
39 | 自增主键为什么不是连续的？
2019-02-11 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 17:31 大小 16.05M

在第 4 篇文章中，我们提到过自增主键，由于自增主键可以让主键索引尽量地保持递增顺

序插入，避免了页分裂，因此索引更紧凑。

之前我见过有的业务设计依赖于自增主键的连续性，也就是说，这个设计假设自增主键是连

续的。但实际上，这样的假设是错的，因为自增主键不能保证连续递增。

今天这篇文章，我们就来说说这个问题，看看什么情况下自增主键会出现 “空洞”？

为了便于说明，我们创建一个表 t，其中 id 是自增主键字段、c 是唯一索引。



1 CREATE TABLE `t` (

复制代码



 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

https://time.geekbang.org/column/article/69236

自增值保存在哪儿？

在这个空表 t 里面执行 insert into t values(null, 1, 1); 插入一行数据，再执行 show

create table 命令，就可以看到如下图所示的结果：

图 1 自动生成的 AUTO_INCREMENT 值

可以看到，表定义里面出现了一个 AUTO_INCREMENT=2，表示下一次插入数据时，如果

需要自动生成自增值，会生成 id=2。

其实，这个输出结果容易引起这样的误解：自增值是保存在表结构定义里的。实际上，表的

结构定义存放在后缀名为.frm 的文件中，但是并不会保存自增值。

不同的引擎对于自增值的保存策略不同。

2

3

4

5

6

7

 `id` int(11) NOT NULL AUTO_INCREMENT,
 `c` int(11) DEFAULT NULL,
 `d` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `c` (`c`)
) ENGINE=InnoDB;

MyISAM 引擎的自增值保存在数据文件中。

InnoDB 引擎的自增值，其实是保存在了内存里，并且到了 MySQL 8.0 版本后，才有

了“自增值持久化”的能力，也就是才实现了“如果发生重启，表的自增值可以恢复为

MySQL 重启前的值”，具体情况是：

理解了 MySQL 对自增值的保存策略以后，我们再看看自增值修改机制。

自增值修改机制

在 MySQL 里面，如果字段 id 被定义为 AUTO_INCREMENT，在插入一行数据的时候，自

增值的行为如下：

1. 如果插入数据时 id 字段指定为 0、null 或未指定值，那么就把这个表当前的

AUTO_INCREMENT 值填到自增字段；

2. 如果插入数据时 id 字段指定了具体的值，就直接使用语句里指定的值。

根据要插入的值和当前自增值的大小关系，自增值的变更结果也会有所不同。假设，某次要

插入的值是 X，当前的自增值是 Y。

1. 如果 X<Y，那么这个表的自增值不变；

2. 如果 X≥Y，就需要把当前自增值修改为新的自增值。

新的自增值生成算法是：从 auto_increment_offset 开始，以

auto_increment_increment 为步长，持续叠加，直到找到第一个大于 X 的值，作为新的

自增值。

其中，auto_increment_offset 和 auto_increment_increment 是两个系统参数，分别用

来表示自增的初始值和步长，默认值都是 1。

在 MySQL 5.7 及之前的版本，自增值保存在内存里，并没有持久化。每次重启后，第

一次打开表的时候，都会去找自增值的最大值 max(id)，然后将 max(id)+1 作为这个

表当前的自增值。

举例来说，如果一个表当前数据行里最大的 id 是 10，AUTO_INCREMENT=11。这

时候，我们删除 id=10 的行，AUTO_INCREMENT 还是 11。但如果马上重启实例，

重启后这个表的 AUTO_INCREMENT 就会变成 10。

也就是说，MySQL 重启可能会修改一个表的 AUTO_INCREMENT 的值。

在 MySQL 8.0 版本，将自增值的变更记录在了 redo log 中，重启的时候依靠 redo

log 恢复重启之前的值。

防止断
更 请务

必加

首发微
信：1

71614
3665

当 auto_increment_offset 和 auto_increment_increment 都是 1 的时候，新的自增值生

成逻辑很简单，就是：

1. 如果准备插入的值 >= 当前自增值，新的自增值就是“准备插入的值 +1”；

2. 否则，自增值不变。

这就引入了我们文章开头提到的问题，在这两个参数都设置为 1 的时候，自增主键 id 却不

能保证是连续的，这是什么原因呢？

自增值的修改时机

要回答这个问题，我们就要看一下自增值的修改时机。

假设，表 t 里面已经有了 (1,1,1) 这条记录，这时我再执行一条插入数据命令：

这个语句的执行流程就是：

1. 执行器调用 InnoDB 引擎接口写入一行，传入的这一行的值是 (0,1,1);

