
2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 1/18

01 | 硬币找零问题：从贪心算法说起
2020-09-14 卢誉声

动态规划面试宝典 进入课程

讲述：卢誉声
时长 09:41 大小 8.88M



你好，我是卢誉声。

作为“初识动态规划”模块的第一节课，我会带着你一起从贪心算法开始了解整个知识体

系的脉络。现实中，我们往往不愿意承认自己贪婪。事实上，贪婪是渴望而不知满足，它

是人的一种基本驱动力。既然是基本驱动力，那它自然就不会太难。

所以你可能会说贪心算法很简单啊，但其实不然，这里面还真有不少门道值得我们说说。

而且，它还跟动态规划问题有着千丝万缕的联系，能够帮助我们理解真正的动归问题。

接下来我们就从一个简单的算法问题开始探讨，那就是硬币找零。在开始前，我先提出一

个问题：任何算法都有它的局限性，贪心算法也如此，那么贪心算法能解决哪些问题呢？





 下载APP 

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 2/18

你不妨带着这个问题来学习下面的内容。

硬币找零问题

移动支付已经成为了我们日常生活当中的主流支付方式，无论是在便利店购买一瓶水，还

是在超市或菜市场购买瓜果蔬菜等生活用品，无处不在的二维码让我们的支付操作变得异

常便捷。

但在移动支付成为主流支付方式之前，我们常常需要面对一个简单问题，就是找零的问

题。

虽然说硬币找零在日常生活中越来越少，但它仍然活跃在编程领域和面试问题当中，主要

还是因为它极具代表性，也能多方面考察一个开发人员或面试者解决问题的能力。

既然如此，我们就先来看看这个算法问题的具体描述。

问题：给定 n 种不同面值的硬币，分别记为 c[0], c[1], c[2], … c[n]，同时还有一个总金额

k，编写一个函数计算出最少需要几枚硬币凑出这个金额 k？每种硬币的个数不限，且如果

没有任何一种硬币组合能组成总金额时，返回 -1。

题目中有一个醒目的提示词，那就是“最少”。嗯，看起来这是一个求最值的问题，其实

也好理解，如果题目不在这里设定这一条件，那么所求结果就不唯一了。

复制代码
1

2

3

4

5

示例 1：

输入：c[0]=1, c[1]=2, c[2]=5, k=12
输出：3
解释：12 = 5 + 5 + 2

复制代码
1

2

3

4

5

示例 2：

输入：c[0]=5, k=7
输出：-1
解释：只有一种面值为5的硬币，怎么都无法凑出总价值为7的零钱。

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 3/18

举个简单的例子，按照示例 1 的题设，有三种不同面值的硬币，分别为 c1=1, c2=2,

c3=5，在没有“最少”这一前提条件下你能罗列出几种不同的答案？我在这里随意列出几

个：

所以，这是一个求最值的问题。那么求最值的核心问题是什么呢？嗯，无非就是穷举，显

然，就是把所有可能的凑硬币方法都穷举出来，然后找找看最少需要多少枚硬币，那么最

少的凑法，就是这道题目的答案。

在面试中，一般来说穷举从来都不是一个好方法。除非你要的结果就是所有的不同组合，

而不是一个最值。但即便是求所有的不同组合，在计算的过程中也仍然会出现重复计算的

问题，我们将这种现象称之为重叠子问题。

请你记住这个关键概念，它是动态规划当中的一个重要概念。但现在你只需要知道所谓重

叠子问题就是：我们在罗列所有可能答案的过程中，可能存在重复计算的情况。我会在后

续课程中与你深入探讨这个概念。

在尝试解决硬币找零问题前，我们先用较为严谨的定义来回顾一下贪心算法的概念。

贪心算法

所谓贪心算法，就是指它的每一步计算作出的都是在当前看起来最好的选择，也就是说它

所作出的选择只是在某种意义上的局部最优选择，并不从整体最优考虑。在这里，我把这

两种选择的思路称作局部最优解和整体最优解。

因此，我们可以得到贪心算法的基本思路：

复制代码
1

2

3

解1：输出：5，因为 5 + 2 + 2 + 2 + 1 = 12。
解2：输出：6，因为 2 + 2 + 2 + 2 + 2 + 2 = 12。
解3：输出：12，因为 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 12。

根据问题来建立数学模型，一般面试题会定义一个简单模型；1.

