
2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 1/19

11｜动态规划新问题1：攻破最长递增子序列问题
2020-10-09 卢誉声

动态规划面试宝典 进入课程

讲述：卢誉声
时长 23:09 大小 21.21M



你好，我是卢誉声。

还记得我们在上个模块中讲解的子数组和子序列问题吗？相较于较为复杂的子序列问题，

它的答案不一定连续；我们还讲解了子数组问题，这类问题的答案是连续的。因此，这两

者之间最大的区别，其实就在于答案是否连续。

随着时间的推移，面试官们也往往不再满足于考察传统的动态规划问题了，即便涉及了子

序列和子数组问题。所以，在这一课中，我将带着你一起掌握最长递增序列的问题。

在本课的最后，我还会给出完整的攻破子序列的解题模板。还是那句话，由于是经验总

结，因此在 90% 以上的情况下这个模板（套路）都是工作的，它足以应对你可能遇到的所

有面试问题。





 下载APP 

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 2/19

既然准备要解决的问题是最长递增序列，这就会涉及到子数组和子序列两种情况。你也无

需担心，今天我会为你讲解这两种情况。那么按照惯例，在开始前，我先提出一个简单的

问题：在处理递增序列时，连续和不连续的答案会对状态转移方程产生什么影响？

接下来就让我们带着这个问题，开始今天的学习之旅吧。

最长连续递增序列

我们先从一个较为简单的递增序列问题说起，从题目本身就可以看出，这是一个基于子数

组的递增序列问题。我们看到这样的题目时，首先就要有一个意识，那就是所求答案肯定

是连续的。既然如此，我们先看看问题的描述。

问题：给定一个未经排序的整数数组 ，找到最长且连续的的递增序列，并返回该序

列的长度。

算法问题分析

事实上，这个问题没有复杂到必须使用动态规划来求解。但是，从原问题可以看出这其中

一定存在重复计算的问题，它类似于穷举的操作了。

没错，你可以尝试用穷举来解决问题。但在你下手之前，先让我们回顾一下曾在第 5 课

讲到的内容，即“进一步确认是否为动态规划问题”：

nums

复制代码
1

2

3

4

5

示例1：

输入: nums = [6, 6, 6, 6, 6]
输出: 1
解释: 最长连续递增序列是 [6], 长度为 1。

复制代码
1

2

3

4

5

示例2：

输入: nums = [1, 3, 5, 0, 7]
输出: 3
解释: 最长连续递增序列是 [1, 3, 5], 长度为 3。你会发现 [1, 3, 5, 7] 也是升序的子序列, 但

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 3/19

再读一下原问题的提法，显然我们不可能对输入的数组进行排序：如果进行了排序，求最

长上升序列这句话就无从谈起了。这违背了题目的本意，也就失去了求解的意义。因此，

对于该问题来说，数据不可交换。

与此同时，如果我们使用之前分析算法问题是否满足动态规划特征的方法，来对该问题进

行判断。它一定是满足重叠子问题、无后效性和最优子结构的。

在继续下面的内容前，你不妨参照之前的方法做一下判断。既然该问题可以通过动态规划

来大幅优化算法的时间复杂度，那就让我们来看看如何写出状态转移方程吧。

写出状态转移方程

我们根据最平凡的动态规划求解模板，来看看如何解决这个问题。

首先，我们先来确定初始化状态。考虑一下，如果只考虑某个特定位置的数字，从开头到

它为止的最长上升序列一定 ≥ 1。因此，我们可以将即将设计的备忘录的每一个位置都初

始化成 1。这就是针对这个简单问题的初始化状态。

接着，再来确定状态参数。在这个问题的计算过程中，不断变化的变量是什么呢？显然，

就是移动数组的索引。因此，我们只需要一个变量，就足以描述整个状态转移过程了。如

果我们设状态存储（即备忘录）为 ，那么它所对应的值表达的含义是什么呢？

这与我们在第 8 课中讲解“最大子数组之和”问题有些类似。如果你遗忘了那部分内

容，我建议你再阅读一次以加深理解。

动态规划是数学归纳法的一种很好的体现，即如何从已知的答案推导出未知的部分。基于

这个理论，我们该如何定义 的含义呢？有几种可以考虑的选项：

数据不可排序（Unsortable）；1.

