
Course：MySQL数据库

Author：涛哥

⼀、MySQL课程内容
1.1 数据库介绍

数据库概念
术语介绍

1.2 MySQL数据库

下载、安装、配置、卸载
MySQL客户端⼯具的安装及使⽤

1.3 SQL 结构化查询语⾔

什么是SQL
SQL操作数据（CRUD操作：添加、查询、修改、删除）

1.4 SQL ⾼级

存储过程
索引
触发器、视图

1.5 数据库设计

数据库设计步骤
数据库设计范式
E-R图
PowerDesigner建模⼯具、PDMan

1.6 数据库事务

什么是事务
事务特性ACID
事务隔离级别
事务管理

⼆、数据库介绍
2.1 数据库概念

数据库，就是存放数据的仓库

数据库（DataBase，简称DB）是⻓期存储在计算机内部有结构的、⼤量的、共享的数
据集合。

⻓期存储：持久存储

有结构：

类型：数据库不仅可以存放数据，⽽且存放的数据还是有类型的
关系：存储数据与数据之间的关系

⼤量：⼤多数数据库都是⽂件系统的，也就是说存储在数据库中的数据实际上就是存储
在磁盘的⽂件中

共享：多个应⽤程序可以通过数据库实现数据的共享

2.2 关系型数据库与⾮关系型数据库

关系型数据库

关系型数据库，采⽤了关系模型来组织数据的存储，以⾏和列的形式存储数据并记
录数据与数据之间的关系 —— 将数据存储在表格中，可以通过建⽴表格与表格之间
的关联来维护数据与数据之间的关系。

学⽣信息---- 学⽣表

班级信息---- 班级表

⾮关系型数据库

⾮关系型数据库，采⽤键值对的模型来存储数据，只完成数据的记录，不会记录数
据与数据之间的关系。

在⾮关系型数据库中基于其特定的存储结构来解决⼀些⼤数据应⽤的难题。

NoSQL(Not only SQL)数据库来指代⾮关系型数据库。

2.3 常⻅的数据库产品

关系型数据库产品

MySQL 免费

MariaDB
Percona Server

PostgreSQL

Oracle 收费

SQL Server

Access

Sybase

达梦数据库

 ⾮关系型数据库产品

⾯向检索的列式存储 Column-Oriented

HaBase （Hadoop⼦系统）
BigTable （Google）

⾯向⾼并发的缓存存储Key-Value

Redis

MemcacheDB
⾯向海量数据访问的⽂档存储 Document--Oriented

MongoDB

CouchDB

2.4 数据库术语

数据库（Database）：存储的数据的集合，提供数据存储的服务
数据（Data）：实际上指的是描述事物的符号记录
数据库管理系统（Database Management System，DBMS ）： 数据库管理系统，是位于⽤
户与操作系统之间的⼀层数据管理软件
数据库系统管理员（Database Anministrator，简称为DBA） :负责数据库创建、使⽤及维
护的专⻔⼈员
数据库系统（Database System，DBS）：数据库系统管理员、数据库管理系统及数据库组
成整个单元

三、MySQL数据库环境准备
MySQL下载、安装、配置、卸载，安装DBMS、使⽤DBMS

3.1 MySQL版本及下载

3.1.1 版本

MySQL 是Oracle的免费的关系型数据库 ， 官⽹ https://www.mysql.com/

MySQL ⽬前的最新版本为 8.0.26 ，在企业项⽬中主流版本： 5.0 --- 5.5 --- 5.6 --- 5.7
--- 8.0.26

5.x --- 2020年 5.7.32
8.x --- 2018年8.0.11 --- 2019年 8.0.16 --- 2021年 8.0.26

MySQL 8.x新特性

性能：官⽅8.x⽐5.7速度要快2倍
⽀持NoSQL存储：5.7开始提供了对NoSQL的⽀持，8.0.x做了更进⼀步的改进
窗⼝函数
索引：隐藏索引、降序索引
可⽤性、可靠性

https://www.mysql.com/

3.1.2 下载

官⽹下载：https://dev.mysql.com/downloads/installer/

需要注册oracle
服务器在国外，下载速度....

镜像下载：https://www.filehorse.com/download-mysql-64/download/

3.2 MySQL 安装

傻⽠式（直接点击下⼀步）

选择 Developer Default模式安装

此模式会安装开发⼈员需要的常⽤组件；在安装这些组件时需要对应的环境依赖，我们要暂
停，先去安装依赖的环境：

https://dev.mysql.com/downloads/installer/
https://www.filehorse.com/download-mysql-64/download/

例如： Microsoft Visual C++ 2019 Redistributable Package (x64) is not

installed. Latest binary compatible version will be installed if agreed to

resolve this requirement.

安装：

选择⾃定义 Custom安装

3.3 MySQL配置

3.3.1 端⼝配置

3.3.2 账号密码设置

3.3.3 服务名称

3.4 MySQL 服务的启动与停⽌

MySQL是以服务的形式运⾏在系统中

3.4.1 计算机管理窗⼝

此电脑 ---右键 ---管理

3.4.2 windows命令⾏

打开命令⾏ ： win + R --- 输⼊ cmd回⻋

以管理员身份打开命令⾏： win+s ---- 输⼊ cmd ----选择以管理员身份运⾏

3.5 MySQL卸载

关闭服务

卸载软件

打开控制⾯板

点击“程序和功能”

卸载MySQL

删除⽬录

MySQL的安装⽬录： C:\Program Files (x86)\MySQL

MySQL的数据⽂件⽬录(默认隐藏)： C:\ProgramData\MySQL (如果不允许删除，强
制删除)

删除注册表

打开注册表： win+r --- 输⼊ regedit ---回⻋
删除 HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\MySQL80
删除搜索 mysql的相关项（⾮必须）

四、MySQL的管理⼯具
当完成数据库的安装之后，mysql是以服务的形式运⾏在windows/linux系统，⽤户是通
过DBMS⼯具来对MySQL进⾏操作的，当我们安装完成MySQL之后默认安装了 mysql

Commcand line Client，此⼯具是⼀个命令⾏形式的⼯具，通常我们会单独安装可视
化的DBMS⼯具：

SQLyog

管理员身份启动 cmd 命令⾏
net stop mysql80

1

2

Navicat for MySQL

4.1 MySQL Command line Client使⽤

打开 MySQL Command line Client : 开始菜单 --- MySQL --- MySQL 8.0 Command line
Client

连接MySQL : 输⼊密码即可 （如果密码错误或者mysql服务没有启动，窗⼝会闪退）

关闭MySQL Command line Client：输⼊ exit指令回⻋即可退出

4.2 可视化⼯具Navicat使⽤

4.2.1 Navicat⼯具下载及安装

傻⽠式安装

4.2.2 创建连接

打开navicat⼯具

创建连接：

五、MySQL逻辑结构
MySQL可以存储数据，但是存储在MySQL中的数据需要按照特定的结果进⾏存储

学⽣ ------ 学校

数据 ------ 数据库

5.1 逻辑结构

5.2 记录/元组

六、SQL 结构化查询语⾔
6.1 SQL概述

SQL（Structured Query Language）结构化查询语⾔，⽤于存取、查询、更新数据以
及管理关系型数据库系统

6.1.1 SQL发展

SQL是在1981年由IBM公司推出，⼀经推出基于其简洁的语法在数据库中得到了⼴泛的
应⽤，成为主流数据库的通⽤规范

SQL由ANSI组织确定规范

在不同的数据库产品中遵守SQL的通⽤规范，但是也对SQL有⼀些不同的改进，形成了⼀
些数据库的专有指令

MySQL: limit
SQLServer ： top
Oracle：rownum

6.1.2 SQL分类

根据SQL指令完成的数据库操作的不同，可以将SQL指令分为四类：

DDL Data Definition Language 数据定义语⾔

⽤于完成对数据库对象（数据库、数据表、视图、索引等）的创建、删除、修改
DMLData Manipulation Language 数据操作/操纵语⾔

⽤于完成对数据表中的数据的添加、删除、修改操作
添加：将数据存储到数据表
删除：将数据从数据表移除
修改：对数据表中的数据进⾏修改

DQL Data Query Language 数据查询语⾔

⽤于将数据表中的数据查询出来
DCL Data Control Language 数据控制语⾔

⽤于完成事务管理等控制性操作

6.2 SQL基本语法

在MySQL Command Line Client 或者navicat等⼯具中都可以编写SQL指令

SQL指令不区分⼤⼩写
每条SQL表达式结束之后都以 ;结束
SQL关键字之间以空格进⾏分隔
SQL之间可以不限制换⾏（可以有空格的地⽅就可以有换⾏）

6.3 DDL 数据定义语⾔

6.3.1 DDL-数据库操作

使⽤DDL语句可以创建数据库、查询数据库、修改数据库、删除数据库

查询数据库

创建数据库

修改数据库 修改数据库字符集

删除数据库 删除数据库时会删除当前数据库中所有的数据表以及数据表中的数据

使⽤/切换数据库

显示当前mysql中的数据库列表
show databases;

显示指定名称的数据的创建的SQL指令
show create database <dbName>;

1

2

3

4

5

创建数据库 dbName表示创建的数据库名称，可以⾃定义
create database <dbName>;

创建数据库，当指定名称的数据库不存在时执⾏创建
create database if not exists <dbName>;

在创建数据库的同时指定数据库的字符集（字符集：数据存储在数据库中采⽤的编码格式

utf8 gbk）
create database <dbName> character set utf8;

1

2

3

4

5

6

7

8

修改数据库的字符集
alter database <dbName> character set utf8; # utf8 gbk

1

2

删除数据库
drop database <dbName>;

如果数据库存在则删除数据库
drop database is exists <dbName>;

1

2

3

4

5

use <dbName>1

6.3.2 DDL-数据表操作

创建数据表

数据表实际就是⼀个⼆维的表格，⼀个表格是由多列组成，表格中的每⼀类称之为表格
的⼀个字段

查询数据表

查询表结构

删除数据表

create table students(

 stu_num char(8) not null unique,

 stu_name varchar(20) not null,

 stu_gender char(2) not null,

 stu_age int not null,

 stu_tel char(11) not null unique,

 stu_qq varchar(11) unique

);

1

2

3

4

5

6

7

8

show tables;1

desc <tableName>;1

删除数据表
drop table <tableName>;

当数据表存在时删除数据表
drop table if exists <tableName>;