把待求解问题划分成若干个子问题，对每个子问题进行求解，得到子问题的局部最优

解；

2.

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 4/18

解题思路

现在让我们回到这个问题上来。

既然这道题问的是最少需要几枚硬币凑出金额 k，那么是否可以尝试使用贪心的思想来解

这个问题呢？从面值最大的硬币开始兑换，最后得出的硬币总数很有可能就是最少的。

这个想法不错，让我们一起来试一试。

我用一个例子，带你看下整个贪心算法求解的过程，我们从 c[0]=5, c[1]=3 且 k=11 的情

况下寻求最少硬币数。按照“贪心原则”，我们先挑选面值最大的，即为 5 的硬币放入钱

包。接着，还有 6 元待解（即 11-5 = 6）。这时，我们再次“贪心”，放入 5 元面值的硬

币。

这样来看，贪心算法其实不难吧。我在这里把代码贴出来，你可以结合代码再理解一下算

法的执行步骤。

Java 实现：

把子问题的局部最优解进行合并，得到最后基于局部最优解的一个解，即原问题的答

案。

3.

复制代码

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 5/18

C++ 实现：

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

int getMinCoinCountHelper(int total, int[] values, int valueCount) {
 int rest = total;
 int count = 0;

 // 从大到小遍历所有面值
 for (int i = 0; i < valueCount; ++ i) {
 int currentCount = rest / values[i]; // 计算当前面值最多能用多少个
 rest -= currentCount * values[i]; // 计算使用完当前面值后的余额
 count += currentCount; // 增加当前面额用量

 if (rest == 0) {
 return count;
 }
 }

 return -1; // 如果到这里说明无法凑出总价，返回-1
}

int getMinCoinCount() {
 int[] values = { 5, 3 }; // 硬币面值
 int total = 11; // 总价
 return getMinCoinCountHelper(total, values, 2); // 输出结果
}

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

int GetMinCoinCountHelper(int total, int* values, int valueCount) {
 int rest = total;
 int count = 0;

 // 从大到小遍历所有面值
 for (int i = 0; i < valueCount; ++ i) {
 int currentCount = rest / values[i]; // 计算当前面值最多能用多少个
 rest -= currentCount * values[i]; // 计算使用完当前面值后的余额
 count += currentCount; // 增加当前面额用量

 if (rest == 0) {
 return count;
 }
 }

 return -1; // 如果到这里说明无法凑出总价，返回-1
}

int GetMinCoinCount() {
 int values[] = { 5, 3 }; // 硬币面值
 int total = 11; // 总价
 return GetMinCoinCountHelper(total, values, 2); // 输出结果

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 6/18

这段代码就是简单地从最大的面值开始尝试，每次都会把当前面值的硬币尽量用光，然后

才会尝试下一种面值的货币。

嗯。。。你有没有发现问题？那就是还剩 1 元零钱待找，但是我们只有 c[0]=5, c[1]=3 两

种面值的硬币，怎么办？这个问题无解了，该返回 -1 了吗？显然不是。

我们把第 2 步放入的 5 元硬币取出，放入面值为 3 元的硬币试试看。这时，你就会发现，

我们还剩 3 元零钱待找。

正好我们还有 c[1]=3 的硬币可以使用，因此解是 c[0]=5, c[1]=3, c[1]=3，即最少使用三

枚硬币凑出了 k=11 这个金额。

我们对贪心算法做了改进，引入了回溯来解决前面碰到的“过于贪心”的问题。同样地，

我把改进后的代码贴在这，你可以再看看跟之前算法实现的区别。

Java 实现：

23 }

复制代码
1

2

3

int getMinCoinCountOfValue(int total, int[] values, int valueIndex) {
 int valueCount = values.length;
 if (valueIndex == valueCount) { return Integer.MAX_VALUE; }