2. InnoDB 发现用户没有指定自增 id 的值，获取表 t 当前的自增值 2；

3. 将传入的行的值改成 (2,1,1);

4. 将表的自增值改成 3；

5. 继续执行插入数据操作，由于已经存在 c=1 的记录，所以报 Duplicate key error，语

句返回。

对应的执行流程图如下：

备注：在一些场景下，使用的就不全是默认值。比如，双 M 的主备结构里要

求双写的时候，我们就可能会设置成 auto_increment_increment=2，让一

个库的自增 id 都是奇数，另一个库的自增 id 都是偶数，避免两个库生成的

主键发生冲突。

1 insert into t values(null, 1, 1);

复制代码

图 2 insert(null, 1,1) 唯一键冲突

可以看到，这个表的自增值改成 3，是在真正执行插入数据的操作之前。这个语句真正执行

的时候，因为碰到唯一键 c 冲突，所以 id=2 这一行并没有插入成功，但也没有将自增值再

改回去。

所以，在这之后，再插入新的数据行时，拿到的自增 id 就是 3。也就是说，出现了自增主

键不连续的情况。

如图 3 所示就是完整的演示结果。

图 3 一个自增主键 id 不连续的复现步骤

拼课微
信：1

71614
3665

可以看到，这个操作序列复现了一个自增主键 id 不连续的现场 (没有 id=2 的行）。可见，

唯一键冲突是导致自增主键 id 不连续的第一种原因。

同样地，事务回滚也会产生类似的现象，这就是第二种原因。

下面这个语句序列就可以构造不连续的自增 id，你可以自己验证一下。

你可能会问，为什么在出现唯一键冲突或者回滚的时候，MySQL 没有把表 t 的自增值改回

去呢？如果把表 t 的当前自增值从 3 改回 2，再插入新数据的时候，不就可以生成 id=2 的

一行数据了吗？

其实，MySQL 这么设计是为了提升性能。接下来，我就跟你分析一下这个设计思路，看看

自增值为什么不能回退。

假设有两个并行执行的事务，在申请自增值的时候，为了避免两个事务申请到相同的自增

id，肯定要加锁，然后顺序申请。

1. 假设事务 A 申请到了 id=2， 事务 B 申请到 id=3，那么这时候表 t 的自增值是 4，之后

继续执行。

2. 事务 B 正确提交了，但事务 A 出现了唯一键冲突。

3. 如果允许事务 A 把自增 id 回退，也就是把表 t 的当前自增值改回 2，那么就会出现这样

的情况：表里面已经有 id=3 的行，而当前的自增 id 值是 2。

4. 接下来，继续执行的其他事务就会申请到 id=2，然后再申请到 id=3。这时，就会出现

插入语句报错“主键冲突”。

而为了解决这个主键冲突，有两种方法：

1

2

3

4

5

6

insert into t values(null,1,1);
begin;
insert into t values(null,2,2);
rollback;
insert into t values(null,2,2);
// 插入的行是 (3,2,2)

