
2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 1/20

07｜完全背包：深入理解背包问题
2020-09-28 卢誉声

动态规划面试宝典 进入课程

讲述：卢誉声
时长 18:10 大小 16.65M



你好，我是卢誉声。

在上节课中，我们用动态规划解法，成功解决了动态规划领域中的 Hello World 问题。这

个问题虽然比较初级，但却很有代表性，它比较全面地展示了动归解题的套路。

但光解决一个 0-1 背包问题显然不够过瘾。如果你觉得应用动态规划的解题套路还不太熟

练，没关系。现在我们就趁热打铁，继续刨根问底，讨论背包问题。

首当其冲的就是完全背包问题。它仍然是动态规划领域的经典问题，但是比 0-1 背包问题

要复杂一些。不过嘛，我们之前总结的解题套路还是比较具有普适性的，因此我们仍然可

以将其套用在完全背包问题上。





 下载APP 

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 2/20

在开始今天的课程前，请你思考这样一个问题：既然都是背包问题，那么完全背包跟 0-1

背包问题会如何影响状态转移方程呢？

你不妨带着这个问题，有针对性地学习今天的内容。

完全背包问题

我们先来看看完全背包问题的描述。

问题：给你一个可放总重量为 的背包和 个物品，对每个物品，有重量 和价值

两个属性，那么第 个物品的重量为 ，价值为 。现在让你用这个背包装物品，每

种物品都可以选择任意多个，问这个背包最多能装的价值是多少？

示例：

问题描述还是这么简单，如果你回过头，去看上一课的 0-1 背包的问题描述，你会发现，

完全背包问题只在原来的基础上多加了一句话，那就是：“每种物品都可以选择任意多

个”。除此之外，完全相同。

可不要小看这一句话，它的出现让我们的问题复杂度上了一个台阶。

算法问题分析

不同于 0-1 背包问题（每件物品只能拿一次），在完全背包问题中，每件物品可以拿任意

多件，只要背包装得下就行。

如果从每件物品的角度来看，与之相关的决策已经不再是选拿（1）或者不拿（0）了；而

是拿 0 件、拿 1 件、拿 2 件……直到拿到 () 件物品为止。

W N w v

i w[i] v[i]

复制代码
1

2

3

4

5

6

示例：

输入：W = 5, N = 3
 w = [3, 2, 1], v = [5, 2, 3]
输出：15
解释：当 i = 2 时，选取 5 次，总价值为 5 * 3 = 15。

W/w[i]

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 3/20

我曾在上一课中对 0-1 背包问题做了较为全面的分析，最后得出的结论就是，它是一个动

态规划问题。那么为了起到对照的作用，我在这里再次给出分析步骤，不过比之前的稍微

简化一些。

首先，题设中出现了“最多能装的价值是多少”这样的论断。既然有“最”字，那么我们

需要先考虑贪心算法，这里我直接给出一个反例：按照示例中的提示，虽然 的物品

价值最高，但最后得到的解不是真正的答案。

因此，为了获得整体最优解，我们需要考虑穷举。为了高效地进行穷举操作，我们需要考

虑使用动态规划来解。仿照上一课的做法，我们对该问题做一个分析，看看它是否满足求

解动态规划的特征。

这个分析算法问题的方法特别有效，希望你能够养成这个基本分析的习惯。这样一来，你

不仅能少走弯路，而且能有目的性地解决面试问题。

写出状态转移方程

既然我们已经确定了这是个动态规划问题，那么就拿出我们的法宝：动态规划解题框架。

现在，就让我们沿着解题框架的顺序，来写出状态转移方程。

首先，我们先来确定动态规划解法当中的最初子问题，即初始化状态。这跟 0-1 背包问题

有些类似：由于物品的数量没有限制，因此只有当背包的容量为 0 时要终止执行，但如果

压根儿就没有物品可选，那么自然背包的重量也为 0。如果体现在代码上，就是当没有物

品时重量为 0；而重量为 0 时显然物品数量也为 0。

i = 1

重叠子问题：在穷举的过程中肯定存在重复计算的问题。这是因为各种排列组合间肯定

存在重叠子问题的情况；

1.

