
Dubbo 支持哪些协议，每种协议的应用场景，优缺点？

 dubbo： 单一长连接和 NIO 异步通讯，适合大并发小数据量的服务调用，

以及消费者远大于提供者。传输协议 TCP，异步，Hessian 序列化；
 rmi： 采用 JDK 标准的 rmi 协议实现，传输参数和返回参数对象需要实现

Serializable 接口，使用 java 标准序列化机制，使用阻塞式短连接，传输数

据包大小混合，消费者和提供者个数差不多，可传文件，传输协议 TCP。
多个短连接，TCP 协议传输，同步传输，适用常规的远程服务调用和 rmi 互
操作。在依赖低版本的 Common-Collections 包，java 序列化存在安全漏

洞；
 webservice： 基于 WebService 的远程调用协议，集成 CXF 实现，提供和

原生 WebService 的互操作。多个短连接，基于 HTTP 传输，同步传输，适

用系统集成和跨语言调用；
 http： 基于 Http 表单提交的远程调用协议，使用 Spring 的 HttpInvoke 实

现。多个短连接，传输协议 HTTP，传入参数大小混合，提供者个数多于消

费者，需要给应用程序和浏览器 JS 调用；
 hessian： 集成 Hessian 服务，基于 HTTP 通讯，采用 Servlet 暴露服务，

Dubbo 内嵌 Jetty 作为服务器时默认实现，提供与 Hession 服务互操作。多

个短连接，同步 HTTP 传输，Hessian 序列化，传入参数较大，提供者大于

消费者，提供者压力较大，可传文件；
 memcache： 基于 memcached 实现的 RPC 协议
 redis： 基于 redis 实现的 RPC 协议

Dubbo 超时时间怎样设置？

　Dubbo 超时时间设置有两种方式：

 服务提供者端设置超时时间，在 Dubbo 的用户文档中，推荐如果能在服务

端多配置就尽量多配置，因为服务提供者比消费者更清楚自己提供的服务特

性。
 服务消费者端设置超时时间，如果在消费者端设置了超时时间，以消费者端

为主，即优先级更高。因为服务调用方设置超时时间控制性更灵活。如果消

费方超时，服务端线程不会定制，会产生警告。

Dubbo 有些哪些注册中心？

 Multicast 注册中心： Multicast 注册中心不需要任何中心节点，只要广播地

址，就能进行服务注册和发现。基于网络中组播传输实现；
 Zookeeper 注册中心： 基于分布式协调系统 Zookeeper 实现，采用

Zookeeper 的 watch 机制实现数据变更；
 redis 注册中心： 基于 redis 实现，采用 key/Map 存储，住 key 存储服务名

和类型，Map 中 key 存储服务 URL，value 服务过期时间。基于 redis 的发

布/订阅模式通知数据变更；
 Simple 注册中心

Dubbo 集群的负载均衡有哪些策略　　

　Dubbo 提供了常见的集群策略实现，并预扩展点予以自行实现。

 Random LoadBalance: 随机选取提供者策略，有利于动态调整提供者权

重。截面碰撞率高，调用次数越多，分布越均匀；
 RoundRobin LoadBalance: 轮循选取提供者策略，平均分布，但是存在请

求累积的问题；
 LeastActive LoadBalance: 最少活跃调用策略，解决慢提供者接收更少的

请求；
 ConstantHash LoadBalance: 一致性 Hash 策略，使相同参数请求总是发

到同一提供者，一台机器宕机，可以基于虚拟节点，分摊至其他提供者，避

免引起提供者的剧烈变动；

 Dubbo 是什么？

 Dubbo 是一个分布式、高性能、透明化的 RPC 服务框架，提

供服务自动注册、自动发现等高效服务治理方案， 可以和

Spring 框架无缝集成。

 Dubbo 的主要应用场景？

 透明化的远程方法调用，就像调用本地方法一样调用远程方法，

只需简单配置，没有任何 API 侵入。

 软负载均衡及容错机制，可在内网替代 F5 等硬件负载均衡器，

降低成本，减少单点。

 服务自动注册与发现，不再需要写死服务提供方地址，注册中心

基于接口名查询服务提供者的 IP 地址，并且能够平滑添加或删

除服务提供者。

Dubbo 的核心功能？

购
买
联
系
微
信
：
Lz
zz
zz
z6
3

主要就是如下 3 个核心功能：

 Remoting：网络通信框架，提供对多种 NIO 框架抽象封装，包括

“同步转异步”和“请求-响应”模式的信息交换方式。

 Cluster：服务框架，提供基于接口方法的透明远程过程调用，包括多

协议支持，以及软负载均衡，失败容错，地址路由，动态配置等集群

支持。

 Registry：服务注册，基于注册中心目录服务，使服务消费方能动态

的查找服务提供方，使地址透明，使服务提供方可以平滑增加或减少

机器。

 Dubbo 的核心组件？



Dubbo 服务注册与发现的流程？

流程说明：