复制代码

1. 每次申请 id 之前，先判断表里面是否已经存在这个 id。如果存在，就跳过这个 id。但

是，这个方法的成本很高。因为，本来申请 id 是一个很快的操作，现在还要再去主键索

引树上判断 id 是否存在。

2. 把自增 id 的锁范围扩大，必须等到一个事务执行完成并提交，下一个事务才能再申请自

增 id。这个方法的问题，就是锁的粒度太大，系统并发能力大大下降。

可见，这两个方法都会导致性能问题。造成这些麻烦的罪魁祸首，就是我们假设的这个“允

许自增 id 回退”的前提导致的。

因此，InnoDB 放弃了这个设计，语句执行失败也不回退自增 id。也正是因为这样，所以

才只保证了自增 id 是递增的，但不保证是连续的。

自增锁的优化

可以看到，自增 id 锁并不是一个事务锁，而是每次申请完就马上释放，以便允许别的事务

再申请。其实，在 MySQL 5.1 版本之前，并不是这样的。

接下来，我会先给你介绍下自增锁设计的历史，这样有助于你分析接下来的一个问题。

在 MySQL 5.0 版本的时候，自增锁的范围是语句级别。也就是说，如果一个语句申请了一

个表自增锁，这个锁会等语句执行结束以后才释放。显然，这样设计会影响并发度。

MySQL 5.1.22 版本引入了一个新策略，新增参数 innodb_autoinc_lock_mode，默认值

是 1。

1. 这个参数的值被设置为 0 时，表示采用之前 MySQL 5.0 版本的策略，即语句执行结束

后才释放锁；

2. 这个参数的值被设置为 1 时：

3. 这个参数的值被设置为 2 时，所有的申请自增主键的动作都是申请后就释放锁。

普通 insert 语句，自增锁在申请之后就马上释放；

类似 insert … select 这样的批量插入数据的语句，自增锁还是要等语句结束后才被释

放；

你一定有两个疑问：为什么默认设置下，insert … select 要使用语句级的锁？为什么这个

参数的默认值不是 2？

答案是，这么设计还是为了数据的一致性。

我们一起来看一下这个场景：

图 4 批量插入数据的自增锁

在这个例子里，我往表 t1 中插入了 4 行数据，然后创建了一个相同结构的表 t2，然后两个

session 同时执行向表 t2 中插入数据的操作。

你可以设想一下，如果 session B 是申请了自增值以后马上就释放自增锁，那么就可能出现

这样的情况：

你可能会说，这也没关系吧，毕竟 session B 的语义本身就没有要求表 t2 的所有行的数据

都跟 session A 相同。

是的，从数据逻辑上看是对的。但是，如果我们现在的 binlog_format=statement，你可

以设想下，binlog 会怎么记录呢？

由于两个 session 是同时执行插入数据命令的，所以 binlog 里面对表 t2 的更新日志只有

两种情况：要么先记 session A 的，要么先记 session B 的。

session B 先插入了两个记录，(1,1,1)、(2,2,2)；

然后，session A 来申请自增 id 得到 id=3，插入了（3,5,5)；

之后，session B 继续执行，插入两条记录 (4,3,3)、 (5,4,4)。

但不论是哪一种，这个 binlog 拿去从库执行，或者用来恢复临时实例，备库和临时实例里

面，session B 这个语句执行出来，生成的结果里面，id 都是连续的。这时，这个库就发生

了数据不一致。

你可以分析一下，出现这个问题的原因是什么？

其实，这是因为原库 session B 的 insert 语句，生成的 id 不连续。这个不连续的 id，用

statement 格式的 binlog 来串行执行，是执行不出来的。

而要解决这个问题，有两种思路：

1. 一种思路是，让原库的批量插入数据语句，固定生成连续的 id 值。所以，自增锁直到语

句执行结束才释放，就是为了达到这个目的。

2. 另一种思路是，在 binlog 里面把插入数据的操作都如实记录进来，到备库执行的时候，

不再依赖于自增主键去生成。这种情况，其实就是 innodb_autoinc_lock_mode 设置为

2，同时 binlog_format 设置为 row。

因此，在生产上，尤其是有 insert … select 这种批量插入数据的场景时，从并发插入数据

性能的角度考虑，我建议你这样设置：innodb_autoinc_lock_mode=2 ，并且

binlog_format=row. 这样做，既能提升并发性，又不会出现数据一致性问题。