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 7/18

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

 int minResult = Integer.MAX_VALUE;
 int currentValue = values[valueIndex];
 int maxCount = total / currentValue;

 for (int count = maxCount; count >= 0; count --) {
 int rest = total - count * currentValue;

 // 如果rest为0，表示余额已除尽，组合完成
 if (rest == 0) {
 minResult = Math.min(minResult, count);
 break;
 }

 // 否则尝试用剩余面值求当前余额的硬币总数
 int restCount = getMinCoinCountOfValue(rest, values, valueIndex + 1);

 // 如果后续没有可用组合
 if (restCount == Integer.MAX_VALUE) {
 // 如果当前面值已经为0，返回-1表示尝试失败
 if (count == 0) { break; }
 // 否则尝试把当前面值-1
 continue;
 }

 minResult = Math.min(minResult, count + restCount);
 }

 return minResult;
}

int getMinCoinCountLoop(int total, int[] values, int k) {
 int minCount = Integer.MAX_VALUE;
 int valueCount = values.length;

 if (k == valueCount) {
 return Math.min(minCount, getMinCoinCountOfValue(total, values, 0));
 }

 for (int i = k; i <= valueCount - 1; i++) {
 // k位置已经排列好
 int t = values[k];
 values[k] = values[i];
 values[i]=t;
 minCount = Math.min(minCount, getMinCoinCountLoop(total, values, k + 1

 // 回溯
 t = values[k];
 values[k] = values[i];
 values[i]=t;
 }

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 8/18

C++ 实现：

56

57

58

59

60

61

62

63

64

65

 return minCount;
}

int getMinCoinCountOfValue() {
 int[] values = { 5, 3 }; // 硬币面值
 int total = 11; // 总价
 int minCoin = getMinCoinCountLoop(total, values, 0);

 return (minCoin == Integer.MAX_VALUE) ? -1 : minCoin; // 输出答案
}

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

int GetMinCoinCountOfValue(int total, int* values, int valueIndex, int valueCo
 if (valueIndex == valueCount) { return INT_MAX; }

 int minResult = INT_MAX;
 int currentValue = values[valueIndex];
 int maxCount = total / currentValue;

 for (int count = maxCount; count >= 0; count --) {
 int rest = total - count * currentValue;

 // 如果rest为0，表示余额已除尽，组合完成
 if (rest == 0) {
 minResult = min(minResult, count);
 break;
 }

 // 否则尝试用剩余面值求当前余额的硬币总数
 int restCount = GetMinCoinCountOfValue(rest, values, valueIndex + 1, v

 // 如果后续没有可用组合
 if (restCount == INT_MAX) {
 // 如果当前面值已经为0，返回-1表示尝试失败
 if (count == 0) { break; }
 // 否则尝试把当前面值-1
 continue;
 }

 minResult = min(minResult, count + restCount);
 }

 return minResult;
}

int GetMinCoinCountLoop(int total, int* values, int valueCount, int k) {
 int minCount = INT_MAX;

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 9/18

改进后的算法实现在之前的基础上增加上了一个回溯过程。简单地说就是多了一个递归，

不断尝试用更少的当前面值来拼凑。只要有一个组合成功，我们就返回总数，如果所有组

合都尝试失败，就返回 -1。

嗯，这样就没问题了，对硬币找零问题来说，我们得到了理想的结果。

贪心算法的局限性

从上面这个例子我们可以看出，如果只是简单采用贪心的思路，那么到用完 2 个 5 元硬币

的时候我们就已经黔驴技穷了——因为剩下的 1 元无论如何都没法用现在的硬币凑出来。

这是什么问题导致的呢？

这就是贪心算法所谓的局部最优导致的问题，因为我们每一步都尽量多地使用面值最大的

硬币，因为这样数量肯定最小，但是有的时候我们就进入了死胡同，就好比上面这个例

子。

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

 if (k == valueCount) {
 return min(minCount, GetMinCoinCountOfValue(total, values, 0, valueCou
 }

 for (int i = k; i <= valueCount - 1; i++) {
 // k位置已经排列好
 int t = values[k];
 values[k] = values[i];
 values[i]=t;
 minCount = min(minCount, GetMinCoinCountOfValue(total, values, 0, valu
 minCount = min(minCount, GetMinCoinCountLoop(total, values, valueCount