 Provider(提供者)绑定指定端口并启动服务

 指供者连接注册中心，并发本机 IP、端口、应用信息和提供服务信息

发送至注册中心存储

 Consumer(消费者），连接注册中心 ，并发送应用信息、所求服务信

息至注册中心

 注册中心根据 消费 者所求服务信息匹配对应的提供者列表发送至

Consumer 应用缓存。

 Consumer 在发起远程调用时基于缓存的消费者列表择其一发起调

用。

 Provider 状态变更会实时通知注册中心、在由注册中心实时推送至

Consumer

购
买
联
系
微
信
：
Lz
zz
zz
z6
3

设计的原因：

 Consumer 与 Provider 解偶，双方都可以横向增减节点数。

 注册中心对本身可做对等集群，可动态增减节点，并且任意一台宕掉

后，将自动切换到另一台

 去中心化，双方不直接依懒注册中心，即使注册中心全部宕机短时间

内也不会影响服务的调用

 服务提供者无状态，任意一台宕掉后，不影响使用

Dubbo 的架构设计？

Dubbo 框架设计一共划分了 10 个层：

 服务接口层（Service）：该层是与实际业务逻辑相关的，根据服务提

供方和服务消费方的业务设计对应的接口和实现。

 配置层（Config）：对外配置接口，以 ServiceConfig 和

ReferenceConfig 为中心。

 服务代理层（Proxy）：服务接口透明代理，生成服务的客户端 Stub

和服务器端 Skeleton。

购
买
联
系
微
信
：
Lz
zz
zz
z6
3

 服务注册层（Registry）：封装服务地址的注册与发现，以服务 URL

为中心。

 集群层（Cluster）：封装多个提供者的路由及负载均衡，并桥接注册

中心，以 Invoker 为中心。

 监控层（Monitor）：RPC 调用次数和调用时间监控。

 远程调用层（Protocol）：封将 RPC 调用，以 Invocation 和 Result

为中心，扩展接口为 Protocol、Invoker 和 Exporter。

 信息交换层（Exchange）：封装请求响应模式，同步转异步，以

Request 和 Response 为中心。

 网络传输层（Transport）：抽象 mina 和 netty 为统一接口，以

Message 为中心。

Dubbo 的服务调用流程？

Dubbo 支持哪些协议，每种协议的应用场景，优缺点？

 dubbo： 单一长连接和 NIO 异步通讯，适合大并发小数据量的服务

调用，以及消费者远大于提供者。传输协议 TCP，异步，Hessian 序

列化；

 rmi： 采用 JDK 标准的 rmi 协议实现，传输参数和返回参数对象需要

实现 Serializable 接口，使用 java 标准序列化机制，使用阻塞式短连

接，传输数据包大小混合，消费者和提供者个数差不多，可传文件，

购
买
联
系
微
信
：
Lz
zz
zz
z6
3

传输协议 TCP。 多个短连接，TCP 协议传输，同步传输，适用常规的

远程服务调用和 rmi 互操作。在依赖低版本的 Common-Collections

包，java 序列化存在安全漏洞；

 webservice： 基于 WebService 的远程调用协议，集成 CXF 实现，

提供和原生 WebService 的互操作。多个短连接，基于 HTTP 传输，

同步传输，适用系统集成和跨语言调用；

 http： 基于 Http 表单提交的远程调用协议，使用 Spring 的

HttpInvoke 实现。多个短连接，传输协议 HTTP，传入参数大小混

合，提供者个数多于消费者，需要给应用程序和浏览器 JS 调用；

 hessian： 集成 Hessian 服务，基于 HTTP 通讯，采用 Servlet 暴露

服务，Dubbo 内嵌 Jetty 作为服务器时默认实现，提供与 Hession 服

务互操作。多个短连接，同步 HTTP 传输，Hessian 序列化，传入参

数较大，提供者大于消费者，提供者压力较大，可传文件；

 memcache： 基于 memcached 实现的 RPC 协议

 redis： 基于 redis 实现的 RPC 协议

dubbo 推荐用什么协议？

默认使用 dubbo 协议

Dubbo 有些哪些注册中心？

 Multicast 注册中心： Multicast 注册中心不需要任何中心节点，只

要广播地址，就能进行服务注册和发现。基于网络中组播传输实现；

 Zookeeper 注册中心： 基于分布式协调系统 Zookeeper 实现，采用

Zookeeper 的 watch 机制实现数据变更；

 redis 注册中心： 基于 redis 实现，采用 key/Map 存储，住 key 存储

服务名和类型，Map 中 key 存储服务 URL，value 服务过期时间。基

于 redis 的发布/订阅模式通知数据变更；

 Simple 注册中心

Dubbo 默认采用注册中心？

