
洗牌在生活中十分常见，现在需要写一个程序模拟洗牌的过程。 现在需要洗 2n 张牌，从

上到下依次是第 1 张，第 2 张，第 3 张一直到第 2n 张。首先，我们把这 2n 张牌分成两堆，

左手拿着第 1 张到第 n 张（上半堆），右手拿着第 n+1 张到第 2n 张（下半堆）。接着就开始

洗牌的过程，先放下右手的最后一张牌，再放下左手的最后一张牌，接着放下右手的倒数第

二张牌，再放下左手的倒数第二张牌，直到最后放下左手的第一张牌。接着把牌合并起来就

可以了。 例如有 6 张牌，最开始牌的序列是 1,2,3,4,5,6。首先分成两组，左手拿着 1,2,3；

右手拿着 4,5,6。在洗牌过程中按顺序放下了 6,3,5,2,4,1。把这六张牌再次合成一组牌之后，

我们按照从上往下的顺序看这组牌，就变成了序列 1,4,2,5,3,6。 现在给出一个原始牌组，

请输出这副牌洗牌 k 次之后从上往下的序列。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

#include<iostream>

#include<vector>

using namespace std;

int main()

{

int T, n, k;

cin >> T;

while (T--)

{

cin >> n >> k;

int num = 2 * n;

vector<int> table(num);

for(int i = 0; i < num; ++i)

 cin >> table[i];

while (k--)

{

vector<int> n1(table.begin(), table.end());

for (int i = 0; i < n; ++i)

{

table[2 * i] = n1[i];

table[2 * i + 1] = n1[i + n];

}

}

for(int i = 0; i < num - 1; ++i)

 cout << table[i] << " ";

cout << table[num - 1] << endl;

}

return 0;

}

小明同学把 1 到 n 这 n 个数字按照一定的顺序放入了一个队列 Q 中。现在他对队列 Q 执行

了如下程序：

while(!Q.empty()) //队列不空，执行循环

{

 int x=Q.front(); //取出当前队头的值 x

Q.pop(); //弹出当前队头

Q.push(x); //把 x放入队尾

 x = Q.front(); //取出这时候队头的值

 printf("%d\n",x); //输出 x

Q.pop(); //弹出这时候的队头

}

做取出队头的值操作的时候，并不弹出当前队头。

小明同学发现，这段程序恰好按顺序输出了 1,2,3,...,n。现在小明想让你构造出原始的队列，

你能做到吗？[注：原题样例第三行 5 有错，应该为 3，以下已修正]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

import java.util.LinkedList;

import java.util.Scanner;

public class NewTest{

public static LinkedList<Integer> func(int n){

LinkedList<Integer> help=new LinkedList<Integer>();

for(int i=n;i>=1;i--){

help.addFirst(i);

help.addFirst(help.removeLast());

}

return help;

}

public static void main(String[] args){

int t;

Scanner scan = new Scanner(System.in);

t=scan.nextInt();

16

17

18

19

20

21

22

23

24

25

26

27

int n;

LinkedList<Integer> res;

while(t-->0){

n=scan.nextInt();

res=func(n);

for(int i=0;i<n-1;i++){

System.out.print(res.removeFirst()+" ");

}

System.out.println(res.removeFirst());

}

}

}