 // 回溯
 t = values[k];
 values[k] = values[i];
 values[i]=t;
 }

 return minCount;
}

int GetMinCoinCountOfValue() {
 int values[] = { 5, 3 }; // 硬币面值
 int total = 11; // 总价
 int minCoin = GetMinCoinCountLoop(total, values, 2, 0);

 return (minCoin == INT_MAX) ? -1 : minCoin;
}

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 10/18

所谓局部最优，就是只考虑“当前”的最大利益，既不向前多看一步，也不向后多看一

步，导致每次都只用当前阶段的最优解。

那么如果纯粹采用这种策略我们就永远无法达到整体最优，也就无法求得题目的答案了。

至于能得到答案的情况那就是我们走狗屎运了。

虽然纯粹的贪心算法作用有限，但是这种求解局部最优的思路在方向上肯定是对的，毕竟

所谓的整体最优肯定是从很多个局部最优中选择出来的，因此所有最优化问题的基础都是

贪心算法。

回到前面的例子，我只不过是在贪心的基础上加入了失败后的回溯，稍微牺牲一点当前利

益，仅仅是希望通过下一个硬币面值的局部最优达到最终可行的整体最优。

所有贪心的思路就是我们最优化求解的根本思想，所有的方法只不过是针对贪心思路的改

进和优化而已。回溯解决的是正确性问题，而动态规划则是解决时间复杂度的问题。

贪心算法是求解整体最优的真正思路源头，这就是为什么我们要在课程的一开始就从贪心

算法讲起。

课程总结

硬币找零问题本质上是求最值问题。事实上，动态规划问题的一般形式就是求最值，而求

最值的核心思想是穷举。这是因为只要我们能够找到所有可能的答案，从中挑选出最优的

解就是算法问题的结果。

在没有优化的情况下，穷举从来就不算是一个好方法。所以我带你使用了贪心算法来解

题，它是一种使用局部最优思想解题的算法（即从问题的某一个初始解出发逐步逼近给定

的目标，以尽可能快的速度去求得更好的解，当达到算法中的某一步不能再继续前进时，

算法停止）。

但是通过硬币找零问题，我们也发现了贪心算法本身的局限性：

不能保证求得的最后解是最佳的；1.

不能用来求最大或最小解问题；2.

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 11/18

12 人觉得很赞 | 提建议

我们往往需要使用回溯来优化贪心算法，否则就会导致算法失效。因此，在求解最值问题

时，我们需要更好的方法来解。在后面课程讲到递归和穷举优化问题的时候，我会讲到解

决最值问题的正确思路和方法：考虑整体最优的问题。

课后思考

在递归问题中，回溯是一种经典的优化算法性能的方法。递归对动态规划来说也十分重

要。你能否举出使用回溯算法来解的面试问题？并给出你的解。希望你能在课后提出问

题，进行练习。

最后，欢迎留言和我分享你的思考，我会第一时间给你反馈。如果今天的内容对你有所启

发，也欢迎把它分享给你身边的朋友，邀请他一起学习！

只能求满足某些约束条件的可行解的范围。3.

javascript:void(0);
javascript:void(0);

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 12/18

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 导读｜动态规划问题纷繁复杂，如何系统学习和掌握它？

下一篇 02 | 暴力递归：当贪心失效了怎么办？

AshinInfo 置顶

2020-09-16

重新调整得了java代码部分，提高代码的可读性
private static void getMinCoinCountOfValue() {
 // 硬币面值
 int[] values = {5, 3};
 // 总价 …
展开