1

2

3

4

5

修改数据表

6.4 MySQL数据类型

数据类型，指的是数据表中的列中⽀持存放的数据的类型

6.4.1 数值类型

在mysql中有多种数据类型可以存放数值，不同的类型存放的数值的范围或者形式是不同的

修改表名
alter table <tableName> rename to <newTableName>;

数据表也是有字符集的，默认字符集和数据库⼀致
alter table <tableName> character set utf8;

添加列（字段）
alter table <tableName> add <columnName> varchar(200);

修改列（字段）的列表和类型
alter table <tableName> change <oldColumnName> <newCloumnName> <type>;

只修改列（字段）类型
alter table <tableName> modify <columnName> <newType>;

删除列（字段）
alter table stus drop <columnName>;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

类型 内存空间⼤⼩ 范围 说明

tinyint 1byte
有符号 -128~127
⽆符号 0~255

特⼩型整数（年龄）

smallint 2byte （16bit）
有符号 -32768 ~ 32767
⽆符号 0~65535

⼩型整数

mediumint 3byte
有符号 -2^31 ~ 2^31 - 1
⽆符号 0~2^32-1

中型整数

int/integer 4byte 整数

bigint 8byte ⼤型整数

float 4byte 单精度

double 8byte 双精度

decimal 第⼀参数+2
decimal(10,2)
表示数值⼀共有10位
⼩数位有2位

6.4.2 字符串类型

存储字符序列的类型

类型 字符⻓度 说明

char 0~255 字节

定⻓字符串，最多可以存储255个字符 ;当我们指定
数据表字段为char(n)
此列中的数据最⻓为n个字符，如果添加的数据少于
n，则补'\u0000'⾄n⻓度

varchar 0~65536 字节 可变⻓度字符串，此类型的类最⼤⻓度为65535

tinyblob 0~255 字节 存储⼆进制字符串

blob 0~65535 存储⼆进制字符串

mediumblob 0~1677215 存储⼆进制字符串

longblob 0~4294967295 存储⼆进制字符串

tinytext 0~255 ⽂本数据（字符串）

text 0~65535 ⽂本数据（字符串）

mediumtext 0~1677215 ⽂本数据（字符串）

longtext 0~4294967295 ⽂本数据（字符串）

类型 格式 说明

date 2021-09-13 ⽇期，只存储年⽉⽇

time 11:12:13 时间，只存储时分秒

year 2021 年份

datetime 2021-09-13 11:12:13 ⽇期+时间，存储年⽉⽇时分秒

timestamp 20210913 111213 ⽇期+时间 （时间戳）

6.4.3 ⽇期类型

在MySQL数据库中，我们可以使⽤字符串来存储时间，但是如果我们需要基于时间字段
进⾏查询操作（查询在某个时间段内的数据）就不便于查询实现

6.5 字段约束

6.5.1 约束介绍

在创建数据表的时候，指定的对数据表的列的数据限制性的要求（对表的列中的数据进
⾏限制）

为什么要给表中的列添加约束呢？

保证数据的有效性
保证数据的完整性
保证数据的正确性

字段常⻅的约束有哪些呢？

⾮空约束（not null）：限制此列的值必须提供，不能为null
唯⼀约束（unique）：在表中的多条数据，此列的值不能重复
主键约束（primary key）：⾮空+唯⼀，能够唯⼀标识数据表中的⼀条数据
外键约束（foreign key）：建⽴不同表之间的关联关系

6.5.2 ⾮空约束

限制数据表中此列的值必须提供

创建表：设置图书表的 book_name not null

添加数据：

create table books(

 book_isbn char(4),

 book_name varchar(10) not null,

 book_author varchar(6)

);

1

2

3

4

5

6.5.3 唯⼀约束

在表中的多条数据，此列的值不能重复

创建表：设置图书表的book_isbn为 unique

添加数据：

6.5.4 主键约束

主键——就是数据表中记录的唯⼀标识，在⼀张表中只能有⼀个主键（主键可以是⼀个
列，也可以是多个列的组合）

当⼀个字段声明为主键之后，添加数据时：

此字段数据不能为null
此字段数据不能重复

创建表时添加主键约束

create table books(

 book_isbn char(4) unique,

 book_name varchar(10) not null,

 book_author varchar(6)

);

1

2

3

4

5

create table books(

 book_isbn char(4) primary key,

 book_name varchar(10) not null,

 book_author varchar(6)

);

1

2

3

4

5

或者

删除数据表主键约束

创建表之后添加主键约束

6.5.5 主键⾃动增⻓

在我们创建⼀张数据表时，如果数据表中有列可以作为主键（例如：学⽣表的学号、图
书表的isbn）我们可以直接这是这个列为主键；

当有些数据表中没有合适的列作为主键时，我们可以额外定义⼀个与记录本身⽆关的列
（ID）作为主键，此列数据⽆具体的含义主要⽤于标识⼀条记录，在mysql中我们可以
将此列定义为int，同时设置为⾃动增⻓，当我们向数据表中新增⼀条记录时，⽆需提供
ID列的值，它会⾃动⽣成。

定义主键⾃动增⻓

定义int类型字段⾃动增⻓： auto_increment

create table books(

 book_isbn char(4),

 book_name varchar(10) not null,

 book_author varchar(6),

 primary key(book_isbn)

);

1

2

3

4

5

6

alter table books drop primary key;1

创建表时没有添加主键约束
create table books(

 book_isbn char(4),

 book_name varchar(10) not null,

 book_author varchar(6)

);

创建表之后添加主键约束
 alter table books modify book_isbn char(4) primary key;

1

2

3

4

5

6

7

8

9

注意：⾃动增⻓从1开始，每添加⼀条记录，⾃动的增⻓的列会⾃定+1，当我们把某条记录删
除之后再添加数据，⾃动增⻓的数据也不会重复⽣成（⾃动增⻓只保证唯⼀性、不保证连续
性）

6.5.6 联合主键

联合组件——将数据表中的多列组合在⼀起设置为表的主键

定义联合主键

注意：在实际企业项⽬的数据库设计中，联合主键使⽤频率并不⾼；当⼀个张数据表中没有
明确的字段可以作为主键时，我们可以额外添加⼀个ID字段作为主键。

create table types(

 type_id int primary key auto_increment,

 type_name varchar(20) not null,

 type_remark varchar(100)

);

1

2

3

4

5

create table grades(

 stu_num char(8),

 course_id int,

 score int,

 primary key(stu_num,course_id)

);

1

2

3

4

5

6

6.5.7 外键约束

在多表关联部分讲解

6.6 DML 数据操纵语⾔

⽤于完成对数据表中数据的插⼊、删除、修改操作

6.6.1 插⼊数据

语法

示例

create table students(

 stu_num char(8) primary key,

 stu_name varchar(20) not null,

 stu_gender char(2) not null,

 stu_age int not null,

 stu_tel char(11) not null unique,

 stu_qq varchar(11) unique

);

1

2

3

4

5

6

7

8

insert into <tableName>(columnName,columnName....)

values(value1,value2....);

1

6.6.2 删除数据

从数据表中删除满⾜特定条件（所有）的记录

语法

实例

向数据表中指定的列添加数据（不允许为空的列必须提供数据）
insert into stus(stu_num,stu_name,stu_gender,stu_age,stu_tel)

values('20210101','张三','男',21,'13030303300');

数据表名后的字段名列表顺序可以不与表中⼀致，但是values中值的顺序必须与表名后字段
名顺序对应
insert into stus(stu_num,stu_name,stu_age,stu_tel,stu_gender)

values('20210103','王五',20,'13030303302','⼥');

当要向表中的所有列添加数据时，数据表名后⾯的字段列表可以省略，但是values中的值的
顺序要与数据表定义的字段保持⼀致;
insert into stus values('20210105','孙
琦','男',21,'13030303304','666666');
不过在项⽬开发中，即使要向所有列添加数据,也建议将列名的列表显式写出来(增强SQL的
稳定性)
insert into stus(stu_num,stu_name,stu_gender,stu_age,stu_tel,stu_qq)

values('20210105','孙琦','男',21,'13030303304','666666');

1

2

3

4

5

6

7

8

9

10

11

12

13

delete from <tableName> [where conditions];1

删除学号为20210102的学⽣信息
delete from stus where stu_num='20210102';

删除年龄⼤于20岁的学⽣信息(如果满⾜where⼦句的记录有多条，则删除多条记录)

delete from stus where stu_age>20;

如果删除语句没有where⼦句，则表示删除当前数据表中的所有记录(敏感操作)

delete from stus;

1

2

3

4

5

6

7

8

6.6.3 修改数据

对数据表中已经添加的记录进⾏修改

语法

示例

6.7 DQL 数据查询语⾔

从数据表中提取满⾜特定条件的记录

单表查询
多表联合查询

6.7.1 查询基础语法

update <tableName> set columnName=value [where conditions]1

将学号为20210105的学⽣姓名修改为“孙七”（只修改⼀列）
update stus set stu_name='孙七' where stu_num='20210105';

将学号为20210103的学⽣ 性别修改为“男”,同时将QQ修改为 777777（修改多列）
update stus set stu_gender='男',stu_qq='777777' where

stu_num='20210103';

根据主键修改其他所有列
 update stus set stu_name='韩梅
梅',stu_gender='⼥',stu_age=18,stu_tel='13131313311' ,stu_qq='999999'

where stu_num='20210102';

如果update语句没有where⼦句，则表示修改当前表中所有⾏（记录）
update stus set stu_name='Tom';

1

2

3

4

5

6

7

8

9

10

11

6.7.2 where ⼦句

在删除、修改及查询的语句后都可以添加where⼦句（条件），⽤于筛选满⾜特定的添
加的数据进⾏删除、修改和查询操作。

条件关系运算符

条件逻辑运算符

select 关键字后指定要显示查询到的记录的哪些列
select colnumName1[,colnumName2,colnumName3...] from <tableName> [where

conditions];

如果要显示查询到的记录的所有列，则可以使⽤ * 替代字段名列表 （在项⽬开发中不建议
使⽤*）
select * from stus;

1

2

3

4

5

delete from tableName where conditions;

update tabeName set ... where conditions;

select from tableName where conditions;

1

2

3

= 等于
select * from stus where stu_num = '20210101';

!= <> 不等于
select * from stus where stu_num != '20210101';

select * from stus where stu_num <> '20210101';

> ⼤于
select * from stus where stu_age>18;

< ⼩于
select * from stus where stu_age<20;

>= ⼤于等于
select * from stus where stu_age>=20;