需要注意的是，我这里说的批量插入数据，包含的语句类型是 insert … select、replace

… select 和 load data 语句。

但是，在普通的 insert 语句里面包含多个 value 值的情况下，即使

innodb_autoinc_lock_mode 设置为 1，也不会等语句执行完成才释放锁。因为这类语句

在申请自增 id 的时候，是可以精确计算出需要多少个 id 的，然后一次性申请，申请完成后

锁就可以释放了。

也就是说，批量插入数据的语句，之所以需要这么设置，是因为“不知道要预先申请多少个

id”。

既然预先不知道要申请多少个自增 id，那么一种直接的想法就是需要一个时申请一个。但

如果一个 select … insert 语句要插入 10 万行数据，按照这个逻辑的话就要申请 10 万次。

显然，这种申请自增 id 的策略，在大批量插入数据的情况下，不但速度慢，还会影响并发

插入的性能。

因此，对于批量插入数据的语句，MySQL 有一个批量申请自增 id 的策略：

1. 语句执行过程中，第一次申请自增 id，会分配 1 个；

2. 1 个用完以后，这个语句第二次申请自增 id，会分配 2 个；

3. 2 个用完以后，还是这个语句，第三次申请自增 id，会分配 4 个；

4. 依此类推，同一个语句去申请自增 id，每次申请到的自增 id 个数都是上一次的两倍。

举个例子，我们一起看看下面的这个语句序列：

insert…select，实际上往表 t2 中插入了 4 行数据。但是，这四行数据是分三次申请的自增

id，第一次申请到了 id=1，第二次被分配了 id=2 和 id=3， 第三次被分配到 id=4 到

id=7。

由于这条语句实际只用上了 4 个 id，所以 id=5 到 id=7 就被浪费掉了。之后，再执行

insert into t2 values(null, 5,5)，实际上插入的数据就是（8,5,5)。

这是主键 id 出现自增 id 不连续的第三种原因。

小结

今天，我们从“自增主键为什么会出现不连续的值”这个问题开始，首先讨论了自增值的存

储。

1

2

3

4

5

6

7

insert into t values(null, 1,1);
insert into t values(null, 2,2);
insert into t values(null, 3,3);
insert into t values(null, 4,4);
create table t2 like t;
insert into t2(c,d) select c,d from t;
insert into t2 values(null, 5,5);

复制代码

在 MyISAM 引擎里面，自增值是被写在数据文件上的。而在 InnoDB 中，自增值是被记录

在内存的。MySQL 直到 8.0 版本，才给 InnoDB 表的自增值加上了持久化的能力，确保重

启前后一个表的自增值不变。

然后，我和你分享了在一个语句执行过程中，自增值改变的时机，分析了为什么 MySQL

在事务回滚的时候不能回收自增 id。

MySQL 5.1.22 版本开始引入的参数 innodb_autoinc_lock_mode，控制了自增值申请时

的锁范围。从并发性能的角度考虑，我建议你将其设置为 2，同时将 binlog_format 设置

为 row。我在前面的文章中其实多次提到，binlog_format 设置为 row，是很有必要的。

今天的例子给这个结论多了一个理由。

最后，我给你留一个思考题吧。

在最后一个例子中，执行 insert into t2(c,d) select c,d from t; 这个语句的时候，如果隔离

级别是可重复读（repeatable read），binlog_format=statement。这个语句会对表 t 的

所有记录和间隙加锁。

你觉得为什么需要这么做呢？

你可以把你的思考和分析写在评论区，我会在下一篇文章和你讨论这个问题。感谢你的收

听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期的问题是，如果你维护的 MySQL 系统里有内存表，怎么避免内存表突然丢数据，然

后导致主备同步停止的情况。

我们假设的是主库暂时不能修改引擎，那么就把备库的内存表引擎先都改成 InnoDB。对于

每个内存表，执行

1

2

set sql_log_bin=off;
alter table tbl_name engine=innodb;