无后效性：选择了一个物品后，背包还能容纳的重量与总价值是确定的，后续选择的物

品（即便重复选择相同的物品）不会对当前这个选择产生副作用。因此，该问题无后效

性；

2.

最优子结构：在选定了一个物品后，继续做决策时，我们是可以使用之前计算的重量和

价值，也就是说后续的计算可以通过前面的状态推导出来。因此，该问题存在最优子结

构。

3.

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 4/20

接着，我们来确定动态规划问题中的状态参数，这与 0-1 背包问题几乎一样：

因此，当前背包内的物品数量 和背包还能装下的重量 就是这个动态规划问题的状态

参数。

然后，我们再来看如何进行决策。这里的区别，跟 0-1 背包问题中的决策差别就比较大

了。由于每种物品的数量是无限制的，因此就像前面给出的示例那样，我们可以将同一种

物品多次放入背包。

因此，对于第 种物品，我们有 k 种选择（其中 0 ≤ k * ≤ W）：我们可以从 0

开始，拿第 0 件、第 1 件、第 2 件……直到第 () 件物品为止。然后在这么多子

问题下，选择最优的那一种情况。

所以，我们可以看出，完全背包问题决策的核心在于，针对一种物品，它需要考察拿不同

数量的情况下的最优解。这显然与 0-1 背包问题的决策完全不同，总结来说就是：

最后，动态规划是需要一个备忘录来加速算法的。由于有两个状态参数，因此我们考虑使

用二维数组来存储子问题的答案。跟之前一样，为了通用起见，我将其命名为

，它的含义是：背包容量还剩 时，放入前 种物品时的最大价值。

由于这个问题跟 0-1 背包问题有些相似，因此今天我们做一个新的尝试，那就是在不写出

递归代码的情况下，直接根据上面的信息写出状态转移方程。它是这样的：

背包内物品的数量 在增加，它是一个变量；1. N

同时，背包还能装下的重量 在减少，它也是一个变量。2. W

N W

tn w[tn]
W/w[tn]

0-1 背包问题：针对当前物品，是放入背包，还是不放入背包时的价值最大；1.

完全背包问题：针对当前物品，应放入多少件当前物品，价值最大。2.

DP [tn][rw] rw tn

DP (tn, rw) =

⎩⎪⎪
⎨
⎪⎪⎧ 0, tn <= 0

0, rw <= 0
DP (tn − 1, rw), rw < w[tn]

max{DP (tn − 1, rw − k ∗ w[tn]) + k ∗ v[tn]}, (0 ≦ k ≦ r

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 5/20

我们有了完整的状态转移方程，就可以开始编写代码了。

编写代码进行求解

现在，所有的先决条件都解决了，因此我直接给出以下代码，你可以参考一下。

Java 实现：

C++ 实现：

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

int bag(int[] w, int[] v, int N, int W) {
 // 创建备忘录
 int[][] dp = new int[N+1][W+1];

 // 初始化状态
 for (int i = 0; i < N + 1; i++) { dp[i][0] = 0; }
 for (int j = 0; j < W + 1; j++) { dp[0][j] = 0; }

 // 遍历每一件物品
 for (int tn = 1; tn < N + 1; tn++) {
 // 背包容量有多大就还要计算多少次
 for (int rw = 1; rw < W + 1; rw++) {
 dp[tn][rw] = dp[tn-1][rw];
 // 根据rw尝试放入多次物品，从中找出最大值，作为当前子问题的最优解
 for (int k = 0; k <= rw / w[tn]; k++) {
 dp[tn][rw] = Math.max(dp[tn][rw], dp[tn-1][rw-k*w[tn]] + k*v[tn]);
 }
 }
 }
 return dp[N][W];
}

int solveBag() {
 int N = 3, W = 5; // 物品的总数，背包能容纳的总重量
 int[] w = {0, 3, 2, 1}; // 物品的重量
 int[] v = {0, 5, 2, 3}; // 物品的价值

 return bag(w, v, N, W); // 输出答案
}

复制代码
1

2

3

int DP(const std::vector<int>& w, const std::vector<int>& v, int N, int W) {
 int dp[N+1][W+1]; // 创建备忘录
 memset(dp, 0, sizeof(dp));