<= ⼩于等于
select * from stus where stu_age<=20;

between and 区间查询 between v1 and v2 [v1,v2]
select * from stus where stu_age between 18 and 20;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

在where⼦句中，可以将多个条件通过逻辑预算(and or not)进⾏连接，通过多个条件
来筛选要操作的数据。

6.7.3 LIKE ⼦句

在where⼦句的条件中，我们可以使⽤like关键字来实现模糊查询

语法

在like关键字后的reg表达式中

%表示任意多个字符 【 %o% 包含字⺟o】
_表示任意⼀个字符 【 _o% 第⼆个字⺟为o】

示例

and 并且 筛选多个条件同时满⾜的记录
select * from stus where stu_gender='⼥' and stu_age<21;

or 或者 筛选多个条件中⾄少满⾜⼀个条件的记录
select * from stus where stu_gender='⼥' or stu_age<21;

not 取反
select * from stus where stu_age not between 18 and 20;

1

2

3

4

5

6

7

8

select * from tableName where columnName like 'reg';1

查询学⽣姓名包含字⺟o的学⽣信息
select * from stus where stu_name like '%o%';

查询学⽣姓名第⼀个字为`张`的学⽣信息
select * from stus where stu_name like '张%';

查询学⽣姓名最后⼀个字⺟为o的学⽣信息
select * from stus where stu_name like '%o';

查询学⽣姓名中第⼆个字⺟为o的学⽣信息
select * from stus where stu_name like '_o%';

1

2

3

4

5

6

7

8

9

10

11

6.7.4 对查询结果的处理

设置查询的列

声明显示查询结果的指定列

计算列

对从数据表中查询的记录的列进⾏⼀定的运算之后显示出来

as 字段取别名

我们可以为查询结果的列名 去⼀个语义性更强的别名 (如下案例中 as关键字也可以省
略)

select colnumName1,columnName2,... from stus where stu_age>20;1

出⽣年份 = 当前年份 - 年龄
select stu_name,2021-stu_age from stus;

+-----------+--------------+

| stu_name | 2021-stu_age |

+-----------+--------------+

| omg | 2000 |

| 韩梅梅 | 2003 |

| Tom | 2001 |

| Lucy | 2000 |

| Polly | 2000 |

| Theo | 2004 |

+-----------+--------------+

1

2

3

4

5

6

7

8

9

10

11

12

13

select stu_name,2021-stu_age as stu_birth_year from stus;

+-----------+----------------+

| stu_name | stu_birth_year |

+-----------+----------------+

| omg | 2000 |

| 韩梅梅 | 2003 |

| Tom | 2001 |

| Lucy | 2000 |

| Polly | 2000 |

| Theo | 2004 |

+-----------+----------------+

1

2

3

4

5

6

7

8

9

10

11

12

distinct 消除重复⾏

从查询的结果中将重复的记录消除 distinct

 select stu_name as 姓名,2021-stu_age as 出⽣年份 from stus;
+-----------+--------------+

| 姓名 | 出⽣年份 |

+-----------+--------------+

| omg | 2000 |

| 韩梅梅 | 2003 |

| Tom | 2001 |

| Lucy | 2000 |

| Polly | 2000 |

| Theo | 2004 |

+-----------+--------------+

13

14

15

16

17

18

19

20

21

22

23

select stu_age from stus;

+---------+

| stu_age |

+---------+

| 21 |

| 18 |

| 20 |

| 21 |

| 21 |

| 17 |

+---------+

select distinct stu_age from stus;

+---------+

| stu_age |

+---------+

| 21 |

| 18 |

| 20 |

| 17 |

+---------+

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

6.7.5 排序 - order by

将查询到的满⾜条件的记录按照指定的列的值升序/降序排列

语法

order by columnName 表示将查询结果按照指定的列排序

asc 按照指定的列升序（默认）
desc 按照指定的列降序

实例

select * from tableName where conditions order by columnName asc|desc;1

单字段排序
select * from stus where stu_age>15 order by stu_gender desc;

+----------+-----------+------------+---------+-------------+--------+

| stu_num | stu_name | stu_gender | stu_age | stu_tel | stu_qq |

+----------+-----------+------------+---------+-------------+--------+

| 20210101 | omg | 男 | 21 | 13030303300 | NULL |

| 20210103 | Tom | 男 | 20 | 13030303302 | 777777 |

| 20210105 | Polly | 男 | 21 | 13030303304 | 666666 |

| 20210106 | Theo | 男 | 17 | 13232323322 | NULL |

| 20210102 | 韩梅梅 | ⼥ | 18 | 13131313311 | 999999 |

| 20210104 | Lucy | ⼥ | 21 | 13131323334 | NULL |

+----------+-----------+------------+---------+-------------+--------+

多字段排序 ： 先满⾜第⼀个排序规则，当第⼀个排序的列的值相同时再按照第⼆个列的规则
排序
select * from stus where stu_age>15 order by stu_gender asc,stu_age

desc;

+----------+-----------+------------+---------+-------------+--------+

| stu_num | stu_name | stu_gender | stu_age | stu_tel | stu_qq |

+----------+-----------+------------+---------+-------------+--------+

| 20210104 | Lucy | ⼥ | 21 | 13131323334 | NULL |

| 20210102 | 韩梅梅 | ⼥ | 18 | 13131313311 | 999999 |

| 20210101 | omg | 男 | 21 | 13030303300 | NULL |

| 20210105 | Polly | 男 | 21 | 13030303304 | 666666 |

| 20210103 | Tom | 男 | 20 | 13030303302 | 777777 |

| 20210106 | Theo | 男 | 17 | 13232323322 | NULL |

+----------+-----------+------------+---------+-------------+--------+

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

6.7.6 聚合函数

SQL中提供了⼀些可以对查询的记录的列进⾏计算的函数——聚合函数

count
max
min
sum
avg

count() 统计函数，统计满⾜条件的指定字段值的个数（记录数）

max() 计算最⼤值，查询满⾜条件的记录中指定列的最⼤值

统计学⽣表中学⽣总数
select count(stu_num) from stus;

+----------------+

| count(stu_num) |

+----------------+

| 7 |

+----------------+

统计学⽣表中性别为男的学⽣总数
select count(stu_num) from stus where stu_gender='男';

+----------------+

| count(stu_num) |

+----------------+

| 5 |

+----------------+

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

min() 计算最⼩值，查询满⾜条件的记录中指定列的最⼩值

sum() 计算和，查询满⾜条件的记录中 指定的列的值的总和

select max(stu_age) from stus;

+--------------+

| max(stu_age) |

+--------------+

| 21 |

+--------------+

select max(stu_age) from stus where stu_gender='⼥';

+--------------+

| max(stu_age) |

+--------------+

| 21 |

+--------------+

1

2

3

4

5

6

7

8

9

10

11

12

13

select min(stu_age) from stus;

+--------------+

| min(stu_age) |

+--------------+

| 14 |

+--------------+

select min(stu_age) from stus where stu_gender='⼥';

+--------------+

| min(stu_age) |

+--------------+

| 18 |

+--------------+

1

2

3

4

5

6

7

8

9

10

11

12

13

计算所有学⽣年龄的综合
select sum(stu_age) from stus;

+--------------+

| sum(stu_age) |

+--------------+

| 133 |

+--------------+

计算所有性别为男的学⽣的年龄的综合
select sum(stu_age) from stus where stu_gender='男';

1

2

3

4

5

6

7

8

9

10

avg() 求平均值，查询满⾜条件的记录中 计算指定列的平均值

6.7.7 ⽇期函数 和 字符串函数

⽇期函数

当我们向⽇期类型的列添加数据时，可以通过字符串类型赋值（字符串的格式必须为
yyyy-MM-dd hh:mm:ss）

如果我们想要获取当前系统时间添加到⽇期类型的列，可以使⽤ now() 或者 sysdate()

示例：

+--------------+

| sum(stu_age) |

+--------------+

| 94 |

+--------------+

11

12

13

14

15

select avg(stu_age) from stus;

+--------------+

| avg(stu_age) |

+--------------+

| 19.0000 |

+--------------+

select avg(stu_age) from stus where stu_gender='男';

+--------------+

| avg(stu_age) |

+--------------+

| 18.8000 |

+--------------+

1

2

3

4

5

6

7

8

9

10

11

12

13

desc stus;

+---------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------------+-------------+------+-----+---------+-------+

| stu_num | char(8) | NO | PRI | NULL | |

| stu_name | varchar(20) | NO | | NULL | |

| stu_gender | char(2) | YES | | NULL | |

| stu_age | int | NO | | NULL | |

1

2

3

4

5

6

7

8

字符串函数

就是通过SQL指令对字符串进⾏处理

示例：

| stu_tel | char(11) | NO | UNI | NULL | |

| stu_qq | varchar(11) | YES | UNI | NULL | |

| stu_enterence | datetime | YES | | NULL | |

+---------------+-------------+------+-----+---------+-------+

通过字符串类型 给⽇期类型的列赋值
insert into

stus(stu_num,stu_name,stu_gender,stu_age,stu_tel,stu_qq,stu_enterence)

values('20200108','张⼩三','⼥',20,'13434343344','123111','2021-09-01

09:00:00');

通过now()获取当前时间
insert into

stus(stu_num,stu_name,stu_gender,stu_age,stu_tel,stu_qq,stu_enterence)

values('20210109','张⼩四','⼥',20,'13434343355','1233333',now());

通过sysdate()获取当前时间
insert into

stus(stu_num,stu_name,stu_gender,stu_age,stu_tel,stu_qq,stu_enterence)

values('20210110','李雷','男',16,'13434343366','123333344',sysdate());

通过now和sysdate获取当前系统时间
mysql> select now();

+---------------------+

| now() |

+---------------------+

| 2021-09-10 16:22:19 |

+---------------------+

mysql> select sysdate();

+---------------------+

| sysdate() |

+---------------------+

| 2021-09-10 16:22:26 |

+---------------------+

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

concat(colnum1,colunm2,...) 拼接多列1

select concat(stu_name,'-',stu_gender) from stus;

+---------------------------------+

| concat(stu_name,'-',stu_gender) |

+---------------------------------+

| 韩梅梅-⼥ |
| Tom-男 |

| Lucy-⼥ |
| 林涛-男 |

+---------------------------------+

upper(column) 将字段的值转换成⼤写
mysql> select upper(stu_name) from stus;

+-----------------+

| upper(stu_name) |

+-----------------+

| 韩梅梅 |

| TOM |

| LUCY |

| POLLY |

| THEO |

| 林涛 |
+-----------------+

lower(column) 将指定列的值转换成⼩写
mysql> select lower(stu_name) from stus;

