
19 | 为什么我只查一行的语句，也执行这么慢？
2018-12-26 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 12:18 大小 11.28M

一般情况下，如果我跟你说查询性能优化，你首先会想到一些复杂的语句，想到查询需要返

回大量的数据。但有些情况下，“查一行”，也会执行得特别慢。今天，我就跟你聊聊这个

有趣的话题，看看什么情况下，会出现这个现象。

需要说明的是，如果 MySQL 数据库本身就有很大的压力，导致数据库服务器 CPU 占用率

很高或 ioutil（IO 利用率）很高，这种情况下所有语句的执行都有可能变慢，不属于我们

今天的讨论范围。

为了便于描述，我还是构造一个表，基于这个表来说明今天的问题。这个表有两个字段 id

和 c，并且我在里面插入了 10 万行记录。



复制代码



 下载APP 

接下来，我会用几个不同的场景来举例，有些是前面的文章中我们已经介绍过的知识点，你

看看能不能一眼看穿，来检验一下吧。

第一类：查询长时间不返回

如图 1 所示，在表 t 执行下面的 SQL 语句：

查询结果长时间不返回。

图 1 查询长时间不返回

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

mysql> CREATE TABLE `t` (
 `id` int(11) NOT NULL,
 `c` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

delimiter ;;
create procedure idata()
begin
 declare i int;
 set i=1;
 while(i<=100000)do
 insert into t values(i,i);
 set i=i+1;
 end while;
end;;
delimiter ;

call idata();

1 mysql> select * from t where id=1;

复制代码

一般碰到这种情况的话，大概率是表 t 被锁住了。接下来分析原因的时候，一般都是首先执

行一下 show processlist 命令，看看当前语句处于什么状态。

然后我们再针对每种状态，去分析它们产生的原因、如何复现，以及如何处理。

等 MDL 锁

如图 2 所示，就是使用 show processlist 命令查看 Waiting for table metadata lock 的

示意图。

图 2 Waiting for table metadata lock 状态示意图

出现这个状态表示的是，现在有一个线程正在表 t 上请求或者持有 MDL 写锁，把 select

语句堵住了。

在第 6 篇文章《全局锁和表锁 ：给表加个字段怎么有这么多阻碍？》中，我给你介绍过一

种复现方法。但需要说明的是，那个复现过程是基于 MySQL 5.6 版本的。而 MySQL 5.7

版本修改了 MDL 的加锁策略，所以就不能复现这个场景了。

不过，在 MySQL 5.7 版本下复现这个场景，也很容易。如图 3 所示，我给出了简单的复现

步骤。

图 3 MySQL 5.7 中 Waiting for table metadata lock 的复现步骤

session A 通过 lock table 命令持有表 t 的 MDL 写锁，而 session B 的查询需要获取

MDL 读锁。所以，session B 进入等待状态。

https://time.geekbang.org/column/article/69862

这类问题的处理方式，就是找到谁持有 MDL 写锁，然后把它 kill 掉。

但是，由于在 show processlist 的结果里面，session A 的 Command 列是“Sleep”，

导致查找起来很不方便。不过有了 performance_schema 和 sys 系统库以后，就方便多

了。（MySQL 启动时需要设置 performance_schema=on，相比于设置为 off 会有 10%

左右的性能损失)

通过查询 sys.schema_table_lock_waits 这张表，我们就可以直接找出造成阻塞的

process id，把这个连接用 kill 命令断开即可。

图 4 查获加表锁的线程 id

等 flush

接下来，我给你举另外一种查询被堵住的情况。

我在表 t 上，执行下面的 SQL 语句：

这里，我先卖个关子。

你可以看一下图 5。我查出来这个线程的状态是 Waiting for table flush，你可以设想一下

这是什么原因。

1 mysql> select * from information_schema.processlist where id=1;

复制代码

图 5 Waiting for table flush 状态示意图

这个状态表示的是，现在有一个线程正要对表 t 做 flush 操作。MySQL 里面对表做 flush

操作的用法，一般有以下两个：

这两个 flush 语句，如果指定表 t 的话，代表的是只关闭表 t；如果没有指定具体的表名，

则表示关闭 MySQL 里所有打开的表。

但是正常这两个语句执行起来都很快，除非它们也被别的线程堵住了。

所以，出现 Waiting for table flush 状态的可能情况是：有一个 flush tables 命令被别的

语句堵住了，然后它又堵住了我们的 select 语句。

现在，我们一起来复现一下这种情况，复现步骤如图 6 所示：

图 6 Waiting for table flush 的复现步骤

在 session A 中，我故意每行都调用一次 sleep(1)，这样这个语句默认要执行 10 万秒，在

这期间表 t 一直是被 session A“打开”着。然后，session B 的 flush tables t 命令再要

1

2

3

flush tables t with read lock;

flush tables with read lock;