数据不可交换（Non-swapable）。2.

DP [i]

DP [i]

 表示从位置 开始到结束位置的最长连续递增序列的长度；1. DP [i] i

 表示从位置 0 到位置 的最长连续递增序列的长度。2. DP [i] i

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 4/19

你觉得以上两个论述，哪个是可行的？

如果从原问题出发，我们的最终答案应该包含在从 0 … n-1 的序列上。因此，第一种表述

不合适，它没有体现出数学归纳法的思想，我们很难从中提取出这样的概念， 无法

从 ➕ 决策中求出。

综上所述，第二种表述是合理的，即 表示从位置 0 到位置 的最长连续递增序列

的长度。基于这个定义，我们显然可以通过 推导出 ，因为这两个状态

是连续的，可以通过状态转移实现子问题的求解。

最后，我们来看一看决策是什么。考虑一下，在什么情况下，当前子问题的解需要根据子

问题的子问题计算得出呢？原问题问的是最长连续递增序列。因此，当

 时，我们需要更新当前子问题的答案，这就是该问题的决策。

基于以上分析，我们就可以写出状态转移方程了。

编写代码进行求解

由于这个问题比较简单，我先给出求解代码，然后再做一些解释。

Java 实现：

DP [i]
DP [i − 1]

DP [i] i

DP [i − 1] DP [i]

nums[i] >
nums[i − 1]

DP [i] = { 1 + DP [i − 1] ,DP [i] > DP [i − 1]
1 , otherwise

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

public int findLengthOfLCIS(int[] nums) {
 int n = nums.length; if (n == 0) { return 0; }

 int[] dp = new int[n];
 Arrays.fill(dp, 1); // 初始化状态

 int res = 1; // 记录答案的变量
 for (int i = 1; i < n; i++) {
 if (nums[i] > nums[i-1]) { // 决策
 dp[i] = dp[i-1] + 1;
 res = Math.max(res, dp[i]);
 }

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 5/19

C++ 实现：

在代码中有一个值得一提的点，就是创建了一个名为 的变量用于记录最终需要输出的

答案。我们通过 函数，比较了当前求解的子问题与上一次记录下来的最长连续递增

序列的长度，并取更大的值作为当前的最优解。

最后，输出 res 作为原问题的答案。

最长上升子序列的长度

在开始解决子序列问题前，让我们回顾一下动态规划中子序列问题的模型。

所谓动态规划领域中的子序列问题，其实就是指从给定字符序列中随意地（不一定连续）

去掉若干个字符（可能一个也不去掉）后，形成的满足题设的字符序列。

因此，该问题会比上面的连续序列复杂那么一点点，不过嘛，我们都学到这里了，其实这

个问题并不算难题。在讲解该问题前，你不妨关注一下该问题的状态转移方程与上面的问

题区别在哪里？我们先来看问题描述。

13

14

15

16

 }

 return res; // 输出答案
}

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

int FindLengthOfLCIS(std::vector<int>& nums) {
 int n = nums.size(); if (n == 0) { return 0; }
 int dp[n]; for (int i = 0; i < n; i++) { dp[i] = 1; } // 初始化状态

 int res = 1; // 记录答案的变量
 for (int i = 1; i < n; i++) {
 if (nums[i] > nums[i-1]) { // 决策
 dp[i] = dp[i-1] + 1;
 res = max(res, dp[i]);
 }
 }