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 6/20

时间复杂度优化

如果我们认真分析上面的代码，就可以发现代码中使用了三重循环：

那么这个解法的算法时间复杂度是多少呢？如果我们假定物品数量是 k，容量是 v，那么最

后的时间复杂度就是 O(kv)。

我们如果回顾一下 0-1 背包问题，就会发现 0-1 背包的时间复杂度是 O(kv)。虽然完全背

包问题比 0-1 背包问题更复杂一些，但是，出现指数级别的复杂度可不是一件好事。我们

得比一般人做得更好。那么，我们能够通过某种方式降低完全背包的时间复杂度吗？

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

 // 初始化状态
 for (int i = 0; i < N + 1; i++) { dp[i][0] = 0; }
 for (int j = 0; j < W + 1; j++) { dp[0][j] = 0; }

 // 遍历每一件物品
 for (int tn = 1; tn < N + 1; tn++) {
 // 背包容量有多大就还要计算多少次
 for (int rw = 1; rw < W + 1; rw++) {
 dp[tn][rw] = dp[tn-1][rw];
 // 根据rw尝试放入多次物品，从中找出最大值，作为当前子问题的最优解
 for (int k = 0; k <= rw / w[tn]; k++) {
 dp[tn][rw] = max(dp[tn][rw], dp[tn-1][rw-k*w[tn]] + k*v[tn]);
 }
 }
 }
 return dp[N][W];
}

int DPSol() {
 int N = 3, W = 5; // 物品的总数，背包能容纳的总重量
 std::vector<int> w = {0, 3, 2, 1}; // 物品的重量
 std::vector<int> v = {0, 5, 2, 3}; // 物品的价值

 return DP(w, v, N, W); // 输出答案
}

首先是遍历物品；1.

然后是遍历剩余容量；2.

最后是遍历物品数量。3.

2

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 7/20

在回答这个问题前，我们来进行一些简单的探讨。

为何时间复杂度会增加？

现在，按照题设和上面的状态转移方程的定义，我们来思考一下：假如要拿第 个物品，

当前物品重量为 ，我们会考察放入第 0 件、第 1 件、第 2 件…… k 件该物品时的价

值，并取最大值。

因此，要求剩余容量为 （即 - 0* ）时的最优解，就需要遍历求出 - 0*

、 - 1* 、 - 2* … - k* ，然后在其中挑出最大的那个，

作为当前子问题的解。这导致了算法执行时多了一层循环。

让我们仔细考虑一下这个求解过程，如果我们求解剩余容量为 - 1* 时的最优

解，就需要遍历求出 - 1* 、 - 2* … - k* ，因此我们肯定会再

次求解 - 2* 。所以，在完全背包问题中，依然存在重复计算。

针对这一问题，我们是否可以避免这个重复计算呢？答案是肯定的。至于方法其实很简

单，我们只需要把问题转换成一种新的 0-1 背包问题就行了。

改进状态转移方程

回忆一下，在 0-1 背包问题中，当我们求第 个物品的最优解时，是从“放入该物

品”和“不放入该物品”两种情况中作出决策的。也就是说，第 个物品状态下的最优

解，是第 个物品的最优解（子问题） ➕ 当前的决策推导出来的。

0-1 背包问题解决方案的关键在于，当剩余容量 确定，处理第 件物品的时候，我们

只需要考虑拿或不拿第 件物品，而不需要考虑放入几个第 件物品。

根据上述思路，在解决完全背包问题时，我们可以把之前的重叠子问题等价地转化成一个

新的重叠子问题来解决，以消除上面提到的重复计算（多出来的那个子循环）。另 确

定时，在处理第 件物品的时候，也只需要考虑拿或不拿第 件物品。怎么做呢？我们

只需要从以下两种情况里作出决策：

tn

w[tn]

rw rw w[tn] rw

w[tn] rw w[tn] rw w[tn] rw w[tn]

rw w[tn]
rw w[tn] rw w[tn] rw w[tn]

rw w[tn]

tn

tn

tn − 1

rw tn

tn tn

rw

tn tn

不拿第 个物品，那么价值就是 （状态 A）；1. tn DP [tn − 1][rw]