复制代码

这样就能避免备库重启的时候，数据丢失的问题。

由于主库重启后，会往 binlog 里面写“delete from tbl_name”，这个命令传到备库，备

库的同名的表数据也会被清空。

因此，就不会出现主备同步停止的问题。

如果由于主库异常重启，触发了 HA，这时候我们之前修改过引擎的备库变成了主库。而原

来的主库变成了新备库，在新备库上把所有的内存表（这时候表里没数据）都改成 InnoDB

表。

所以，如果我们不能直接修改主库上的表引擎，可以配置一个自动巡检的工具，在备库上发

现内存表就把引擎改了。

同时，跟业务开发同学约定好建表规则，避免创建新的内存表。

评论区留言点赞板：

大家在春节期间还坚持看专栏，并且深入地思考和回复，给大家点赞。

@长杰 同学提到的将数据保存到 InnoDB 表用来持久化，也是一个方法。不

过，我还是建议釜底抽薪，直接修改备库的内存表的引擎。

@老杨同志 提到的是主库异常重启的场景，这时候是不会报主备不一致的，

因为主库重启的时候写了 delete from tbl_name，主备的内存表都清空了。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 38 | 都说InnoDB好，那还要不要使用Memory引擎？

下一篇 40 | insert语句的锁为什么这么多？

长杰
2019-02-11

 8

在最后一个例子中，执行 insert into t2(c,d) select c,d from t; 这个语句的时候，如果隔
离级别是可重复读（repeatable read），binlog_format=statement。这个语句会对表 t
的所有记录和间隙加锁。
你觉得为什么需要这么做呢？
假如原库不对t表所有记录和间隙加锁，如果有其他事物新增数据并先与这个批量操作提…
展开

作者回复: 👍 这是一个典型的场景

精选留言 (19)  写留言

aliang
2019-02-12

 2

老师，我们这边有的开发不喜欢用mysql自带的主键自增功能，而是在程序中控制主键
（时间+业务+机器+序列，bigint类型，实际长度有17位，其中序列保存在内存中，每次
递增，主键值不连续）。理由是
（1）通过这样的主键可以直接定位数据，减少索引（2）如果自增，必须先存数据得到主
键才可继续下面的程序，如果自己计算主键，可以在入库前进行异步处理 …
展开

作者回复: “（时间+业务+机器+序列，bigint类型，实际长度有17位，其中序列保存在内存中，

每次递增，主键值不连续）。” ----bigint就是8位，这个你需要确定一下。如果是8位的还好，

如果是17位的字符串，就比较耗费空间；

（1）如果“序列”是递增的，还是不能直接用来体现业务逻辑吧？ 创建有业务意义的字段索引估

计还是省不了的 ？

（2）mysql确实做不到“插入之前就先算好接下来的id是多少”，一般都是insert执行完成后，

再执行select last_insert_id

 (3) 先insert a再update b再update a，确实看上去比较奇怪，不过感觉这个逻辑应该是可以优化

的，不应该作为“主键选择”的一个依据。你可否脱敏一下，把模拟的表结构和业务逻辑说下，

看看是不是可以优化的。

总之，按照你说的“时间+业务+机器+序列”这种模式，有点像用uuid，主要的问题还是，如果

这个表的索引多，占用的空间比较大

进阶的码农
2019-03-12

 1

课后题
在最后一个例子中，执行 insert into t2(c,d) select c,d from t; 这个语句的时候，如果隔
离级别是可重复读（repeatable read），binlog_format=statement会加记录锁和间隙
锁。啥我的binlog_format=row也加锁了

展开

帽子掉了
2019-02-13

 1

老师您好，我有一个时序问题，想请教一下。
从这篇文章的介绍来看，获取自增id和写binlog是有先后顺序的。
那么在binlog为statement的情况下。

语句A先获取id=1，然后B获取id=2，接着B提交，写binlog，再A写binlog。
这个时候如果binlog重放，是不是会发生B的id为1，而A的id为2的不一致的情况？

展开

作者回复: 好问题，不会

因为binlog在记录这种带自增值的语句之前，会在前面多一句，用于指定“接下来这个语句要需

要的 自增ID值是多少”，而这个值，是在主库上这一行插入成功后对应的自增值，所以是一致的

zhima_hu
2019-04-24



你好，下面这种insert select语句会加几个锁，因为现在线上这个语句出现死锁，整不明白
INSERT INTO rule_prom_activity
 (
 `act_id`,
 `act_name`, …
展开