作者回复: 赞，感谢你的分享，顶一顶，让更多人看到。

 2  15

精选留言 (30)  写留言

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 13/18

sanyinchen
2020-09-16

上述回溯+贪心并不能取到最优解,
比如[1,7,10] amount=14
那么根据递归深搜 10 + 1 + 1 + 1 + 1 会比 7 + 7 先到

作者回复: 嗯，这里的代码逻辑需要再加上“回溯时比较保留最小值”，这样就没有问题了。

贪心真的很容易过于贪婪，代码已更新。

 1  10

梅亮宏@创造力
2020-09-15

老师说的很生动！用递归加局部最优的方法一定能得到正解。但是如果问题变得更加复杂
的情况下，例如我们有1亿中硬币可以用，总币值为几万亿。可能还需要优化一下算法性能
或者用分布式计算把性能提高？

这让我想到了ai中的reinforcement learning。个人认为有些偏全局优化？就如alphaG…
展开

作者回复: 没错，寻找最优解的时候，本质上还是需要进行枚举（穷举），因此优化算法性能是最

重要的第一步，如果使用了动态规划，就可以大幅压缩计算时间，在此基础上，如果性能仍不满

意（即数据规模实在太巨大），那么则可以考虑使用工程化的方法，比如你提到的分布式计算来

提高计算性能。

AI 中的强化学习，本质上它的目的是寻找全局最优解。但是，我们最终能找的只是一定范围内的

局部最优解，使得这个局部最优解在一定条件下，最接近我们期望的全局最优解。这个发散点很

好，算法发展到一定高度就会进入机器学习领域，无论如何，基本的算法思路其实没有本质差

别。

  5

Karl
2020-09-14

老师，第一段代码的第22行，是不是应该为调用GetMinCoinCountHelper?

作者回复: 你好 Karl！

感谢你提出此问题。代码已经做了相应调整和更新。并追加了 Java 版本的代码供大家参考。

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 14/18

  5

好运来
2020-09-14

测试在原有贪心基础上加上回溯可以找到一组可行解：
int[] values = new int[] {5, 3}; // 硬币面值
int total = 11; // 总价
贪心策略求出可行解不是全局最优解：
values = new int[]{5, 4, 1}; // 硬币面值 …
展开

作者回复: 赞。事实上，纯粹的贪心算法只考虑了局部最优的情况，因此在绝大多数情况下是得不

到最优解的。在回溯版本中，需要枚举所有的组合，并保留最小的结果。本质上，这里是通过回

溯来进行穷举的，因此效率还是不够好。后面的课程会给出更好的解决方法。

  3

Geek_98ba19
2020-09-15

C++语法看不懂啊，能否用Java 这种绝大数人的入门语言写例子啊？

作者回复: 提供全方位服务。Java 语言描述的代码已经跟随专栏上线，每一段代码都会提供Java

+ C++ 两种语言描述。

  2

KipJiang
2020-09-15

编译、运行通过：

#include <iostream>

int GetMinCoinCountOfValueHelper(int total, int* values, int valueIndex, int value…
展开

作者回复: 上手实际操作是非常重的，鼓励这种学习的方法哟。

 1  2

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 15/18

EncodedStar
2020-09-14

对动规有了新的了解，感谢老师！

展开

作者回复: 欢迎进入动归世界。

动态规划其实也不难，是有规可循的。跟随课程，我们一起进步。

 1  2

子夜
2020-09-15

之前对贪心算法的理解是：因为总是局部最优，所以不能用来解决实际问题。学完了这一
节，明白了贪心算法的局限性及其应用场景。

展开

作者回复: 嗯嗯，你的理解是正确的。贪心算法的局限性体现在它在每一步计算中只考虑局部最优

解，这导致了它的局限性。对于需要考虑整体最优的问题，我们需要别的方法。

后面的课程就会提到穷举、回溯以及动态规划。

  1

托尼斯威特
2020-09-15

原来如此，用搜索解这个题，可以带上贪心的思路

展开

作者回复: 贪心算法只是在一定条件下，希望能加快搜索的速度。但是，往往在大多数情况下，都

不满足这种条件。因此，贪心很难直接得到整体最优解。

贪心算法的本质决定了它能解决问题的范围和高度。如果不辅以别的工具函数或算法，它关注的

是局部最优解。

  1

廖熊猫
2020-09-15

感觉带有回溯的贪心算法最差的情况应该就是进行了穷举吧..