 return res; // 输出答案
}

res

max

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 6/19

问题：给定一个无序的整数数组 ，找到其中最长上升子序列的长度（Longest

Increasing Subsequence，LIS）。附加条件是：

分析并写出状态转移方程

该问题同样满足动态规划的三大特征，即存在重叠子问题、无后效性以及最优子结构。你

可以尝试用上一模块中，我频繁使用的方法来对其做一个基本的判断和分析。

事实上，我们可以几乎照搬“最长连续递增序列”问题的状态存储（备忘录）的定义，即

 表示从位置 0 到位置 的最长连续递增序列的长度。

基于以上判断，针对该问题的初始化状态也是相似的。如果我们只考虑某个特定位置的数

字，从开头到它为止的最长上升序列一定 ≥ 1。因此，我们可以将即将设计的备忘录的每

一个位置都初始化成 1。

接着，再来确定状态参数。我们只需要一个当前遍历的索引位置作为变量，就足以描述整

个状态转移过程了。

最后，我们来看看决策。毕竟子序列问题和子数组问题是不一样的：它们求解的答案，一

个不一定连续；而另一个必定连续。所以，我们要好好分析一下最长上升子序列的决策过

程（状态转移过程）。在我画图解释前，你考虑一下：由于子序列问题的子问题答案不一

定是连续的，为此，我们不就需要一个额外的循环，来遍历出子序列中能够供当前子问题

推导的那个解么？

还是不太理解？没关系，我画出图后你就明白了。

nums

可能会有多种最长上升子序列的组合，你只需要输出对应的长度即可；1.

你算法的时间复杂度应该为 O(n) 。2. 2

复制代码
1

2

3

4

5

示例：

输入: nums = [10, 9, 1, 5, 2, 6, 66, 18]
输出: 4
解释: 其中一个最长的上升子序列是 [1, 2, 6, 66]，它的长度是 4。

DP [i] i

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 7/19

按照图示，如果我们用解决“最长连续递增序列”的思路设计一个 变量来求解状态转

移过程，那就是 ，答案是 4。另外，我们考察一下

的解是怎么计算出来的？其实，就是从 0 … 7-1 即 0 … 6 进行一个遍历，找出比

 位置小的数字，并形成上升序列，以此为基准计算出 的长度。

接下来的图示，则展示了整个计算和决策的过程，来帮助你加深理解。

通过图示，我们可以清晰地看到，这种上升序列问题的决策是通过

 来实现的。这个 函数就是决策以及状态转移的核心。这个问题

跟我们之前遇到的有些区别，它更简单一些，但同时也不太好直接套用在解题模板上。为

此，我多做一些解释。

res

res = max(DP [7],DP [6]) DP [7]

nums[7] DP [7]

res =
max(res,DP [i]) max

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 8/19

你应该已经清楚的是，动态规划不仅是运筹学的重要分支，同时也是数学归纳法这种思想

中很好的工程实践的体现。我们说，所谓数学归纳法就是从已知的答案推导出未知的部

分。那么，按照图示来说，我们已经知道了 的结果，我们该如何推导出

呢？

根据我们对状态存储（备忘录）的定义， 中的 表示的是从开始位置 0 到位置 的

的最长上升子序列的长度。既然我们要求的是上升子序列， 。因此，我们只

需找到前面那些结尾比 2 小的子序列，然后将 接在其后，就构成了一个新

的上升子序列，而这个上升子序列的长度比前面的子问题 ➕ 1。

对于那些结尾比 2 小的子序列，我们要找出最长的那一个，因为原问题要我们求“最

长”上升子序列嘛。这也就是 真正的由来。

同时，需要注意的是，从 的计算开始往后，最长上升子序列的可能性就不唯一

了。比如说，[1, 5, 6, 66]、[1, 5, 6, 18]、[1, 2, 6, 66] 和 [1, 2, 6, 18] 其实都是满足计算规

则的。但是，原问题只需要我们求出最长上升子序列的长度，因此在上面的状态转移过程

中，我没有给出其余可能性的计算过程。

经过分析后，我们就可以利用初始化状态、状态参数（决定了备忘录的设计）和决策来写

出状态转移方程了。

编写代码进行求解

接着就是代码实现。

Java 实现：

DP [3] DP [4]

DP [i] i i

nums[4] = 2
nums[4] = 2

res = max(res,DP [i])

DP [3]

DP [j] = { max{ 1 + DP [i] , i < j, j = ∣nums∣ − 1}
1 , otherwise

复制代码
1

2

3

4

5

public int getLengthOfLIS(int[] nums) {
 int n = nums.length; if (0 == n) { return 0; }

 int[] dp = new int[n];
 Arrays.fill(dp, 1); // 初始化状态

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 9/19

C++ 实现：

好了，问题得到了较好的解决。通过这一系列的讲解，你应该已经发现，如果我们没有定

义好状态存储（备忘录）的定义，那么就会在写状态转移方程时造成极大影响。

这个解法的算法复杂度是多少呢？

6

7

8

9

10

11

12

13

14

15

16

17

18

 int res = 1; // 记录答案的变量
 for (int j = 0; j < n; j++) { // 决策
 for (int i = 0; i < j; i++) {
 if (nums[i] < nums[j]) {
 dp[j] = Math.max(dp[j], dp[i] + 1);
 res = Math.max(dp[j], res);
 }
 }
 }