涛哥
2019-04-21



老师，能如果两个事务同时并发插入，主键没有指明的话，加锁的情况能说明下吗

作者回复: 是说自增主键没指定？

两个语句分别去申请自增主键，申请到的值是不一样的，所以并不冲突

归心
2019-04-01



老师好，这边有个问题：经测试，不论是mysql版本是5.7 还是8.0，当mysql重启后自增值
都是max(id) + 1，但是当不指定id值插入时，例如 insert into table values()，id值是第
一个大于 max(id) 的新生成的自增值。这个好像和老师将的不一样，望老师解答谢谢！

展开

进阶的码农 

2019-03-12

上期问题解答，有点疑问
set sql_log_bin=off;
alter table tbl_name engine=innodb;

为什么备库需要执行set sql_log_bin=off这一句 …
展开

hetiu
2019-03-05



老师，请问下innodb_autoinc_lock_mode配置是库级别的还是实例级别的？

作者回复: 全局的

二十四桥仍...
2019-03-05



UUID生成主键

展开

唐名之
2019-02-25



老师，如果我业务场景必须需要一个带有序自增值，设业务为表A，另外添加一张表记录自
增为表B，表B包含3个字段（自增主键，表A唯一键，自增列）；伪代码如下；这样能实现
吗？或者有其他什么好的方案？
begin；
insert into A values（字段1, 唯一键）； …
展开

作者回复: 这样思路上是ok的，

不过表b怎么有两个自增列？一个表只能有一个自增列。

AstonPutti...2019-02-21 

老师，innodb_autoinc_lock_mode = 2，binlog_format = statement 不也会出现数据
不一致的问题吗？不是很理解 binlog_format = statement 的情况下，1 与 2 的区别。

作者回复: innodb_autoinc_lock_mode = 2的时候就要binlog_format = row才好

Ryoma
2019-02-14



在8.0.3版本后，innodb_autoinc_lock_mode默认值已是2，在binlog_format默认值为
row的前提下，想来也是为了增加并发。

https://dev.mysql.com/doc/refman/8.0/en/innodb-
parameters.html#sysvar_innodb_autoinc_lock_mode

展开

作者回复: 👍 大势所趋😆

郭烊千玺
2019-02-12



请教老师个额外话题 select concat(truncate(sum(data_length)/1024/1024,2),'MB') as
data_size,
concat(truncate(sum(max_data_length)/1024/1024,2),'MB') as max_data_size,
concat(truncate(sum(data_free)/1024/1024,2),'MB') as data_free,
concat(truncate(sum(index_length)/1024/1024,2),'MB') as index_size …
展开

悟空
2019-02-12



赶上了进度，把春节期间的补回来了

展开

作者回复: 👍

we
2019-02-12



insert into t values(null,1,1);
begin;
insert into t values(null,2,2);
rolllack;
insert into t values(null,2,2); …
展开

作者回复: 是的，我手残了。。

多谢指出，发起勘误了哈

牛在天上飞
2019-02-12



老师，请问产生大量的event事件会对mysql服务器有什么影响？主要是哪几个方面的影
响？

作者回复: 也没啥，主要就是不好管理。。

毕竟event是写在MySQL里的，写程序的同学不一定会记得。

比较建议将这类逻辑写在应用程序里面

aliang
2019-02-11



老师，执行SELECT `ID`, `USER`, `HOST`, `DB`, `COMMAND`, `TIME`, `STATE`,
LEFT(`INFO`, 51200) AS `Info` FROM `information_schema`.`PROCESSLIST`;后不时有
COMMAND为killed但info为null的进程，请问是怎么回事呢

展开

作者回复: 就表示还在“killed”状态，看一下32篇哈

陈华应
2019-02-11



防止insert语句执行过程中，原表有新增数据，进而导致的插入新表的数据比原表少

作者回复: 确实是考虑并发 , 不过并不会有这个现象哦，因为一个语句执行期间还是有一致性视图

的。

把binlog加进去考虑下哈