+-----------------+

| lower(stu_name) |

+-----------------+

| 韩梅梅 |

| tom |

| lucy |

| polly |

| theo |

+-----------------+

substring(column,start,len) 从指定列中截取部分显示 start从1开始
mysql> select stu_name,substring(stu_tel,8,4) from stus;

+-----------+------------------------+

| stu_name | substring(stu_tel,8,4) |

+-----------+------------------------+

| 韩梅梅 | 3311 |

| Tom | 3302 |

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

6.7.8 分组查询 - group by

分组——就是将数据表中的记录按照指定的类进⾏分组

语法

select 后使⽤ *显示对查询的结果进⾏分组之后，显示每组的第⼀条记录（这种显示通
常是⽆意义的）
select后通常显示分组字段和聚合函数(对分组后的数据进⾏统计、求和、平均值等)
语句执⾏属性： !先根据where条件从数据库查询记录 "group by对查询记录进⾏分
组 #执⾏having对分组后的数据进⾏筛选

示例

| Lucy | 3334 |

+-----------+------------------------+

44

45

select 分组字段/聚合函数

from 表名

[where 条件]

group by 分组列名 [having 条件]

[order by 排序字段]

1

2

3

4

5

先对查询的学⽣信息按性别进⾏分组（分成了男、⼥两组），然后再分别统计每组学⽣的个数
select stu_gender,count(stu_num) from stus group by stu_gender;

+------------+----------------+

| stu_gender | count(stu_num) |

+------------+----------------+

| ⼥ | 4 |
| 男 | 5 |
+------------+----------------+

先对查询的学⽣信息按性别进⾏分组（分成了男、⼥两组），然后再计算每组的平均年龄
select stu_gender,avg(stu_age) from stus group by stu_gender;

+------------+--------------+

| stu_gender | avg(stu_age) |

+------------+--------------+

| ⼥ | 19.7500 |
| 男 | 18.2000 |
+------------+--------------+

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

先对学⽣按年龄进⾏分组（分了16、17、18、20、21、22六组），然后统计各组的学⽣数
量，还可以对最终的结果排序
select stu_age,count(stu_num) from stus group by stu_age order by

stu_age;

+---------+----------------+

| stu_age | count(stu_num) |

+---------+----------------+

| 16 | 2 |

| 17 | 1 |

| 18 | 1 |

| 20 | 3 |

| 21 | 1 |

| 22 | 1 |

+---------+----------------+

查询所有学⽣，按年龄进⾏分组，然后分别统计每组的⼈数，再筛选当前组⼈数>1的组，再按
年龄升序显示出来
select stu_age,count(stu_num)

from stus

group by stu_age

having count(stu_num)>1

order by stu_age;

+---------+----------------+

| stu_age | count(stu_num) |

+---------+----------------+

| 16 | 2 |

| 20 | 3 |

+---------+----------------+

查询性别为'男'的学⽣，按年龄进⾏分组，然后分别统计每组的⼈数，再筛选当前组⼈数>1的
组，再按年龄升序显示出来
mysql> select stu_age,count(stu_num)

 -> from stus

 -> where stu_gender='男'

 -> group by stu_age

 -> having count(stu_num)>1

 -> order by stu_age;

+---------+----------------+

| stu_age | count(stu_num) |

+---------+----------------+

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

6.7.9 分⻚查询 - limit

当数据表中的记录⽐较多的时候，如果⼀次性全部查询出来显示给⽤户，⽤户的可读性/
体验性就不太好，因此我们可以将这些数据分⻚进⾏展示。

语法

param1 int , 表示获取查询语句的结果中的第⼀条数据的索引（索引从0开始）
param2 int, 表示获取的查询记录的条数（如果剩下的数据条数<param2，则返回剩下
的所有记录）

案例

对数据表中的学⽣信息进⾏分⻚显示，总共有10条数据，我们每⻚显示3条

总记录数 count 10

每⻚显示 pageSize 3

总⻚数： pageCount = count%pageSize==0 ? count/pageSize : count/pageSize +1;

| 16 | 2 |

| 20 | 2 |

+---------+----------------+

56

57

58

select ...

from ...

where ...

limit param1,param2

1

2

3

4

查询第⼀⻚：
select * from stus [where ...] limit 0,3; (1-1)*3

查询第⼆⻚：
select * from stus [where ...] limit 3,3; (2-1)*3

查询第三⻚：
select * from stus [where ...] limit 6,3; (3-1)*3

查询第四⻚：
select * from stus [where ...] limit 9,3; (4-1)*3

1

2

3

4

5

6

7

8

9

10

11

12

七、数据表的关联关系
7.1 关联关系介绍

MySQL是⼀个关系型数据库，不仅可以存储数据，还可以维护数据与数据之间的关系
——通过在数据表中添加字段建⽴外键约束

数据与数据之间的关联关系分为四种：

⼀对⼀关联
⼀对多关联
多对⼀关联
多对多关联

7.2 ⼀对⼀关联

⼈ --- 身份证 ⼀个⼈只有⼀个身份证、⼀个身份证只对应⼀个⼈

学⽣ --- 学籍 ⼀个学⽣只有⼀个学籍、⼀个学籍也对应唯⼀的⼀个学⽣

⽤户 --- ⽤户详情 ⼀个⽤户只有⼀个详情、⼀个详情也只对应⼀个⽤户

⽅案1： 主键关联——两张数据表中主键相同的数据为相互对应的数据

如果在⼀张数据表中：
pageNum表示查询的⻚码
pageSize表示每⻚显示的条数
通⽤分⻚语句如下：
select * from <tableName> [where ...] limit (pageNum-

1)*pageSize,pageSize;

13

14

15

16

17

⽅案2：唯⼀外键 —— 在任意⼀张表中添加⼀个字段添加外键约束与另⼀张表主键关联，并
且将外键列添加唯⼀约束

7.3 ⼀对多与多对⼀

班级 --- 学⽣ （⼀对多） ⼀个班级包含多个学⽣

学⽣ --- 班级 （多对⼀） 多个学⽣可以属于同⼀个班级

图书 --- 分类 商品 ---- 商品类别

⽅案：在多的⼀端添加外键 ，与⼀的⼀端主键进⾏关联

7.4 多对多关联

学⽣ --- 课程 ⼀个学⽣可以选择多⻔课、⼀⻔课程也可以由多个学⽣选择

会员 --- 社团 ⼀个会员可以参加多个社团、⼀个社团也可以招纳多个会员

⽅法：额外创建⼀张关系表来维护多对多关联——在关系表中定义两个外键，分别与两个数
据表的主键进⾏关联

7.5 外键约束

外键约束——将⼀个列添加外键约束与另⼀张表的主键(唯⼀列)进⾏关联之后，这个外键
约束的列添加的数据必须要在关联的主键字段中存在

案例：学⽣表 与 班级表

1. 先创建班级表

2. 创建学⽣表（在学⽣表中添加外键与班级表的主键进⾏关联）

create table classes(

 class_id int primary key auto_increment,

 class_name varchar(40) not null unique,

 class_remark varchar(200)

);

1

2

3

4

5

【⽅式⼀】在创建表的时候，定义cid字段，并添加外键约束
由于cid 列 要与classes表的class_id进⾏关联，因此cid字段类型和⻓度要与

class_id⼀致
create table students(

 stu_num char(8) primary key,

 stu_name varchar(20) not null,

 stu_gender char(2) not null,

 stu_age int not null,

 cid int,

1

2

3

4

5

6

7

8

3. 向班级表添加班级信息

4. 向学⽣表中添加学⽣信息

 constraint FK_STUDENTS_CLASSES foreign key(cid) references

classes(class_id)

);

#【⽅式⼆】先创建表，再添加外键约束
create table students(

 stu_num char(8) primary key,

 stu_name varchar(20) not null,

 stu_gender char(2) not null,

 stu_age int not null,

 cid int

);

在创建表之后，为cid添加外键约束
alter table students add constraint FK_STUDENTS_CLASSES foreign

key(cid) references classes(class_id);

删除外键约束
alter table students drop foreign key FK_STUDENTS_CLASSES;

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

insert into classes(class_name,class_remark)

values('Java2104','...');

insert into classes(class_name,class_remark)

values('Java2105','...');

insert into classes(class_name,class_remark)

values('Java2106','...');

insert into classes(class_name,class_remark)

values('Python2106','...');

select * from classes;

+----------+------------+--------------+

| class_id | class_name | class_remark |

+----------+------------+--------------+

| 1 | Java2104 | ... |

| 2 | Java2105 | ... |

| 3 | Java2106 | ... |

| 4 | Python2106 | ... |

+----------+------------+--------------+

1

2

3

4

5

6

7

8

9

10

11

12

13

14

7.6 外键约束-级联

当学⽣表中存在学⽣信息关联班级表的某条记录时，就不能对班级表的这条记录进⾏修
改ID和删除操作，如下：

insert into students(stu_num,stu_name,stu_gender,stu_age,cid)

values('20210102','李斯','⼥',20, 4);

添加学⽣时，设置给cid外键列的值必须在其关联的主表classes的classs_id列存在
insert into students(stu_num,stu_name,stu_gender,stu_age,cid)

values('20210103','王五','男',20, 6);

1

2

3

4

5

6

mysql> select * from classes;

+----------+------------+--------------+

| class_id | class_name | class_remark |

+----------+------------+--------------+

| 1 | Java2104 | ... | # 班级表中class_id=1的班级信息

被学⽣表中的记录关联了
| 2 | Java2105 | ... | # 我们就不能修改Java2104的
class_id,并且不能删除

| 3 | Java2106 | ... |

| 4 | Python2106 | ... |

+----------+------------+--------------+

mysql> select * from students;

+----------+----------+------------+---------+------+

| stu_num | stu_name | stu_gender | stu_age | cid |

+----------+----------+------------+---------+------+

| 20210101 | 张三 | 男 | 18 | 1 |

| 20210102 | 李四 | 男 | 18 | 1 |

| 20210103 | 王五 | 男 | 18 | 1 |

| 20210104 | 赵柳 | ⼥ | 18 | 2 |

+----------+----------+------------+---------+------+

mysql> update classes set class_id=5 where class_name='Java2104';

ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key

constraint fails (`db_test2`.`students`, CONSTRAINT

`FK_STUDENTS_CLASSES` FOREIGN KEY (`cid`) REFERENCES `classes`

(`class_id`))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

如果⼀定要修改Java2104 的班级ID，该如何实现呢 ？

将引⽤Java2104班级id的学⽣记录中的cid修改为 NULL
在修改班级信息表中Java2104记录的 class_id
将学⽣表中cid设置为NULL的记录的cid重新修改为 Java2104这个班级的新的id

mysql> delete from classes where class_id=1;

ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key

constraint fails (`db_test2`.`students`, CONSTRAINT

`FK_STUDENTS_CLASSES` FOREIGN KEY (`cid`) REFERENCES `classes`

(`class_id`))

24

25

26

27

1��update students set cid=NULL where cid=1; # 结果如下：
+----------+----------+------------+---------+------+

| stu_num | stu_name | stu_gender | stu_age | cid |

+----------+----------+------------+---------+------+

| 20210101 | 张三 | 男 | 18 | NULL |

| 20210102 | 李四 | 男 | 18 | NULL |

| 20210103 | 王五 | 男 | 18 | NULL |

| 20210104 | 赵柳 | ⼥ | 18 | 2 |

+----------+----------+------------+---------+------+

2��update classes set class_id=5 where class_name='Java2104'; # 结果如下
+----------+------------+--------------+

| class_id | class_name | class_remark |

+----------+------------+--------------+

| 2 | Java2105 | ... |

| 3 | Java2106 | ... |

| 4 | Python2106 | ... |

| 5 | Java2104 | ... |

+----------+------------+--------------+

3��update students set cid=5 where cid IS NULL; # 结果如下
+----------+----------+------------+---------+------+

| stu_num | stu_name | stu_gender | stu_age | cid |

+----------+----------+------------+---------+------+

| 20210101 | 张三 | 男 | 18 | 5 |

| 20210102 | 李四 | 男 | 18 | 5 |

| 20210103 | 王五 | 男 | 18 | 5 |

| 20210104 | 赵柳 | ⼥ | 18 | 2 |

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

我们可以使⽤级联操作来实现：

1. 在添加外键时，设置级联修改 和 级联删除

2. 测试级联修改：

+----------+----------+------------+---------+------+29

删除原有的外键
alter table students drop foreign key FK_STUDENTS_CLASSES;

重新添加外键，并设置级联修改和级联删除
alter table students add constraint FK_STUDENTS_CLASSES foreign

key(cid) references classes(class_id) ON UPDATE CASCADE ON DELETE

CASCADE;

1

2

3

4

5

班级信息
+----------+------------+--------------+

| class_id | class_name | class_remark |

+----------+------------+--------------+

| 2 | Java2105 | ... |

| 3 | Java2106 | ... |

| 4 | Python2106 | ... |

| 5 | Java2104 | ... |

+----------+------------+--------------+

学⽣信息
+----------+----------+------------+---------+------+

| stu_num | stu_name | stu_gender | stu_age | cid |

+----------+----------+------------+---------+------+

| 20210101 | 张三 | 男 | 18 | 5 |

| 20210102 | 李四 | 男 | 18 | 5 |

| 20210103 | 王五 | 男 | 18 | 5 |

| 20210104 | 赵柳 | ⼥ | 18 | 2 |

+----------+----------+------------+---------+------+

直接修改Java2104的class_id,关联Java2104这个班级的学⽣记录的cid也会同步修
改
update classes set class_id=1 where class_name='Java2104';

班级信息
+----------+------------+--------------+

| class_id | class_name | class_remark |

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

3. 测试级联删除

⼋、连接查询
通过对DQL的学习，我们可以很轻松的从⼀张数据表中查询出需要的数据；在企业的应
⽤开发中，我们经常需要从多张表中查询数据（例如：我们查询学⽣信息的时候需要同
时查询学⽣的班级信息），可以通过连接查询从多张数据表提取数据:

+----------+------------+--------------+

| 2 | Java2105 | ... |

| 3 | Java2106 | ... |

| 4 | Python2106 | ... |

| 1 | Java2104 | ... |

+----------+------------+--------------+

学⽣信息
+----------+----------+------------+---------+------+

| stu_num | stu_name | stu_gender | stu_age | cid |

+----------+----------+------------+---------+------+

| 20210101 | 张三 | 男 | 18 | 1 |

| 20210102 | 李四 | 男 | 18 | 1 |

| 20210103 | 王五 | 男 | 18 | 1 |

| 20210104 | 赵柳 | ⼥ | 18 | 2 |

+----------+----------+------------+---------+------+

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

删除class_id=1的班级信息，学⽣表引⽤此班级信息的记录也会被同步删除
delete from classes where class_id=1;

+----------+------------+--------------+

| class_id | class_name | class_remark |

+----------+------------+--------------+

| 2 | Java2105 | ... |

| 3 | Java2106 | ... |

| 4 | Python2106 | ... |

+----------+------------+--------------+

+----------+----------+------------+---------+------+

| stu_num | stu_name | stu_gender | stu_age | cid |

+----------+----------+------------+---------+------+

| 20210104 | 赵柳 | ⼥ | 18 | 2 |

+----------+----------+------------+---------+------+

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

在MySQL中可以使⽤join实现多表的联合查询——连接查询，join按照其功能不同分为
三个操作：

inner join 内连接
left join 左连接
right join 右连接

8.1 数据准备

8.1.1 创建数据表

创建班级信息表 和 学⽣信息表

8.1.2 添加数据

添加班级信息

create table classes(

 class_id int primary key auto_increment,

 class_name varchar(40) not null unique,

 class_remark varchar(200)

);

create table students(

 stu_num char(8) primary key,

 stu_name varchar(20) not null,

 stu_gender char(2) not null,

 stu_age int not null,

 cid int,

 constraint FK_STUDENTS_CLASSES foreign key(cid) references

classes(class_id) ON UPDATE CASCADE ON DELETE CASCADE

);

1

2

3

4

5

6

7

8

9

10

11

12

13

Java2104 包含三个学⽣信息
insert into classes(class_name,class_remark) values('Java2104','...');

Java2105 包含两个学⽣信息
insert into classes(class_name,class_remark) values('Java2105','...');

以下两个班级在学⽣表中没有对应的学⽣信息
insert into classes(class_name,class_remark) values('Java2106','...');

insert into classes(class_name,class_remark) values('Python2105','...');

1

2

3

4

5

6

7

8

9

添加学⽣信息

8.2 内连接 INNER JOIN

语法

8.2.1 笛卡尔积

笛卡尔积（A集合&B集合）：使⽤A中的每个记录⼀次关联B中每个记录，笛卡尔积的总
数=A总数*B总数
如果直接执⾏ select ... from tableName1 inner join tableName2;会获取两种数
据表中的数据集合的笛卡尔积（依次使⽤tableName1 表中的每⼀条记录 去 匹配
tableName2的每条数据）

以下三个学⽣信息 属于 class_id=1 的班级 （Java2104）
insert into students(stu_num,stu_name,stu_gender,stu_age,cid)

values('20210101','张三','男',20,1);

insert into students(stu_num,stu_name,stu_gender,stu_age,cid)

values('20210102','李四','⼥',20,1);

insert into students(stu_num,stu_name,stu_gender,stu_age,cid)

values('20210103','王五','男',20,1);

以下三个学⽣信息 属于 class_id=2 的班级 （Java2105）
insert into students(stu_num,stu_name,stu_gender,stu_age,cid)

values('20210104','赵柳','⼥',20,2);

insert into students(stu_num,stu_name,stu_gender,stu_age,cid)

values('20210105','孙七','男',20,2);

⼩红和⼩明没有设置班级信息
insert into students(stu_num,stu_name,stu_gender,stu_age)

values('20210106','⼩红','⼥',20);

insert into students(stu_num,stu_name,stu_gender,stu_age)

values('20210107','⼩明','男',20);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

select ... from tableName1 inner join tableName2 ON 匹配条件 [where 条件];1

8.2.2 内连接条件

两张表时⽤inner join连接查询之后⽣产的笛卡尔积数据中很多数据都是⽆意义的，我们
如何消除⽆意义的数据呢？ —— 添加两张进⾏连接查询时的条件

使⽤ on设置两张表连接查询的匹配条件

结果：只获取两种表中匹配条件成⽴的数据，任何⼀张表在另⼀种表如果没有找到对应
匹配则不会出现在查询结果中（例如：⼩红和⼩明没有对应的班级信息，Java2106和
Python2106没有对应的学⽣）。

8.2 左连接 LEFT JOIN

需求：请查询出所有的学⽣信息，如果学⽣有对应的班级信息，则将对应的班级信息也
查询出来

左连接：显示左表中的所有数据，如果在有右表中存在与左表记录满⾜匹配条件的数据，则
进⾏匹配；如果右表中不存在匹配数据，则显示为Null

-- 使⽤where设置过滤条件：先⽣成笛卡尔积再从笛卡尔积中过滤数据（效率很低）
select * from students INNER JOIN classes where students.cid =

classes.class_id;

-- 使⽤ON设置连接查询条件：先判断连接条件是否成⽴，如果成⽴两张表的数据进⾏组合⽣成⼀
条结果记录
select * from students INNER JOIN classes ON students.cid =

classes.class_id;

1

2

3

4

5

语法
select * from leftTabel LEFT JOIN rightTable ON 匹配条件 [where 条件];

-- 左连接 : 显示左表中的所有记录
select * from students LEFT JOIN classes ON students.cid =

classes.class_id;

1

2

3

4

5

8.3 右连接 RIGHT JOIN

8.4 数据表别名

如果在连接查询的多张表中存在相同名字的字段，我们可以使⽤表名.字段名来进⾏区
分，如果表名太⻓则不便于SQL语句的编写，我们可以使⽤数据表别名

使⽤示例：

-- 右连接 ：显示右表中的所有记录
select * from students RIGHT JOIN classes ON students.cid =

classes.class_id;

1

2

select s.*,c.class_name

from students s

INNER JOIN classes c

ON s.cid = c.class_id;

1

2

3

4

8.5 ⼦查询/嵌套查询

⼦查询 — 先进⾏⼀次查询，第⼀次查询的结果作为第⼆次查询的源/条件（第⼆次查询
是基于第⼀次的查询结果来进⾏的）

8.5.1 ⼦查询返回单个值-单⾏单列

案例1：查询班级名称为'Java2104'班级中的学⽣信息 (只知道班级名称，⽽不知道班级ID)

传统的⽅式：

⼦查询：

8.5.2 ⼦查询返回多个值-多⾏单列

案例2：查询所有Java班级中的学⽣信息

传统的⽅式：

-- a.查询Java2104班的班级编号
select class_id from classes where class_name='Java2104';