 return res; // 输出答案
}

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

int GetLengthOfLIS(std::vector<int>& nums) {
 int n = nums.size(); if (0 == n) { return 0; }
 int dp[n]; for (int i = 0; i < n; i++) { dp[i] = 1; } // 初始化状态

 int res = 1; // 记录答案的变量
 for (int j = 0; j < n; j++) { // 决策
 for (int i = 0; i < j; i++) {
 if (nums[i] < nums[j]) {
 dp[j] = max(dp[j], dp[i] + 1);
 res = max(dp[j], res);
 }
 }
 }

 return res; // 输出答案
}

首先，算法的时间复杂度是 O(n)，其中 n 为数组 的长度。动态规划的状态数

为 n，计算状态 时，需要 O(n) 的时间遍历 的所有状态，所以总

时间复杂度为 O(n)；

1. 2 nums

dp[j] dp[0 … j − 1]
2

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 10/19

因此，如果发现状态转移方程无法找出，那么就倒退一步，回去再思考一下备忘录的定义

是否恰当，同时是否缺少了必要的状态参数（即备忘录的维度是否不足）。这就像“回溯

算法”一样，倒退一步，可能就能更快地得到问题的思路和答案。

最长上升子序列的数量

现在，我们已经知道如何求解最长上升子序列的长度了。

但是，如果把问题稍微扩展一下，问你最长上升子序列共有几个，你该怎么解呢？事实

上，这种问题比较普遍，我们就拿前面示例中的输入（即

）作为例子，一起看下这张图。

从图示中我们可以看出，有四种到达 状态的最长上升子序列的长度均为 4。这意味

着，由 [1, 5, 6, 66]、[1, 5, 6, 18]、[1, 2, 6, 66] 和 [1, 2, 6, 18] 构成的四个子序列的长度

均为 4，它们都符合题设的要求。因此，对于这样的输入，最长上升子序列的数量是 4。

现在，问题清楚了，我们来看一下这道面试问题的具体描述。

问题：给定一个未排序的整数数组 ，找到最长递增子序列的个数。注意: 给定的数

组长度不超过 2000 并且结果一定是 32 位有符号整数。

其次，算法的空间复杂度比较简单，是 O(n)，需要额外使用长度为 n 的 数组。2. dp

nums =
[10, 9, 1, 5, 2, 6, 66, 18]

DP [7]

nums

复制代码
1

2

3

示例1:

输入: nums = [10, 9, 1, 5, 2, 6, 66, 18]

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 11/19

分析并写出状态转移方程

其实，这个问题本质上和上一个问题是一样的。只不过在上一个问题中，求解的是最长上

升子序列的长度；而在这个问题中，求解的则是最长上升子序列的个数。因此，如果说上

一个问题满足动态规划问题的几个特征，那这个问题肯定也是满足动态规划的问题特征

的。

现在的问题是，怎么求解呢？我们能否在上一题思路的基础上做些调整而得到答案？

首先，这个问题肯定依然需要准备一个备忘录 。我将这里的状态存储定义跟上一个问

题保持一致，即 表示以第 个数字结束的序列的上升子序列的最长长度。这么做的

原因在于，如果我们要计算最长上升子序列的个数，首先需要知道最长上升子序列有多

长。

现在，假定我们知道了最长上升子序列的长度。那么，最简单的方案肯定是从这个序列里

把所有符合该长度的上升子序列全部暴力枚举出来。既然存在穷举，我们肯定不希望使用

暴力法进行枚举，因为那么做效率实在太低了，即便写出求解代码也一定不是面试官想看

到的。因此，我们来看看如何通过动态规划来解决这个问题。

根据原问题的描述，我们需要计算出最长上升子序列的数量。为此，我们需要创建一个新

的备忘录 ，其中 表示以第 个数字结尾的序列的最长上升子序列的数

量。现在，我们考虑一下初始化状态。其实跟 数组一样，每个以自身结尾的初始序列

4

5

6

7

8

9

10

输出: 4
解释: 最长的上升子序列的长度是 4，有以下几种组合：
 1) [1, 5, 6, 66]
 2) [1, 5, 6, 18]
 3) [1, 2, 6, 66]
 4) [1, 2, 6, 18]
因此，原问题的答案是 4。