拿第 个物品，那么价值就是 （状态 B）。2. tn DP [tn][rw − w[tn]] + v[tn]

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 8/20

在剩余容量为 的时候，其最大价值就是 max(状态 A, 状态 B)。也就是说，此时处理第

 件物品的最优解，就是从上面两个状态的结果中取最大值。

因此，每一次我们只需考虑，当前是否要把第 个物品放入背包就行了。至于之前有没有

放过第 件物品，以及放了几件进入背包，已经在容量更小的时候计算过了（需要注意的

是，动态规划的计算过程是自底向上的）。

如果你还是觉得有点晕，没关系，我们再换一种说法。在 0-1 背包问题里，因为一个物品

只能放入一次，所以我们是以上一个物品的最优解为基础进行决策推导的。而在完全背包

问题里，因为一个物品可以放入 0 到多次，所以我们必须以“当前物品 在容量更小

时，计算出的最优解”为基础进行决策推导。

这样可以隐含一个过程：我们在当前物品 状态下，当容量 更小的时候，就已经选择

过 0 到多次当前物品了，而且得到的最优解存储在缓存中，这部分不需要每次都重复求

解。

通过以上分析，我们得到了优化后的状态转移方程：

改进代码的时间复杂度

接着，按照状态转移方程的指导，给出相应的算法代码。你可以参考以下代码，看看跟之

前的解法有何不同。

Java 实现：

rw

tn

tn

tn

tn

tn rw

DP (tn, rw) =

⎩⎪⎪
⎨
⎪⎪⎧ 0, tn <= 0

0, rw <= 0
DP (tn − 1, rw), rw < w[tn]

max(DP (tn − 1, rw),DP (tn, rw − w[tn]) + v[tn])

复制代码
1

2

3

4

5

int bag(int[] w, int[] v, int N, int W) {
 // 创建备忘录
 int[][] dp = new int[N+1][W+1];

 // 初始化状态

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 9/20

C++ 实现：

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

 for (int i = 0; i < N + 1; i++) { dp[i][0] = 0; }
 for (int j = 0; j < W + 1; j++) { dp[0][j] = 0; }

 // 遍历每一件物品
 for (int tn = 1; tn < N + 1; tn++) {
 // 背包容量有多大就还要计算多少次
 for (int rw = 1; rw < W + 1; rw++) {
 dp[tn][rw] = dp[tn-1][rw];
 // 如果可以放入，则尝试放入第tn件物品
 if (w[tn] <= rw) {
 dp[tn][rw] = Math.max(dp[tn][rw], dp[tn][rw-w[tn]] + v[tn]);
 }
 }
 }
 return dp[N][W];
}

int solveBag() {
 int N = 3, W = 5; // 物品的总数，背包能容纳的总重量
 int[] w = {0, 3, 2, 1}; // 物品的重量
 int[] v = {0, 5, 2, 3}; // 物品的价值

 return bag(w, v, N, W); // 输出答案
}

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

int DP(const std::vector<int>& w, const std::vector<int>& v, int N, int W) {
 int dp[N+1][W+1]; // 创建备忘录
 memset(dp, 0, sizeof(dp));

 // 初始化状态
 for (int i = 0; i < N + 1; i++) { dp[i][0] = 0; }
 for (int j = 0; j < W + 1; j++) { dp[0][j] = 0; }

 // 遍历每一件物品
 for (int tn = 1; tn < N + 1; tn++) {
 // 背包容量有多大就还要计算多少次
 for (int rw = 1; rw < W + 1; rw++) {
 dp[tn][rw] = dp[tn-1][rw];
 // 如果可以放入，则尝试放入第tn件物品
 if (w[tn] <= rw) {
 dp[tn][rw] = max(dp[tn][rw], dp[tn][rw-w[tn]] + v[tn]);
 }
 }
 }
 return dp[N][W];
}