复制代码

去关闭表 t，就需要等 session A 的查询结束。这样，session C 要再次查询的话，就会被

flush 命令堵住了。

图 7 是这个复现步骤的 show processlist 结果。这个例子的排查也很简单，你看到这个

show processlist 的结果，肯定就知道应该怎么做了。

图 7 Waiting for table flush 的 show processlist 结果

等行锁

现在，经过了表级锁的考验，我们的 select 语句终于来到引擎里了。

上面这条语句的用法你也很熟悉了，我们在第 8 篇《事务到底是隔离的还是不隔离的？》

文章介绍当前读时提到过。

由于访问 id=1 这个记录时要加读锁，如果这时候已经有一个事务在这行记录上持有一个写

锁，我们的 select 语句就会被堵住。

复现步骤和现场如下：

图 8 行锁复现

1 mysql> select * from t where id=1 lock in share mode;

复制代码

https://time.geekbang.org/column/article/70562

图 9 行锁 show processlist 现场

显然，session A 启动了事务，占有写锁，还不提交，是导致 session B 被堵住的原因。

这个问题并不难分析，但问题是怎么查出是谁占着这个写锁。如果你用的是 MySQL 5.7 版

本，可以通过 sys.innodb_lock_waits 表查到。

查询方法是：

1 mysql> select * from t sys.innodb_lock_waits where locked_table=`'test'.'t'`\G

复制代码

图 10 通过 sys.innodb_lock_waits 查行锁

可以看到，这个信息很全，4 号线程是造成堵塞的罪魁祸首。而干掉这个罪魁祸首的方式，

就是 KILL QUERY 4 或 KILL 4。

不过，这里不应该显示“KILL QUERY 4”。这个命令表示停止 4 号线程当前正在执行的语

句，而这个方法其实是没有用的。因为占有行锁的是 update 语句，这个语句已经是之前执

行完成了的，现在执行 KILL QUERY，无法让这个事务去掉 id=1 上的行锁。

实际上，KILL 4 才有效，也就是说直接断开这个连接。这里隐含的一个逻辑就是，连接被

断开的时候，会自动回滚这个连接里面正在执行的线程，也就释放了 id=1 上的行锁。

第二类：查询慢

经过了重重封“锁”，我们再来看看一些查询慢的例子。

先来看一条你一定知道原因的 SQL 语句：

由于字段 c 上没有索引，这个语句只能走 id 主键顺序扫描，因此需要扫描 5 万行。

作为确认，你可以看一下慢查询日志。注意，这里为了把所有语句记录到 slow log 里，我

在连接后先执行了 set long_query_time=0，将慢查询日志的时间阈值设置为 0。

图 11 全表扫描 5 万行的 slow log

Rows_examined 显示扫描了 50000 行。你可能会说，不是很慢呀，11.5 毫秒就返回了，

我们线上一般都配置超过 1 秒才算慢查询。但你要记住：坏查询不一定是慢查询。我们这

个例子里面只有 10 万行记录，数据量大起来的话，执行时间就线性涨上去了。

扫描行数多，所以执行慢，这个很好理解。

但是接下来，我们再看一个只扫描一行，但是执行很慢的语句。

如图 12 所示，是这个例子的 slow log。可以看到，执行的语句是

虽然扫描行数是 1，但执行时间却长达 800 毫秒。

图 12 扫描一行却执行得很慢

1 mysql> select * from t where c=50000 limit 1;