复制代码
1

2

3

4

5

示例2:

输入: [2, 2, 2, 2, 2]
输出: 5
解释: 最长递增子序列的长度是 1，并且存在 5 个子序列的长度为 1 ，因此原问题的答案是 5。

DP

DP [i] i

count count[i] i

DP

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 12/19

长度肯定是 1，同样序列的数量肯定也是 1。因此，这个数组的初始状态就是将每一个位置

都赋值成 1。

接着，再来确定状态参数。和上一个问题一样，我们只需要把一个当前遍历的索引位置作

为变量，就足以描述整个状态转移过程了。

最后，我们来看看如何进行决策。这里的关键问题是：寻找当前问题 和它的子问

题之间的关系，到底如何在子问题的决策上做出新的决策？

其实，我们不必单独去计算最长上升子序列的数量，而完全可以在计算最长上升子序列长

度的同时计算数量。另外层循环的数字下标为 ，内部循环的数字下标为 ，那么我们可以

按照下面的思路来作出进一步决策：

最后，我们从 数组中找出最长的那个 。然后，再遍历 数组，将

所有 的对应的 加起来，就是最终答案。其实，该问

题的解法与上面一个求最长上升子序列的问题差不多，唯一区别就是：多了一个数组（即

）来存储特定索引位置为结尾的最长子序列的个数。

这个问题比普通最长上升子序列问题稍微复杂一些，因此也更难理解一些，可以稍微放慢

脚步。经过一些思考后，我相信你能理解这个问题的特别之处。

count[i]

j i

在内部循环中，如果 ，那么 的值就不需要变化。这意

味着，在最终求解的序列组合中，肯定没有同时包含 和 的上升子序

列；

1. nums[i] > nums[j] count[j]
nums[i] nums[j]

如果 ，那么说明我们要更新 的长度。同时（重点来

了），要将 更新为 ，这是因为 代表的是 为最长

上升子序列的个数。由于这时的 是 的子问题的解，因此它的个数就是

 长度的个数；

2. DP [i] + 1 > DP [j] DP [j]
count[j] count[i] count[j] DP [j]

DP [i] DP [j]
DP [j]

与此同时，这里比普通的最长上升子序列问题复杂的地方在于：同为 这个长度

的上升子序列，可能不止一个！因此，我们要在 时，继续追加

 的个数；

3. DP [j]
DP [j] == DP [i] + 1

count[j]

如果 ，则说明以 结尾的序列加上 形成的序

列肯定不是当前的最长上升子序列， 就不需要变化。

4. DP [i] + 1 < DP [j] nums[i] nums[j]
count[j]

DP maxLength count

DP [i] == maxLength count[i]

count

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 13/19

这个问题的状态转移方程需要分成几个部分来写，首先和上一个问题一样，我们先定义

 的状态转移方程：

接着定义状态 的状态转移方程：

这个状态转移方程怎么理解呢？其实，就是求所有序列长度加 1 后 ➕ 与当前数字结尾

的“最长上升子序列的长度”相同的上升子序列数量的和。

最后的最后，我们还要定义一下结果函数：

这里，我们简单地将所有子序列长度，与最长上升子序列长度相同的序列数量，进行了相

加。

编写代码进行求解

接着看代码实现。

Java 实现：

DP

DP [j] = { max 1 + DP [i] , i < j, j = ∣nums∣ − 1
1 , otherwise

count

count[j] = { sum{ count[i] , i < j,DP [i] + 1 = DP [j], j = ∣nums∣ − 1}
1 , otherwise

result = sum{ count[i] ,DP [i] = max(DP), i < ∣nums∣ }

复制代码
1

2

3

4

5

6

7

public int findLengthOfLISCount(int[] nums) {
 int n = nums.length; if (n==0) { return 0; }

 // 初始化状态
 int[] dp = new int[n];
 Arrays.fill(dp, 1);
 int[] count = new int[n];