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 10/20

我在下面的表格中，用箭头画出了容量为 5 时的求解路径。你可以参照这个求解路径来加

深对代码的理解。

不知道你发现了没有，在改进后的代码中没有 k 参与计算了，那么这个由 0 到 k 的循环过

程去哪了呢？其实，它隐含在了新的重叠子问题的计算过程中，这一过程可以用下图描

述：

从图中我们可以看出，虚线框就是我们所说的重叠子问题。在计算 DP(3, 5) 时 k = 5，因

此循环从 6 个值中求解最优解（即求出最大值）。但是我们可以看到其中的前五步，在

DP(3, 4) 这个问题中，也会被计算到，此时 k = 4。因此，DP(3, 4) 和 DP(3, 5) 之间只相

差了这一步循环。

22

23

24

25

26

27

28

29

int DPSol() {
 int N = 3, W = 5; // 物品的总数，背包能容纳的总重量
 std::vector<int> w = {0, 3, 2, 1}; // 物品的重量
 std::vector<int> v = {0, 5, 2, 3}; // 物品的价值

 return DP(w, v, N, W); // 输出答案
}

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 11/20

然后我们再看 DP(3, 5) 和 DP(3, 3) 之间，前四步是完全相同的，因此这两个子问题之间

（状态）只相差了两次循环步骤。以此类推，原本方程中的 k 次循环，其实是在它依赖的

重叠子问题中被计算了。

空间复杂度优化

我们刚刚讲解了如何优化动归解法下完全背包问题的时间复杂度。现在，再让我们看看如

何优化它的空间复杂度。

动态规划对内存要求高

还记得备忘录这个词吧，在我们解动态规划问题时，总会用到它。名字确实比较高端、上

档次，但说白了，它无非就是一块事先开辟好的缓存区域。我们总是要对计算结果进行缓

存，而缓存可以避免对结果进行重复计算。

但是，鱼与熊掌不可兼得，当状态数量非常多的时候，缓存的占用空间也会变得非常非常

大。因此，如果我们要优化动态规划的空间复杂度，就必须想办法减少缓存的大小，毕竟

其它的空间相对于缓存都是九牛一毛。

寻找优化空间复杂度的方法

我们先来回顾一下时间复杂度优化一节的状态转移方程：

从状态转移方程中，我们可以知道：如果想求 ，那么我们只依赖于

 和 。

如果从状态备忘录的角度上来说，就是我们只关心 时的结果和 相同时的结果。

也就是说，当前的计算只使用缓存中当前这一行和上一行的计算结果。

既然如此，我们就可以采用滚动数组的方式，定义一个只有两行的数组。

DP (tn, rw) =

⎩⎪⎪
⎨
⎪⎪⎧ 0, tn <= 0

0, rw <= 0
DP (tn − 1, rw), rw < w[tn]

max(DP (tn − 1, rw),DP (tn, rw − w[tn]) + v[tn])

DP (tn, rw)
DP (tn − 1, rw) DP (tn, 0)

tn − 1 tn

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 12/20

这个过程，可以用下面的图展示出来。

通过上述方法，我们把那张庞大的状态转移表，优化成了只有两行的数组。可以预见的

是，无论输入的数据多么庞大，改进后的算法占用的空间都会十分稳定，妙哉！

改进代码的空间复杂度

现在，我们有了明确的优化思路，那就是用一个只有两行的数组来代替原来的状态转移表

（即备忘录）。在这种情况下，状态转移方程不会有什么变化，我们只需要对代码中的备

忘录稍作修改即可。

Java 实现：

在计算第 1 个物品时，用第 0 行做 的缓存，用第 1 行做 的缓存；tn − 1 tn

在计算第 2 个物品时，用第 1 行做 的缓存，用第 0 行做 的缓存；tn − 1 tn

在计算第 3 个物品时，用第 0 行做 的缓存，而用第 1 行做 的缓存……以此

类推。

tn − 1 tn

复制代码
1

2

3

4

5

int bag(int[] w, int[] v, int N, int W) {
 // 创建备忘录
 int[][] dp = new int[2][W+1];