复制代码

1 mysql> select * from t where id=1；

复制代码

是不是有点奇怪呢，这些时间都花在哪里了？

如果我把这个 slow log 的截图再往下拉一点，你可以看到下一个语句，select * from t

where id=1 lock in share mode，执行时扫描行数也是 1 行，执行时间是 0.2 毫秒。

图 13 加上 lock in share mode 的 slow log

看上去是不是更奇怪了？按理说 lock in share mode 还要加锁，时间应该更长才对啊。

可能有的同学已经有答案了。如果你还没有答案的话，我再给你一个提示信息，图 14 是这

两个语句的执行输出结果。

图 14 两个语句的输出结果

第一个语句的查询结果里 c=1，带 lock in share mode 的语句返回的是 c=1000001。看

到这里应该有更多的同学知道原因了。如果你还是没有头绪的话，也别着急。我先跟你说明

一下复现步骤，再分析原因。

图 15 复现步骤

你看到了，session A 先用 start transaction with consistent snapshot 命令启动了一个

事务，之后 session B 才开始执行 update 语句。

session B 执行完 100 万次 update 语句后，id=1 这一行处于什么状态呢？你可以从图

16 中找到答案。

图 16 id=1 的数据状态

session B 更新完 100 万次，生成了 100 万个回滚日志 (undo log)。

带 lock in share mode 的 SQL 语句，是当前读，因此会直接读到 1000001 这个结果，所

以速度很快；而 select * from t where id=1 这个语句，是一致性读，因此需要从

1000001 开始，依次执行 undo log，执行了 100 万次以后，才将 1 这个结果返回。

注意，undo log 里记录的其实是“把 2 改成 1”，“把 3 改成 2”这样的操作逻辑，画成

减 1 的目的是方便你看图。

小结

今天我给你举了在一个简单的表上，执行“查一行”，可能会出现的被锁住和执行慢的例

子。这其中涉及到了表锁、行锁和一致性读的概念。

在实际使用中，碰到的场景会更复杂。但大同小异，你可以按照我在文章中介绍的定位方

法，来定位并解决问题。

最后，我给你留一个问题吧。

我们在举例加锁读的时候，用的是这个语句，select * from t where id=1 lock in share

mode。由于 id 上有索引，所以可以直接定位到 id=1 这一行，因此读锁也是只加在了这

一行上。

但如果是下面的 SQL 语句，

这个语句序列是怎么加锁的呢？加的锁又是什么时候释放呢？

1

2

3

begin;
select * from t where c=5 for update;
commit;

复制代码

你可以把你的观点和验证方法写在留言区里，我会在下一篇文章的末尾给出我的参考答案。

感谢你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

在上一篇文章最后，我留给你的问题是，希望你可以分享一下之前碰到过的、与文章中类似

的场景。

@封建的风 提到一个有趣的场景，值得一说。我把他的问题重写一下，表结构如下：

假设现在表里面，有 100 万行数据，其中有 10 万行数据的 b 的值是’1234567890’，

假设现在执行语句是这么写的:

这时候，MySQL 会怎么执行呢？

最理想的情况是，MySQL 看到字段 b 定义的是 varchar(10)，那肯定返回空呀。可惜，

MySQL 并没有这么做。

那要不，就是把’1234567890abcd’拿到索引里面去做匹配，肯定也没能够快速判断出

索引树 b 上并没有这个值，也很快就能返回空结果。

但实际上，MySQL 也不是这么做的。

1

2

3

4

5

6

mysql> CREATE TABLE `table_a` (
 `id` int(11) NOT NULL,
 `b` varchar(10) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `b` (`b`)
) ENGINE=InnoDB;

复制代码

1 mysql> select * from table_a where b='1234567890abcd';

复制代码

这条 SQL 语句的执行很慢，流程是这样的：

1. 在传给引擎执行的时候，做了字符截断。因为引擎里面这个行只定义了长度是 10，所以

只截了前 10 个字节，就是’1234567890’进去做匹配；

2. 这样满足条件的数据有 10 万行；

3. 因为是 select *， 所以要做 10 万次回表；

4. 但是每次回表以后查出整行，到 server 层一判断，b 的值都不

是’1234567890abcd’;

5. 返回结果是空。

这个例子，是我们文章内容的一个很好的补充。虽然执行过程中可能经过函数操作，但是最

终在拿到结果后，server 层还是要做一轮判断的。

评论区留言点赞板：

@赖阿甘 提到了等号顺序问题，时间上 MySQL 优化器执行过程中，where

条件部分， a=b 和 b=a 的写法是一样的。

@沙漠里的骆驼 提到了一个常见的问题。相同的模板语句，但是匹配行数不

同，语句执行时间相差很大。这种情况，在语句里面有 order by 这样的操作

时会更明显。

@Justin 回答了我们正文中的问题，如果 id 的类型是整数，传入的参数类型

是字符串的时候，可以用上索引。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 18 | 为什么这些SQL语句逻辑相同，性能却差异巨大？

下一篇 20 | 幻读是什么，幻读有什么问题？

某、人
2018-12-26

 28

最近几张干货越来越多了,很实用,收获不少.先回答今天的问题
版本5.7.13
rc模式下:
session 1:
begin; …
展开

作者回复: 分析得非常好。

两个模式下，各增加一个session 4 : update t set c=100 where id=10看看哦

基本就全了�

精选留言 (79)  写留言

薛畅
2018-12-26

 13

回来老师的问题：
在 Read Committed 隔离级别下，会锁上聚簇索引中的所有记录；
在 Repeatable Read 隔离级别下，会锁上聚簇索引中的所有记录，并且会锁上聚簇索引内
的所有 GAP；
在上面两个隔离级别的情况下，如果设置了 innodb_locks_unsafe_for_binlog 开启 se…
展开

似水流年
2018-12-28

 7

请问老师，为什么select blocking_pid from sys.schema_table_lock_waits;查不到mdl锁
的进程id，显示为空。

展开

沙漠里的骆...
2018-12-26

 7

@高枕
这里有些资料提供给你参考:
1. 何登成的技术博客: 加锁分析 http://hedengcheng.com/?p=771
2. 锁的常见种类: http://www.aneasystone.com/archives/2017/11/solving-dead-
locks-two.html