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 16/18

作者回复: 没错，是的。

 1  1

赵国辉
2020-09-14

老师，按照本节课的算法，我的理解是，由于没有对所有解进行比较。会不会出现找到的
解不是最优解呢？

作者回复: 你问的这个问题非常好。没错，的确会出现这种情况，所以为了确保最优解，必须得对

所有得到的结果进行比较，保留最小的那个。

 1  1

赵国辉
2020-09-14

老师从最直接的解法入手，然后指出其局限和不足。然后再针对此问题进行优化和解决。
而不是直接给出答案。感觉很自然，更容易理解问题本质，很棒。

展开

作者回复: 感谢你的留言。

咱们以实用为王，通用思路是从贪心算法开始，然后考虑是否能用穷举来解决（如果穷举效率

低，就看能否用回溯来加速穷举），接着才是备忘录，最后如果还是不够好，那么选择动态规划

来解决。

  1

qxz
2020-10-24

这回溯算法的参考代码比较难理解。

展开

 

Everlaa
2020-10-20

两种语言实现，棒棒哒

展开

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 17/18

作者回复: 感谢你的肯定！一般来说ACM竞赛使用C/C++比较多，但是为了方便大家的理解，提

供Java的实现也是顺应趋势。

 

落曦
2020-10-19

我们上课老师和我们讲贪心比dp还难，很多dp的题目有板子，而贪心不同的问题之间跨度
非常的大

作者回复: 是的，贪心算法本身的局限性太大，它只能解决局部最优解的问题。如果非得使用贪心

算法解决更大规模的问题（比如需要考虑整体最优的情况的题目），那么就必须辅以辅助函数、

辅助算法等形式来解决问题。这么做其实得不偿失，针对不同类型的问题，考虑使用不同的算法

或思想解决，有的放矢，才是上上策。

 

夏铭志
2020-10-19

dp本质还是状态转移方程
dp(n) = min(dp(n-c[i])+1) i >=0 && i < c.length - 1

展开

作者回复: DP函数就是状态转移方程的函数化。

 

AshinInfo
2020-09-27

递归的目的是求解
回溯+递归的目的是枚举所有组合的解，并取最优解返回
没有回溯，递归只能获得一个解或者无解，获得的解不一定是最优解
递归是一种算法结构，回溯是一种算法思想
一般回溯多用递归实现

展开

作者回复: 是的，回溯就相当于穷举过程中递归的一个补丁（patch）。

2020/10/28 01 | 硬币找零问题：从贪心算法说起

https://time.geekbang.org/column/article/285230?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 18/18

另外，你对递归和回溯的理解、比喻，比较恰当。可以这么理解。

 

AshinInfo
2020-09-27

第二段的代码
getMinCoinCountLoop，这个方法有点无法理解
minCount = min(minCount, GetMinCoinCountOfValue(total, values, 0, valueCoun
t)); minCount = min(minCount, GetMinCoinCountLoop(total, values, valueCount, k
+ 1)); // 考虑后一位 …
展开

作者回复: 这段代码多余，虽然它的执行与否不影响最终结果，但显然多余且没有必要，已删除。

感谢你认真的发现和反馈！

 

Scott
2020-09-26

每种硬币有[0,maxCount]个之间的选择，选择了第一种硬币后，就递归到下一种选择即
可。

int getMinCoinCountLoop(int total, int[] values, int startIndex, int currentCount) {
 int minCount = Integer.MAX_VALUE; …
展开

作者回复: 正解，顶上去。

 