-- b.查询此班级编号下的学⽣信息
select * from students where cid = 1;

1

2

3

4

5

-- 如果⼦查询返回的结果是⼀个值（单列单⾏），条件可以直接使⽤关系运算符（= !=

....）
select * from students where cid = (select class_id from classes where

class_name='Java2105');

1

2

-- a.查询所有Java班的班级编号
select class_id from classes where class_name LIKE 'Java%';

+--------------+

| class_id |

+--------------+

| 1 |

| 2 |

| 3 |

+--------------+

-- b.查询这些班级编号中的学⽣信息(union 将多个查询语句的结果整合在⼀起)

select * from students where cid=1

UNION

1

2

3

4

5

6

7

8

9

10

11

12

13

⼦查询

8.5.3 ⼦查询返回多个值-多⾏多列

案例3：查询cid=1的班级中性别为男的学⽣信息

九、存储过程
9.1 存储过程介绍

9.1.1 SQL指令执⾏过程

从SQL执⾏执⾏的流程中我们分析存在的问题：

select * from students where cid=2

UNION

select * from students where cid=3;

14

15

16

-- 如果⼦查询返回的结果是多个值（单列多⾏），条件使⽤IN / NOT IN

select * from students where cid IN (select class_id from classes where

class_name LIKE 'Java%');

1

2

-- 多条件查询：
select * from students where cid=1 and stu_gender='男';

-- ⼦查询:先查询cid=1班级中的所有学⽣信息，将这些信息作为⼀个整体虚拟表(多⾏多列)

-- 再基于这个虚拟表查询性别为男的学⽣信息（‘虚拟表’需要别名）
select * from (select * from students where cid=1) t where

t.stu_gender='男';

1

2

3

4

5

6

1. 如果我们需要重复多次执⾏相同的SQL，SQL执⾏都需要通过连接传递到MySQL，并且
需要经过编译和执⾏的步骤；

2. 如果我们需要连续执⾏多个SQL指令，并且第⼆个SQL指令需要使⽤第⼀个SQL指令执⾏
的结果作为参数；

9.1.2 存储过程的介绍

存储过程：

将能够完成特定功能的SQL指令进⾏封装（SQL指令集），编译之后存储在数据库服务
器上，并且为之取⼀个名字，客户端可以通过名字直接调⽤这个SQL指令集，获取执⾏
结果。

9.1.3 存储过程优缺点分析

存储过程优点：

1. SQL指令⽆需客户端编写，通过⽹络传送，可以节省⽹络开销，同时避免SQL指令在⽹络
传输过程中被恶意篡改保证安全性；

2. 存储过程经过编译创建并保存在数据库中的，执⾏过程⽆需重复的进⾏编译操作，对SQL
指令的执⾏过程进⾏了性能提升；

3. 存储过程中多个SQL指令之间存在逻辑关系，⽀持流程控制语句（分⽀、循环），可以实
现更为复杂的业务;

存储过程的缺点：

1. 存储过程是根据不同的数据库进⾏编译、创建并存储在数据库中；当我们需要切换到其
他的数据库产品时，需要重写编写针对于新数据库的存储过程；

2. 存储过程受限于数据库产品，如果需要⾼性能的优化会成为⼀个问题；
3. 在互联⽹项⽬中，如果需要数据库的⾼（连接）并发访问，使⽤存储过程会增加数据库
的连接执⾏时间（因为我们将复杂的业务交给了数据库进⾏处理）

9.2 创建存储过程

9.2.1 存储过程创建语法

9.2.2 示例

9.3 调⽤存储过程

9.4 存储过程中变量的使⽤

存储过程中的变量分为两种：局部变量 和 ⽤户变量

9.4.1 定义局部变量

局部变量：定义在存储过程中的变量，只能在存储过程内部使⽤

局部变量定义语法

-- 语法:

create procedure <proc_name>([IN/OUT args])

begin

 -- SQL

end;

1

2

3

4

5

-- 创建⼀个存储过程实现加法运算: Java语法中，⽅法是有参数和返回值的
-- 存储过程中，是有输⼊参数 和 输出参数的
create procedure proc_test1(IN a int,IN b int,OUT c int)

begin

 SET c = a+b;

end;

1

2

3

4

5

6

-- 调⽤存储过程
-- 定义变量@m

set @m = 0;

-- 调⽤存储过程，将3传递给a，将2传递给b，将@m传递给c

call proc_test1(3,2,@m);

-- 显示变量值
select @m from dual;

1

2

3

4

5

6

7

-- 局部变量要定义在存储过程中，⽽且必须定义在存储过程开始
declare <attr_name> <type> [default value];

1

2

局部变量定义示例：

9.4.2 定义⽤户变量

⽤户变量：相当于全局变量，定义的⽤户变量可以通过 select @attrName from dual进⾏
查询

9.4.3 给变量设置值

⽆论是局部变量还是⽤户变量，都是使⽤ set关键字修改值

9.4.4 将查询结果赋值给变量

在存储过程中使⽤select..into..给变量赋值

create procedure proc_test2(IN a int,OUT r int)

begin

 declare x int default 0; -- 定义x int类型，默认值为0
 declare y int default 1; -- 定义y

 set x = a*a;

 set y = a/2;

 set r = x+y;

end;

1

2

3

4

5

6

7

8

-- ⽤户变量会存储在mysql数据库的数据字典中（dual）
-- ⽤户变量定义使⽤set关键字直接定义，变量名要以@开头
set @n=1;

1

2

3

set @n=1;

call proc_test2(6,@n);

select @n from dual;

1

2

3

-- 查询学⽣数量
create procedure proc_test3(OUT c int)

begin

 select count(stu_num) INTO c from students; -- 将查询到学⽣数量赋值给c

end;

-- 调⽤存储过程
call proc_test3(@n);

select @n from dual;

1

2

3

4

5

6

7

8

9

9.4.5 ⽤户变量使⽤注意事项

因为⽤户变量相当于全局变量，可以在SQL指令以及多个存储过程中共享，在开发中建
议尽量少使⽤⽤户变量，⽤户变量过多会导致程序不易理解、难以维护。

9.5 存储过程的参数

MySQL存储过程的参数⼀共有三种：IN \ OUT \ INOUT

9.5.1 IN 输⼊参数

输⼊参数——在调⽤存储过程中传递数据给存储过程的参数（在调⽤的过程必须为具有实际
值的变量 或者 字⾯值）

9.5.2 OUT 输出参数

输出参数——将存储过程中产⽣的数据返回给过程调⽤者，相当于Java⽅法的返回值，但不
同的是⼀个存储过程可以有多个输出参数

-- 创建存储过程：添加学⽣信息
create procedure proc_test4(IN snum char(8),IN sname varchar(20), IN

gender char(2), IN age int, IN cid int, IN remark varchar(255))

begin

 insert into students(stu_num,stu_name,stu_gender,stu_age,cid,remark)

 values(snum,sname,gender,age,cid,remark);

end;

call proc_test4('20210108','⼩丽','⼥',20,1,'aaa');

1

2

3

4

5

6

7

8

-- 创建存储过程，根据学⽣学号，查询学⽣姓名
create procedure proc_test5(IN snum char(8),OUT sname varchar(20))

begin

 select stu_name INTO sname from students where stu_num=snum;

end;

set @name='';

call proc_test5('20210108',@name);

select @name from dual;

1

2

3

4

5

6

7

8

9

9.5.3 INOUT 输⼊输出参数

9.6 存储过程中流程控制

在存储过程中⽀持流程控制语句⽤于实现逻辑的控制

9.6.1 分⽀语句

if-then-else

create procedure proc_test6(INOUT str varchar(20))

begin

 select stu_name INTO str from students where stu_num=str;

end;

set @name='20210108';

call proc_test6(@name);

select @name from dual;

1

2

3

4

5

6

7

8

-- 单分⽀：如果条件成⽴，则执⾏SQL

if conditions then

 -- SQL

end if;

-- 如果参数a的值为1，则添加⼀条班级信息
create procedure proc_test7(IN a int)

begin

 if a=1 then

 insert into classes(class_name,remark) values('Java2109','test');

 end if;

end;

1

2

3

4

5

6

7

8

9

10

11

-- 双分⽀：如果条件成⽴则执⾏SQL1，否则执⾏SQL2

if conditions then

 -- SQL1

else

 -- SQL2

end if;

-- 如果参数a的值为1，则添加⼀条班级信息；否则添加⼀条学⽣信息
create procedure proc_test7(IN a int)

1

2

3

4

5

6

7

8

9

case

9.6.2 循环语句

while

begin

 if a=1 then

 insert into classes(class_name,remark) values('Java2109','test');

 else

 insert into

students(stu_num,stu_name,stu_gender,stu_age,cid,remark)

values('20210110','⼩花','⼥',19,1,'...');

 end if;

end;

10

11

12

13

14

15

16

-- case

create procedure proc_test8(IN a int)

begin

 case a

 when 1 then

 -- SQL1 如果a的值为1 则执⾏SQL1

 insert into classes(class_name,remark) values('Java2110','wahaha');

 when 2 then

 -- SQL2 如果a的值为2 则执⾏SQL2

 insert into

students(stu_num,stu_name,stu_gender,stu_age,cid,remark)

 values('20210111','⼩刚','男',21,2,'...');

 else

 -- SQL (如果变量的值和所有when的值都不匹配，则执⾏else中的这个SQL)
 update students set stu_age=18 where stu_num='20210110';

 end case;

end;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

repeat

loop

-- while

create procedure proc_test9(IN num int)

begin

 declare i int;

 set i = 0;

 while i<num do

 -- SQL

 insert into classes(class_name,remark) values(CONCAT('Java',i)

,'....');

 set i = i+1;

 end while;

end;

call proc_test9(4);

1

2

3

4

5

6

7

8

9

10

11

12

13

-- repeat

create procedure proc_test10(IN num int)

begin

 declare i int;

 set i = 1;

 repeat

 -- SQL

 insert into classes(class_name,remark) values(CONCAT('Python',i)

,'....');

 set i = i+1;

 until i > num end repeat;

end;

call proc_test10(4);