展开

蠢蠢欲动的...
2018-12-28

 4

老师，您好
 我的mysql版本5.7.24，尝试的时候发现了如下问题
 锁住了表T
 mysql> lock table T write;
 Query OK, 0 rows affected (0.00 sec) …
展开

老杨同志
2018-12-26

 4

愉快的做一下思考题
begin;
select * from t where c=5 for update;
commit;
历史知识的结论是，innodb先锁全表的所有行，返回server层，判断c是否等于5，然后…
展开

作者回复: � 思路清晰

隔离级别再愉快地改成RR试试😄

尘封
2018-12-26

 4

课后问题：d这一列不存在，但是还是要加MDL锁，释放时间应该是事务提交时。

作者回复: 抱歉，是要写成where c=5 , 发起堪误了

Tony Du
2018-12-27

 3

对于课后问题，select * from t where c=5 for update，
当级别为RR时，因为字段c上没有索引，会扫主键索引，这时会把表中的记录都加上X锁。
同时，因为对于innodb来说，当级别为RR时，是可以解决幻读的，此时对于每条记录的间
隙还要加上GAP锁。也就是说，表上每一条记录和每一个间隙都锁上了。
当级别为RC时，因为字段c上没有索引，会扫主键索引，这时会把表中的记录都加上X锁…
展开

小确幸
2018-12-26

 3

问一下：索引扫描与全表扫描，有什么异同点？

展开

作者回复: 一般说全表扫描默认是值“扫瞄主键索引”

尘封
2018-12-26

 3

老师，有没有遇到过select语句一直处于killed状态的情况？

作者回复: 有😄 这个是在后面的文章中会用到的例子

小李子
2018-12-27

 2

老师，为什么session B 执行了 select in share mode ，在等行锁的时候，session C 执
行
select * from sys.innodb_lock_waits where locked_table='`test`.`t`' 会报这个错
[Err] 1356 - View 'sys.innodb_lock_waits' references invalid table(s) or column(s) or
function(s) or definer/invoker of view lack rights to use them，而超时之后，又可…
展开

信信
2018-12-27

 2

老师你好，图3上方提到MySQL 5.7 版本修改了 MDL 的加锁策略，不能复现第六章的场
景。但我认为只要仍然满足：DML操作加MDL读锁，DDL操作加MDL写锁，并且事务提交
才释放锁，那么就可以复现啊。。。所以5.7到底是改了什么导致无法复现的呢？

展开

某、人
2018-12-26

 2

老师我请教一个问题:
flush tables中close table的意思是说的把open_tables里的表全部关闭掉?下次如果有关
于某张表的操作
又把frm file缓存进Open_table_definitions,把表名缓存到open_tables,还是open_table
只是一个计数? …
展开

作者回复: Flush tables是会关掉表，然后下次请求重新读表信息的

第一次打开表其实就是open_table_definitions，包括读表信息一类的

之后再有查询就是拷贝一个对象，加一个计数这样的

简海青
2019-05-04

 1

performance_schema=ON;
server version: 5.7.25-28 (percona server)
林老师，好想有个群可以快速交流的，但也知道IM 信息过多，容易给人困扰

张永志
2018-12-27

 1

RR隔离级别下，为保证binlog记录顺序，非索引更新会锁住全表记录，且事务结束前不会
对不符合条件记录有逐步释放的过程。

展开

作者回复: 准确

张永志
2018-12-27

 1

RC隔离级别下，对非索引字段更新，有个锁全表记录的过程，不符合条件的会及时释放行
锁，不必等事务结束时释放；而直接用索引列更新，只会锁索引查找值和行。

展开

陈旭
2018-12-26

 1

老师，最近遇到了一个问题，看您有什么建议。

业务场景是这样的：
1.开启事务
2.在表a插入一条记录
3.在表b更新一条记录 …
展开

作者回复: 这是被别的并发事务又改回去了吗😓

要么是update的值跟原值相同

要么是update条件没有匹配到行

额，最好给一下每个语句执行后的affacted rows , 还有binlog里的日志内容，才好分析

nickyi
2019-05-05



模拟查询被堵住的情况，以下是一种场景，不知道是否合理，
1.
一个线程：
 begin；
 select * from t; …
展开

简海青
2019-05-04



另外图4 中的锁等待时，查询如下SQL 是空的，并没有找到阻塞的processid；
select blocking_pid from sys.schema_table_lock_waits;

简海青
2019-05-04



mysql> select * from table_a where b='1234567890abcd';
实际结果并不会慢；为什么呢？
root@192.168.100.1:3307 [longrun]> show profile for query 100014;
+----------------------+----------+
| Status | Duration | …
展开