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 14/19

C++ 实现：

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

 Arrays.fill(count, 1);

 for (int j = 0; j < n; j++) {
 for (int i = 0; i < j; i++) {
 if (nums[i] < nums[j]) {
 if (dp[i]+1 > dp[j]) {
 dp[j] = dp[i]+1;
 count[j] = count[i];
 } else if (dp[i]+1==dp[j]) {
 count[j] += count[i];
 }
 }
 }
 }

 int maxLength = 0; // 求出 maxLength
 for (int it : dp) { maxLength = Math.max(maxLength, it); }

 int res = 0; // 定义备选答案的变量
 for (int i = 0; i < n; i++) {
 if (maxLength == dp[i]) {
 res+=count[i];
 }
 }

 return res; // 输出答案
}

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

int FindNumberOfLIS(std::vector<int>& nums) {
 int n = nums.size(); if (n==0) return 0;
 int dp[n], count[n];
 for (int i = 0; i < n; i++) { dp[i] = count[i] = 1; } // 初始化状态

 for (int j = 0; j < n; j++) {
 for (int i = 0; i < j; i++) {
 if (nums[i] < nums[j]) {
 if (dp[i]+1 > dp[j]) {
 dp[j] = dp[i]+1;
 count[j] = count[i];
 } else if (dp[i]+1==dp[j]) {
 count[j] += count[i];
 }
 }
 }
 }

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 15/19

现在，我们分析一下这个解法的算法复杂度：

攻破子序列问题的解题模板

从最长上升子序列的数量问题，你应该感觉到问题的难度提升了。我们甚至不惜动用第二

个状态转移方程，来描述 的状态转移过程。

但其实经过反复思考后，这个问题仍然没有脱离动态规划解题套路的适用范畴。不过不得

不承认这个问题变复杂了，希望你能反复阅读这部分内容，加深理解，弄懂、弄通。

讲到这里，我们其实已经涵盖了大多数常见的子序列相关的动态规划问题。所以，是时候

对动归中子序列问题的求解，进行一次较为全面的总结了。

就像我在本课开头说的那样，由于这里给出的是经验总结，因此在 90% 以上的情况下这个

模板（套路）都是工作的，它足以应对你可能遇到的所有面试问题。

用一维备忘录求解子序列问题

在本课中，我讲到的“最长上升子序列”问题，就属于可以用一维备忘录来求解的动归问

题。我们曾在上一个模块中讲解子序列问题时就提到过，但凡一个面试问题涉及子序列，

19

20

21

22

23

24

25

26

27

28

29

30

 int maxLength = 0; // 求出 maxLength
 for (auto it : dp) { maxLength = max(maxLength, it); }

 int res = 0; // 定义备选答案的变量
 for (int i = 0; i < n; i++) {
 if (maxLength == dp[i]) {
 res+=count[i];
 }
 }

 return res; // 输出答案
}

首先，算法的时间复杂度是 O(n)。其中 n 是 的长度。与此同时，另外还有两

个 for 循环是 O(1)。因此，总的算法时间复杂度为 O(n)；

1. 2 nums
2

其次，我们创建了两个长度为 n 的备忘录（分别是 和 ），因此算法的空间复

杂度为 O(n)。

2. dp count

count

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 16/19

那么它离动态规划就八九不离十了。

动态规划是数学归纳法的一种实践。因此，当状态存储（备忘录）的定义类似于 表

示数组 中子序列的长度，那么这个问题你可以考虑使用一维备忘录来进行求

解。

我们需要根据原问题的特性，来确定初始化状态、状态参数（其实不用确定了，就是索引

）和决策。至于决策，是这个解题模板的关键。你可以直接照搬下面的代码块来实现你的

题解。

其中，最值函数指的是像 、 这样的函数，下同。

用高维备忘录求解子序列问题

当原问题涉及两个数组或字符串（甚至多个时），就需要考虑使用高维备忘录来求解子序

列问题。比如说，我们在之前讲解“最长公共子序列”“最长回文子序列”时，就用到了

这个解题模板。

但这里需要注意的是，针对原问题的特性，有两种不同的情况决定了备忘录的具体含义：

DP [i]
A[0 … i]

i

复制代码
1

2

3

4

5

6

7

8

9

10

int Solution(std::vector<int>& nums) {
 int n = nums.size(); if (n == 0) { return 0; }
 int dp[n]; // 注意，需要初始化状态

 for (int j = 0; j < n; j++) { // 决策
 for (int i = 0; i < j; i++) {
 dp[j] = 最值函数(dp[j], dp[i] + ...);
 }
 }
}

min max

如果原问题只涉及一个字符串或数组时，比如“最长回文子序列”问题。那么，

 表示的是数组 中要求的子序列的长度；

1.