 // 初始化状态

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 13/20

C++ 实现：

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

 for (int i = 0; i < 2; i++) { dp[i][0] = 0; }
 for (int j = 0; j < W + 1; j++) { dp[0][j] = 0; }

 // 遍历每一件物品
 for (int tn = 1; tn < N + 1; tn++) {
 // 背包容量有多大就还要计算多少次
 for (int rw = 1; rw < W + 1; rw++) {
 // tn % 2代表当前行的缓存索引
 int ctn = tn % 2;
 // 1 - ctn代表上一行的缓存索引
 int ptn = 1 - ctn;

 dp[ctn][rw] = dp[ptn][rw];
 // 如果可以放入则尝试放入第tn件物品
 if (w[tn] <= rw) {
 dp[ctn][rw] = Math.max(dp[ctn][rw], dp[ctn][rw-w[tn]] + v[tn]);
 }
 }
 }
 return dp[N % 2][W];
}

int solveBag() {
 int N = 3, W = 5; // 物品的总数，背包能容纳的总重量
 int[] w = {0, 3, 2, 1}; // 物品的重量
 int[] v = {0, 5, 2, 3}; // 物品的价值

 return bag(w, v, N, W); // 输出答案
}

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

int DP(const std::vector<int>& w, const std::vector<int>& v, int N, int W) {
 int dp[2][W+1]; // 创建备忘录
 memset(dp, 0, sizeof(dp));

 // 初始化状态
 for (int i = 0; i < 2; i++) { dp[i][0] = 0; }
 for (int j = 0; j < W + 1; j++) { dp[0][j] = 0; }

 // 遍历每一件物品
 for (int tn = 1; tn < N + 1; tn++) {
 // 背包容量有多大就还要计算多少次
 for (int rw = 1; rw < W + 1; rw++) {
 // tn % 2代表当前行的缓存索引
 int ctn = tn % 2;
 // tn % 1代表上一行的缓存索引
 int ptn = tn % 1;

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 14/20

从代码中，我们可以看到，其唯一变化的就是缓存的定义和使用方法。

我们将缓存定义成只有 2 行。在使用的时候，我们利用求余的操作控制到底哪一行是当前

行，哪一行是上一行，交替使用两部分缓存。通过这个巧妙的方式，我们大幅减少了缓存

空间的使用，尤其在物品数量很多的时候效果会非常好。

至此，我们较为完美地解决了整个完全背包问题，无论是从时间复杂度，还是从空间复杂

度角度上看，这段代码都称得上是 a master piece～

虽然完全背包问题已经在之前的 0-1 背包问题上复杂了许多，不过，关于背包的故事还没

有结束。我会在后续的课程中，结合完全背包的衍生面试问题与你进行探讨。不过，你还

是要把本节课中提到的技巧和方法多加练习一下，就目前来说这更为重要。

课程总结

让我们回到本课开篇的那个问题上来：完全背包会如何影响状态转移方程呢？

显然，完全背包把问题复杂化了，曾经的我们，只需要决策当前物品放还是不放；但现

在，我们需要考虑当前物品到底要放几个，才能到达最后的最优解。

从状态转移方程的角度上看，在原有 0-1 背包问题的基础上，它多了一层循环遍历。我们

要通过这个循环找到一个答案：那就是到底该拿多少件当前物品。因此，上述问题的结论

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

 dp[ctn][rw] = dp[ptn][rw];
 // 如果可以放入则尝试放入第tn件物品
 if (w[tn] <= rw) {
 dp[ctn][rw] = max(dp[ctn][rw], dp[ctn][rw-w[tn]] + v[tn]);
 }
 }
 }
 return dp[N % 2][W];
}

int DPSol() {
 int N = 3, W = 5; // 物品的总数，背包能容纳的总重量
 std::vector<int> w = {0, 3, 2, 1}; // 物品的重量
 std::vector<int> v = {0, 5, 2, 3}; // 物品的价值