1

2

3

4

5

6

7

8

9

10

11

12

13

-- loop

create procedure proc_test11(IN num int)

begin

 declare i int ;

 set i =0;

 myloop:loop

 -- SQL

1

2

3

4

5

6

7

9.7 存储过程管理

9.7.1 查询存储过程

存储过程是属于某个数据库的，也就是说当我们将存储过程创建在某个数据库之后，只
能在当前数据库中调⽤此存储过程。

查询存储过程：查询某个数据库中有哪些存储过程

9.7.2 修改存储过程

修改存储过程指的是修改存储过程的特征/特性

存储过程的特征参数：

CONTAINS SQL 表示⼦程序包含 SQL 语句，但不包含读或写数据的语句

NO SQL 表示⼦程序中不包含 SQL 语句

READS SQL DATA 表示⼦程序中包含读数据的语句

MODIFIES SQL DATA 表示⼦程序中包含写数据的语句

SQL SECURITY { DEFINER |INVOKER } 指明谁有权限来执⾏

DEFINER 表示只有定义者⾃⼰才能够执⾏

 insert into classes(class_name,remark) values(CONCAT('HTML',i)

,'....');

 set i = i+1;

 if i=num then

 leave myloop;

 end if;

 end loop;

end;

call proc_test11(5);

8

9

10

11

12

13

14

15

16

-- 根据数据库名，查询当前数据库中的存储过程
show procedure status where db='db_test2';

-- 查询存储过程的创建细节
show create procedure db_test2.proc_test1;

1

2

3

4

5

alter procedure <proc_name> 特征1 [特征2 特征3]1

INVOKER 表示调⽤者可以执⾏
COMMENT 'string' 表示注释信息

9.7.3 删除存储过程

9.8 存储过程练习案例

使⽤存储过程解决企业项⽬开发过程中的问题

案例：使⽤存储过程完成借书操作

9.8.1 数据准备

alter procedure proc_test1 READS SQL DATA;1

-- 删除存储过程
-- drop 删除数据库中的对象 数据库、数据表、列、存储过程、视图、触发器、索引....

-- delete 删除数据表中的数据
drop procedure proc_test1;

1

2

3

4

-- 创建数据库
create database db_test3;

-- 使⽤数据库
use db_test3;

-- 创建图书信息表：
create table books(

 book_id int primary key auto_increment,

 book_name varchar(50) not null,

 book_author varchar(20) not null,

 book_price decimal(10,2) not null,

 book_stock int not null,

 book_desc varchar(200)

);

-- 添加图书信息
insert into

books(book_name,book_author,book_price,book_stock,book_desc)

values('Java程序设计','亮亮',38.80,12,'亮亮⽼师带你学Java');

insert into

books(book_name,book_author,book_price,book_stock,book_desc)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

业务分析

哪个学⽣借哪本书，借了多少本？

操作：

保存借书记录
修改图书库存

条件：

判断学⽣是否存在？
判断图书是否存在、库存是否充⾜？

创建借书记录表

values('Java王者之路','威哥',44.40,9,'千锋威哥，Java王者领路⼈');

-- 创建学⽣信息表
create table students(

 stu_num char(4) primary key,

 stu_name varchar(20) not null,

 stu_gender char(2) not null,

 stu_age int not null

);

-- 添加学⽣信息
insert into students(stu_num,stu_name,stu_gender,stu_age)

values('1001','张三','男',20);

insert into students(stu_num,stu_name,stu_gender,stu_age)

values('1002','李四','⼥',20);

insert into students(stu_num,stu_name,stu_gender,stu_age)

values('1003','王五','男',20);

21

22

23

24

25

26

27

28

29

30

31

32

33

34

9.8.2 创建存储过程实现借书业务

-- 借书记录表：
create table records(

 rid int primary key auto_increment,

 snum char(4) not null,

 bid int not null,

 borrow_num int not null,

 is_return int not null, -- 0表示为归还 1 表示已经归还
 borrow_date date not null,

 constraint FK_RECORDS_STUDENTS foreign key(snum) references

students(stu_num),

 constraint FK_RECORDS_BOOKS foreign key(bid) REFERENCES

books(book_id)

);

1

2

3

4

5

6

7

8

9

10

11

-- 实现借书业务：
-- 参数1： a 输⼊参数 学号
-- 参数2： b 输⼊参数 图书编号
-- 参数3： m 输⼊参数 借书的数量
-- 参数4： state 输出参数 借书的状态（1 借书成功，2 学号不存在，3 图书不存在， 4
库存不⾜）
create procedure proc_borrow_book(IN a char(4),IN b int, IN m int,OUT

state int)

begin

 declare stu_count int default 0;

 declare book_count int default 0;

 declare stock int default 0;

 -- 判断学号是否存在：根据参数 a 到学⽣信息表查询是否有stu_num=a的记录
 select count(stu_num) INTO stu_count from students where stu_num=a;

 if stu_count>0 then

 -- 学号存在
 -- 判断图书ID是否存在：根据参数b 查询图书记录总数
 select count(book_id) INTO book_count from books where book_id=b;

 if book_count >0 then

 -- 图书存在
 -- 判断图书库存是否充⾜：查询当前图书库存，然后和参数m进⾏⽐较
 select book_stock INTO stock from books where book_id=b;

 if stock >= m then

 -- 执⾏借书
 -- 操作1：在借书记录表中添加记录

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

9.8.3 创建存储过程实现还书业务

期待...

9.9 游标

问题：如果我们要创建⼀个存储 过程，需要返回查询语句查询到的多条数据，该如何实
现呢？

9.1.1 游标的概念

游标可以⽤来依次取出查询结果集中的每⼀条数据——逐条读取查询结果集中的记录

 insert into

records(snum,bid,borrow_num,is_return,borrow_date)

 values(a,b,m,0,sysdate());

 -- 操作2：修改图书库存
 update books set book_stock=stock-m where book_id=b;

 -- 借书成功
 set state=1;

 else

 -- 库存不⾜
 set state=4;

 end if;

 else

 -- 图书不存在
 set state = 3;

 end if;

 else

 -- 不存在
 set state = 2;

 end if;

end;

-- 调⽤存储过程借书
set @state=0;

call proc_borrow_book('1001',1,2,@state);

select @state from dual;

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

9.1.2 游标的使⽤步骤

1、声明游标

声明游标语法：

实例

2、打开游标

语法

3、使⽤游标

使⽤游标：提取游标当前指向的记录（提取之后，游标⾃动下移）

4、关闭游标

9.1.3 游标使⽤案例

DECLARE cursor_nanme CURSOR FOR select_statement;1

declare mycursor cursor for select book_name,book_author,book_price from

books;

1

open mycursor;1

FETCH mycursor INTO bname,bauthor,bprice;1

CLOSE mycursor; 1

-- 游标使⽤案例
create procedure proc_test2(OUT result varchar(200))

begin

 declare bname varchar(20);

 declare bauthor varchar(20);

 declare bprice decimal(10,2);

 declare num int;

 declare i int;

 declare str varchar(50);

 -- 此查询语句执⾏之后返回的是⼀个结果集（多条记录），使⽤游标可以来遍历查询结果集

1

2

3

4

5

6

7

8

9

10

⼗、触发器
10.1 触发器的介绍

触发器，就是⼀种特殊的存储过程。触发器和存储过程⼀样是⼀个能够完成特定功能、存储
在数据库服务器上的SQL⽚段，但是触发器⽆需调⽤，当对数据表中的数据执⾏DML操作时
⾃动触发这个SQL⽚段的执⾏，⽆需⼿动调⽤。

在MySQL,只有执⾏insert\delete\update操作才能触发触发器的执⾏。

10.2 触发器的使⽤

 declare mycursor cursor for select book_name,book_author,book_price

from books;

 select count(1) INTO num from books;

 -- 打开游标
 open mycursor;

 -- 使⽤游标要结合循环语句
 set i=0;

 while i<num do

 -- 使⽤游标：提取游标当前指向的记录（提取之后，游标⾃动下移）
 FETCH mycursor INTO bname,bauthor,bprice;

 set i=i+1;

 -- set str=concat_ws('~',bname,bauthor,bprice);

 select concat_ws('~',bname,bauthor,bprice) INTO str;

 set result = concat_ws(',',result,str);

 end while;

 -- 关闭游标
 close mycursor;

end;

-- 案例测试
set @r = '';

call proc_test2(@r);

select @r from dual;

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

10.2.1 案例说明

案例：当向学⽣信息表添加、删除、修改学⽣信息时，使⽤触发器⾃定进⾏⽇志记录

10.2.2 创建触发器

语法

-- 学⽣信息表
create table students(

 stu_num char(4) primary key,

 stu_name varchar(20) not null,

 stu_gender char(2) not null,

 stu_age int not null

);

-- 学⽣信息操作⽇志表
create table stulogs(

 id int primary key auto_increment,

 time TIMESTAMP,

 log_text varchar(200)

);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

-- 当向students表中添加学⽣信息时，同时要在 stulogs表中添加⼀条操作⽇志
insert into students(stu_num,stu_name,stu_gender,stu_age)

values('1004','夏利','⼥',20);

-- ⼿动进⾏记录⽇志
insert into stulogs(time,log_text) values(now(),'添加1004学⽣信息');

1

2

3

4

create trigger tri_name

<before|after> -- 定义触发时机
<insert|delete|update> -- 定义DML类型
ON <table_name>

for each row -- 声明为⾏级触发器（只要操作⼀条记录就触发触发器执⾏⼀
次）
sql_statement -- 触发器操作

1

2

3

4

5

6

10.2.3 查看触发器

10.2.3 测试触发器

我们创建的触发器是在students表发⽣insert操作时触发，我们只需执⾏学⽣信息的添加
操作

10.2.4 删除触发器

10.3 NEW与OLD

触发器⽤于监听对数据表中数据的insert、delete、update操作，在触发器中通常处理
⼀些DML的关联操作；我们可以使⽤ NEW和 OLD关键字在触发器中获取触发这个触发器
的DML操作的数据

NEW : 在触发器中⽤于获取insert操作添加的数据、update操作修改后的记录
OLD：在触发器中⽤于获取delete操作删除前的数据、update操作修改前的数据

-- 创建触发器：当学⽣信息表发⽣添加操作时，则向⽇志信息表中记录⼀条⽇志
create trigger tri_test1

after insert on students

for each row

insert into stulogs(time,log_text) values(now(), concat('添
加',NEW.stu_num,'学⽣信息'));

1

2

3

4

5

show triggers;1

-- 测试1：添加⼀个学⽣信息，触发器执⾏了⼀次
insert into students(stu_num,stu_name,stu_gender,stu_age)

values('1005','⼩明','男',20);

