 内存，还可以接受。然后扫描这 2.5 亿个整数，查看 Bitmap 中相对应位，

如果是 00 变 01，01 变 10，10 保持不变。所描完事后，查看 bitmap，把对应位是 01 的整数输出即可。