 return DP(w, v, N, W); // 输出答案
}

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 15/20

提建议

就是，完全背包问题让状态转移方程多了一层循环迭代。

如果你已经理解到这个层面，那么恭喜你，面试这一关你已经达标了，面试官应该会很满

意。因为根据我的经验，真就是有很多面试者会栽在这一类动归问题的复杂度上，更别提

写出代码了。

但我们追求的不仅是弄懂，还要弄通。因为只有弄通了，才能解决咱们后续课程的动态规

划问题。因此，我们还要考虑，如何从时间复杂度和空间复杂度上来进一步优化算法。

课后思考

我们已经学习了 0-1 背包和完全背包问题。特别的，在完全背包问题中，每一种物品的数

量是无限的。现在，给你这样一个问题，如果每种物品不像 0-1 背包问题中那样只有一

个，也不像完全背包问题中那样无限制，即每种物品有个数的限制（≥ 1）。那么在这种题

设下，该如何使用动态规划来化解此问题呢？

在解决问题后，你是否能找到降低时间复杂度和空间复杂度的方法呢？

十分期待你的答案，欢迎你在留言区中与我交流！如果乍一看感觉解决不了，不妨再次复

习下这节课的内容，或者考考你身边的同事或朋友呀。

优化算法的时间复杂度：动态规划的重叠子问题并不一定是唯一的，不同的重叠子问题

可能会带来不同的计算消耗。因此，我们要尽量将问题转换成时间复杂度最低的重叠子

问题；

1.

优化算法的空间复杂度：动态规划的核心在于状态存储（即备忘录），而状态存储必定

带来消耗，也就是以空间换时间。但是在实际应用中，实际的存储条件并不一定能满足

动态规划的标准状态存储方式。此时，我们要考虑如何压缩状态存储数，降低空间复杂

度。

2.

javascript:void(0);
javascript:void(0);

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 16/20

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 06 | 0-1背包：动态规划的Hello World

下一篇 08｜子数组问题：从解决动归问题套路到实践解题思路

子夜
2020-10-11

老师讲的太好了，让人看了，还想继续读下一篇。 我觉得0 1背包是跟前n-1个物品比较，
完全背包是跟当前物品的前m-1次比较，在代码上的差异主要体现在是用dp[i-1][j]还是dp
[i][j]。

作者回复: 谢谢你！

另外，你的对于0-1背包问题的描述，完全正确。

  1

Paul Shan

精选留言 (13)  写留言

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 17/20

2020-09-29

思考题
每个物品有固定数目，这里递归还要加一个变量记录当前元素所剩的物品个数，这是一个
三元递归的问题。
也可以转为为0-1背包问题，将每个物品的数目展开，看成是不同的物体，0-1背包的解法
并没有限制所有物品都不同。

展开

作者回复: 如果你说的三元递归说的是状态转移参数，递归是状态转移的过程。

那么对于第一个问题这里其实不用再追加一个参数，因为其实多重背包相对于完全背包只是加入

了对数量的限制，因此只需要在遍历物品数量计算DP[i][j]的最优解的时候加上数量作为限制即

可，不需要在状态转移中再追加新的参数，增加空间复杂度。

对于你的第二个思路，的确可以直接将物品按照数量展开，直接把多重背包转化成0-1背包，这个

思路朴素简单而且好用。

  1

norton/Dark
2020-09-28

滚动数组那描述太绕了，排班也不好对比。意思就是tn和tn-1交替使用0和1行吧，这个技
巧没用过的人，可能不理解滚动数组是怎么滚的

展开

作者回复: 嗯，你的理解是正确的。意思是 tn 和 tn-1 交替使用数组的 0 行和 1 行。

补充一下背景，让跟多人能看到：

滚动数组的方法在朴素算法当中使用的较为广泛，比如说，读取一个超大文本文件的每一行这样

的问题，我们就不希望一次性将整个文本文件加载进入内存，这是因为我们需要的可能只是整个

文本文件当中的极个别信息：比如行数、包含某个特定字符的行等等。

一般，我们可以考虑使用求余的方法，来实现周而复始的复用有限的数组空间。

  1

AshinInfo
2020-10-26

状态转移方程
max{DP(tn-1,rw-k*w[tn])+k*v[tn]} , (0<=k<=rw)