采用 Zookeeper

为什么需要服务治理？

 过多的服务 URL 配置困难

 负载均衡分配节点压力过大的情况下也需要部署集群

购
买
联
系
微
信
：
Lz
zz
zz
z6
3

 服务依赖混乱，启动顺序不清晰

 过多服务导致性能指标分析难度较大，需要监控

Dubbo 的注册中心集群挂掉，发布者和订阅者之间还能通信么？

可以的，启动 dubbo 时，消费者会从 zookeeper 拉取注册的生产者

的地址接口等数据，缓存在本地。

每次调用时，按照本地存储的地址进行调用。

Dubbo 与 Spring 的关系？

Dubbo 采用全 Spring 配置方式，透明化接入应用，对应用没有任何

API 侵入，只需用 Spring 加载 Dubbo 的配置即可，Dubbo 基于

Spring 的 Schema 扩展进行加载。

Dubbo 使用的是什么通信框架?

默认使用 NIO Netty 框架

Dubbo 集群提供了哪些负载均衡策略？

 Random LoadBalance: 随机选取提供者策略，有利于动态调整提供

者权重。截面碰撞率高，调用次数越多，分布越均匀；

 RoundRobin LoadBalance: 轮循选取提供者策略，平均分布，但是

存在请求累积的问题；

 LeastActive LoadBalance: 最少活跃调用策略，解决慢提供者接收

更少的请求；

 ConstantHash LoadBalance: 一致性 Hash 策略，使相同参数请求

总是发到同一提供者，一台机器宕机，可以基于虚拟节点，分摊至其

他提供者，避免引起提供者的剧烈变动；

缺省时为 Random 随机调用

Dubbo 的集群容错方案有哪些？

 Failover Cluster

 失败自动切换，当出现失败，重试其它服务器。通常用于读操作，但

重试会带来更长延迟。

 Failfast Cluster

 快速失败，只发起一次调用，失败立即报错。通常用于非幂等性的写

操作，比如新增记录。

 Failsafe Cluster

 失败安全，出现异常时，直接忽略。通常用于写入审计日志等操作。

 Failback Cluster

 失败自动恢复，后台记录失败请求，定时重发。通常用于消息通知操

作。

 Forking Cluster

购
买
联
系
微
信
：
Lz
zz
zz
z6
3

 并行调用多个服务器，只要一个成功即返回。通常用于实时性要求较

高的读操作，但需要浪费更多服务资源。可通过 forks="2" 来设置最

大并行数。

 Broadcast Cluster

 广播调用所有提供者，逐个调用，任意一台报错则报错 。通常用于通

知所有提供者更新缓存或日志等本地资源信息。

Dubbo 的默认集群容错方案？

Failover Cluster

Dubbo 支持哪些序列化方式？

默认使用 Hessian 序列化，还有 Duddo、FastJson、Java 自带序列

化。

Dubbo 超时时间怎样设置？

Dubbo 超时时间设置有两种方式：

 服务提供者端设置超时时间，在 Dubbo 的用户文档中，推荐如果能

在服务端多配置就尽量多配置，因为服务提供者比消费者更清楚自己

提供的服务特性。

 服务消费者端设置超时时间，如果在消费者端设置了超时时间，以消

费者端为主，即优先级更高。因为服务调用方设置超时时间控制性更

灵活。如果消费方超时，服务端线程不会定制，会产生警告。

服务调用超时问题怎么解决？

dubbo 在调用服务不成功时，默认是会重试两次的。

Dubbo 在安全机制方面是如何解决？

Dubbo 通过 Token 令牌防止用户绕过注册中心直连，然后在注册中

心上管理授权。Dubbo 还提供服务黑白名单，来控制服务所允许的调

用方。

Dubbo 和 Dubbox 之间的区别？

dubbox 基于 dubbo 上做了一些扩展，如加了服务可 restful 调

用，更新了开源组件等。

Dubbo 和 Spring Cloud 的关系？

Dubbo 是 SOA 时代的产物，它的关注点主要在于服务的调用，流

量分发、流量监控和熔断。而 Spring Cloud 诞生于微服务架构时

代，考虑的是微服务治理的方方面面，另外由于依托了 Spirng、

Spirng Boot 的优势之上，两个框架在开始目标就不一致，Dubbo

定位服务治理、Spirng Cloud 是一个生态。

Dubbo 和 Spring Cloud 的区别？

购
买
联
系
微
信
：
Lz
zz
zz
z6
3

最大的区别：Dubbo 底层是使用 Netty 这样的 NIO 框架，是基于

TCP 协议传输的，配合以 Hession 序列化完成 RPC 通信。

而 SpringCloud 是基于 Http 协议+Rest 接口调用远程过程的通信，

相对来说，Http 请求会有更大的报文，占的带宽也会更多。但是

REST 相比 RPC 更为灵活，服务提供方和调用方的依赖只依靠一纸契

约，不存在代码级别的强依赖。