DP [i][j] A[i… j]

如果原问题涉及两个（或多个）字符串或数组时，比如“最长公共子序列”问题。那

么， 表示的是在数组 和 中要求的子序列的长度。

2.

DP [i][j] A[0 … i] B[0 … j]

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 17/19

考虑好备忘录的具体定义后，就可以确定初始化状态和决策了。至于决策，同样是该解题

模板的关键。你可以参照下面的代码块外加一些特定的调整，来实现你的题解。

课程总结

求解动归领域中的子序列问题，其难度的跨越比较大，有比较简单的问题，也有比较复杂

的问题。但是，这些问题都脱离不开本课结尾提到的解题模板。

对于解决子序列问题来说，只有两种情况需要我们考虑：

除了这两个解题模板以外，还有一些技巧需要掌握，比如在解决“最长上升子序列的数

量”问题时，我们就不惜引入一个新的备忘录，来解决问题。希望你能在课后进行练习，

充分并且灵活地利用解题模板，来攻破子序列问题。

课后思考

在本课中，我讲解了如何求解最长上升子序列的问题，当时给出的解法的算法时间复杂度

是 O(n)。那么请你思考一下，如何将该问题的算法时间复杂度优化为 O(nlgn)？

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

int Solution(std::vector<int>& text1, std::vector<int>& text2) {
 int m = text1.size(), n = text2.size();
 int dp[m+1][n+1]; memset(dp, 0, sizeof(dp)); // 注意，需要初始化状态

 for (int j = 1; j <= n; j++) { // 决策
 for (int i = 1; i <= m; i++) {
 if (text1[i-1] == text[j-1]) {
 dp[i][j] = dp[i-1][j-1] + ...
 } else {
 dp[i][j] = 最值函数(..., ...);
 }
 }
 }
}

当原问题的输入是一个字符串或数组时，要求解子序列。那么，你可以优先考虑使用一

维备忘录的解题模板和套路来寻求问题的解；

1.

但如果原问题的输入是两个或以上的字符串或数组时，你就需要考虑使用高维备忘录的

解题模板来解题了。

2.

2

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 18/19

提建议

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

除此之外，我们在最长上升子序列的数量问题中，引入了更多的空间来辅助问题的求解。

那么，我们该如何优化算法空间复杂度呢？

欢迎留言和我分享你的想法，我们一同交流！

上一篇 加餐｜买卖股票：常见且必考的动态规划面试题

下一篇 12｜动态规划新问题2：攻破最大子数组问题

精选留言 (3)  写留言

javascript:void(0);
javascript:void(0);

2020/10/28 11｜动态规划新问题1：攻破最长递增子序列问题

https://time.geekbang.org/column/article/294300?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 19/19

Roy Liang
2020-10-20

最长连续递增序列那里：
>>最后，我们来看一看决策是什么。考虑一下，在什么情况下，当前子问题的解需要根据
子问题的子问题计算得出呢？原问题问的是最长连续递增序列。因此，当 DP[i]>DP[i−1]
时，我们需要更新当前子问题的答案，这就是该问题的决策。
这里的条件DP[i]>DP[i−1]是不是有笔误？应该是nums[i] > nums[i-1]，后面的代码就…
展开

作者回复: 笔误。感谢指正。

  1

CD
2020-10-26

另外层循环的数字下标为 j，内部循环的数字下标为 i
 大家都是最外层 i 里面是j

作者回复: 这是由于在讲述过程中假设 i ... j （i < j） 的缘故。

 

我来也
2020-10-09

老师将 最长上升子序列长度 变种到 求数量，就理解为什么要留这个课后思考题了。

课后思考题：
利用二分查找，将内层循环到时间复杂度从O（n）降低到O（logn）。
偷个懒 直接上链接： …
展开

作者回复: 很好，所有的题目都要自己动手验证。

 