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 18/20

看的限制条件是否改成
状态转移方程
(0<=k*w[tn]<=rw) …
展开

 

CD
2020-10-24

Math.max(dp[tn][rw], dp[tn][rw-w[tn]] + v[tn])
请麻烦 好好解释一下
和之前的
Math.max(dp[tn-1][rw], dp[tn-1][rw-w[tn]] + v[tn])
从你的画的图中也看不到 有重复计算的

展开

 

CD
2020-10-24

dp[2,4-0*1] + 0*3
dp[2,4-1*1] + 1*3
dp[2,4-2*1] + 2*3
根本不一样，请麻烦看一下

 

CD
2020-10-24

DP(3, 4) 和 DP(3, 5) 之间只相差了这一步循环。
dp[2,5-0*1] + 0*3
dp[2,5-1*1] + 1*3
dp[2,5-2*1] + 2*3
dp[2,5-3*1] + 3*3 …
展开

 

CD
2020-10-24

因此我们肯定会再次求解 rw - 2*w[tn]

这种的能不能画图 举出例子
就像 前几章那样，单独一句话，很难理解

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 19/20

作者回复: 这里描述的本质是一个数学归纳的过程，因此理解了数学归纳的思想，这里就不难理解

了。

 

Stephen
2020-10-09

空间优化中:
// tn % 1代表上一行的缓存索引
int ptn = tn % 1;

这个上一行索引不是一个定值么?和预期不符合把 …
展开

作者回复: 这里应该改成1 – ctn （代码已修改），感谢反馈。

 1 

我来也
2020-10-06

老师的这一篇文章让我受益匪浅，我还得再多读几遍，多练习练习。

老师这里的代码有一点冗余。
要么k从1开始，要么就不需要‘dp[tn][rw] = dp[tn- 1][rw];’这一行。
 …
展开

作者回复: 这里是为了和动态转移方程里对照起来，比较容易理解。的确在不同语言里可以在初始

化状态上简化，只不过这里为了提现动态规划的“模板”，所以无论什么语言都会加入初始化部

分，相比于动态规划部分的性能，这部分的时间复杂度肯定不高。至于实现的优化可以根据自己

的情况来处理。

 

德忠
2020-09-28

第二个动态转移方程是：max(DP(tn-1, rw), DP(tn, rw - w[tn]) + v[tn])
第二个代码里用的 dp[tn][rw] = max(dp[tn][rw], dp[tn][rw-w[tn]] + v[tn]);

2020/10/28 07｜完全背包：深入理解背包问题

https://time.geekbang.org/column/article/291638?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 20/20

第二个代码是不是应该是dp[tn][rw] = max(dp[tn-1][rw], dp[tn][rw-w[tn]] + v[tn]);

展开

作者回复: 你可以仔细看上方代码有一行

dp[tn][rw] = dp[tn-1][rw]

所以这里用dp[tn][rw]和dp[tn-1][rw]是等价的

 1 

norton/Dark
2020-09-28

rw转为k不大好理解，想了很久dp(3,5) 那里，不知道是不是我理解错了，之前定义都是d
p(tn, rw) 优化的图用dp(tn, k) ，这二者转换还得脑补么。

展开

作者回复: // 根据rw尝试放入多次物品，从中找出最大值，作为当前子问题的最优解

for (int k = 0; k <= rw / w[tn]; k++) {

 dp[tn][rw] = max(dp[tn][rw], dp[tn-1][rw-k*w[tn] + k*v[tn]);

}

这里 k 指的是没优化之前的这个变量k，表示每次到底放入几个物品。

知道了 k 是什么应该就能很好地理解这里的优化了～

 

norton/Dark
2020-09-28

时间复杂度物品数量不好理解，有物品类型数量n和单个物品取k个,k平方是怎么出现的
呢？少了一步骤，可能会让大多数人注意力断供。

展开

作者回复: 这里时间复杂度的确有问题，应该是O(k * v^2)。已更新。

 