-- 测试2：⼀条SQL指令添加了2条学⽣信息，触发器就执⾏了2次
insert into students(stu_num,stu_name,stu_gender,stu_age)

values('1006','⼩刚','男',20),('1007','李磊','男',20);

1

2

3

4

5

6

drop trigger tri_test1;1

10.3.1 NEW

insert操作中：NEW表示添加的新记录

update操作中：NEW 表示修改后的数据

10.3.2 OLD

delete操作中：OLD表示删除的记录

update操作中：OLD表示修改前的记录

10.4 触发器使⽤总结

10.4.1 优点

触发器是⾃动执⾏的，当对触发器相关的表执⾏响应的DML操作时⽴即执⾏；
触发器可以实现表中的数据的级联操作（关联操作），有利于保证数据的完整性；
触发器可以对DML操作的数据进⾏更为复杂的合法性校验

create trigger tri_test1

after insert on students

for each row

insert into stulogs(time,log_text) values(now(), concat('添
加',NEW.stu_num,'学⽣信息'));

1

2

3

4

-- 创建触发器 : 在监听update操作的触发器中，可以使⽤NEW获取修改后的数据
create trigger tri_test2

after update on students for each row

insert into stulogs(time,log_text) values(now(), concat('修改学⽣信息
为：',NEW.stu_num,NEW.stu_name));

1

2

3

4

create trigger tri_test3

after delete on students for each row

insert into stulogs(time,log_text) values(now(), concat('删
除',OLD.stu_num,'学⽣信息'));

1

2

3

create trigger tri_test2

after update on students for each row

insert into stulogs(time,log_text) values(now(), concat('将学⽣姓名从
【',OLD.stu_name,'】修改为【',NEW.stu_name,'】'));

1

2

3

10.4.2 缺点

使⽤触发器实现的业务逻辑如果出现问题将难以定位，后期维护困难；
⼤量使⽤触发器容易导致代码结构杂乱，增加了程序的复杂性；
当触发器操作的数据量⽐较⼤时，执⾏效率会⼤⼤降低。

10.4.3 使⽤建议

在互联⽹项⽬中，应避免适应触发器；
对于并发量不⼤的项⽬可以选择使⽤存储过程，但是在互联⽹引⽤中不提倡使⽤存储过
程（原因：存储过程时将实现业务的逻辑交给数据库处理，⼀则增减了数据库的负载，
⼆则不利于数据库的迁移）

⼗⼀、视图
11.1 视图的概念

视图，就是由数据库中⼀张表或者多张表根据特定的条件查询出得数据构造成得虚拟表

11.2 视图的作⽤

安全性：如果我们直接将数据表授权给⽤户操作，那么⽤户可以CRUD数据表中所有数
据，加⼊我们想要对数据表中的部分数据进⾏保护，可以将公开的数据⽣成视图，授权
⽤户访问视图；⽤户通过查询视图可以获取数据表中公开的数据，从⽽达到将数据表中
的部分数据对⽤户隐藏。
简单性：如果我们需要查询的数据来源于多张数据表，可以使⽤多表连接查询来实现；
我们通过视图将这些连表查询的结果对⽤户开放，⽤户则可以直接通过查询视图获取多
表数据，操作更便捷。

11.3 创建视图

11.3.1 语法

create view <view_name>

AS

select_statement

1

2

3

11.3.2 实例

实例1：

示例2：

11.4 视图数据的特性

视图是虚拟表，查询视图的数据是来源于数据表的。当对视图进⾏操作时，对原数据表
中的数据是否由影响呢？

查询操作：如果在数据表中添加了新的数据，⽽且这个数据满⾜创建视图时查询语句的条
件，通过查询视图也可以查询出新增的数据；当删除原表中满⾜查询条件的数据时，也会从
视图中删除。

新增数据：如果在视图中添加数据，数据会被添加到原数据表

删除数据：如果从视图删除数据，数据也将从原表中删除

修改操作：如果通过修改数据，则也将修改原数据表中的数据

视图的使⽤建议 : 对复杂查询简化操作，并且不会对数据进⾏修改的情况下可以使⽤视图。

-- 创建视图实例1：将学⽣表中性别为男的学⽣⽣成⼀个视图
create view view_test1

AS

select * from students where stu_gender='男';

-- 查询视图
select * from view_test1;

1

2

3

4

5

6

7

-- 创建视图示例2：查询学⽣借书的信息（学⽣名、图书名、借书数量）
create view view_test2

AS

select s.stu_name,b.book_name,borrow_num

from books b inner join records r inner join students s

on b.book_id=r.bid and r.snum=s.stu_num;

-- 查询视图
select * from view_test2;

1

2

3

4

5

6

7

8

9

11.5 查询视图结构

11.6 修改视图

11.7 删除视图

删除数据表时会同时删除数据表中的数据，删除视图时不会影响原数据表中的数据

⼗⼆、索引
数据库是⽤来存储数据，在互联⽹应⽤中数据库中存储的数据可能会很多(⼤数据)，数据
表中数据的查询速度会随着数据量的增⻓逐渐变慢，从⽽导致响应⽤户请求的速度变慢——⽤
户体验差，我们如何提⾼数据库的查询效率呢？

12.1 索引的介绍

索引，就是⽤来提⾼数据表中数据的查询效率的。

索引，就是将数据表中某⼀列/某⼏列的值取出来构造成便于查找的结构进⾏存储，⽣成
数据表的⽬录

当我们进⾏数据查询的时候，则先在⽬录中进⾏查找得到对应的数据的地址，然后再到
数据表中根据地址快速的获取数据记录，避免全表扫描。

-- 查询视图结构
desc view_test2;

1

2

-- ⽅式1

create OR REPLACE view view_test1

AS

select * from students where stu_gender='⼥';

-- ⽅式2

alter view view_test1

AS

select * from students where stu_gender='男';

1

2

3

4

5

6

7

8

9

-- 删除视图
drop view view_test1;

1

2

12.2 索引的分类

MySQL中的索引，根据创建索引的列的不同，可以分为：

主键索引：在数据表的主键字段创建的索引，这个字段必须被primary key修饰，每张表
只能有⼀个主键
唯⼀索引：在数据表中的唯⼀列创建的索引(unique)，此列的所有值只能出现⼀次，可以
为NULL
普通索引：在普通字段上创建的索引，没有唯⼀性的限制
组合索引：两个及以上字段联合起来创建的索引

说明 :

1. 在创建数据表时，将字段声明为主键（添加主键约束），会⾃动在主键字段创建主键索
引；

2. 在创建数据表时，将字段声明为唯⼀键（添加唯⼀约束），会⾃动在唯⼀字段创建唯⼀
索引；

12.3 创建索引

12.3.1 唯⼀索引

-- 创建唯⼀索引: 创建唯⼀索引的列的值不能重复
-- create unique index <index_name> on 表名(列名);

create unique index index_test1 on tb_testindex(tid);

1

2

3

12.3.2 普通索引

12.3.3 组合索引

12.3.4 全⽂索引

MySQL 5.6 版本新增的索引，可以通过此索引进⾏全⽂检索操作，因为MySQL全⽂检索
不⽀持中⽂，因此这个全⽂索引不被开发者关注，在应⽤开发中通常是通过搜索引擎
（数据库中间件）实现全⽂检索

12.4 索引使⽤

索引创建完成之后⽆需调⽤，当根据创建索引的列进⾏数据查询的时候，会⾃动使⽤索
引；

组合索引需要根据创建索引的所有字段进⾏查询时触发。

在 命令⾏窗⼝中可以查看查询语句的查询规划：

-- 创建普通索引: 不要求创建索引的列的值的唯⼀性
-- create index <index_name> on 表名(列名);

create index index_test2 on tb_testindex(name);

1

2

3

-- 创建组合索引
-- create index <index_name> on 表名(列名1,列名2...);

create index index_test3 on tb_testindex(tid,name);

1

2

3

create fulltext index <index_name> on 表名(字段名);1

explain select * from tb_testindex where tid=250000\G;1

12.5 查看索引

12.6 删除索引

12.7 索引的使⽤总结

12.7.1 优点

索引⼤⼤降低了数据库服务器在执⾏查询操作时扫描的数据，提⾼查询效率
索引可以避免服务器排序、将随机IO编程顺序IO

-- 命令⾏
show create table tb_testindex\G;

1

2

-- 查询数据表的索引
show indexes from tb_testindex;

-- 查询索引
show keys from tb_testindex;

1

2

3

4

5

-- 删除索引：索引是建⽴在表的字段上的，不同的表中可能会出现相同名称的索引
-- 因此删除索引时需要指定表名
drop index index_test3 on tb_testindex;

1

2

3

12.7.2 缺点

索引是根据数据表列的创建的，当数据表中数据发⽣DML操作时，索引⻚需要更新；
索引⽂件也会占⽤磁盘空间；

12.7.3 注意事项

数据表中数据不多时，全表扫⾯可能更快吗，不要使⽤索引；
数据量⼤但是DML操作很频繁时，不建议使⽤索引；
不要在数据重复读⾼的列上创建索引（性别）；
创建索引之后，要注意查询SQL语句的编写，避免索引失效。

⼗三、数据库事务
13.1 数据库事务介绍

我们把完成特定的业务的多个数据库DML操作步骤称之为⼀个事务
事务，就是完成同⼀个业务的多个DML操作

13.2 数据库事务特性

ACID特性，⾼频⾯试题

原⼦性（Atomicity）：⼀个事务中的多个DML操作，要么同时执⾏成功，要么同时执⾏失败

⼀致性（Consistency）：事务执⾏之前和事务执⾏之后，数据库中的数据是⼀致的，完整性
和⼀致性不能被破坏

隔离性（Isolation）：数据库允许多个事务同时执⾏（张三借Java书的同时允许李四借Java
书），多个必⾏的事务之间不能相互影响

持久性（Durability）：事务完整之后，对数据库的操作是永久的

-- 借书业务
-- 操作1：在借书记录表中添加记录
insert into records(snum,bid,borrow_num,is_return,borrow_date)

values('1001',1,1,0,sysdate());

-- 操作2：修改图书库存
update books set book_stock=book_stock-1 where book_id=1;

-- 转账业务：张三给李四转账1000

-- 操作1：李四的帐号+1000

-- 操作2：张三的账户-1000

1

2

3

4

5

6

7

8

9

13.3 MySQL事务管理

13.3.1 ⾃动提交

在MySQL中，默认DML指令的执⾏时⾃动提交的，当我们执⾏⼀个DML指令之后，⾃动
同步到数据库中

13.3.2 事务管理

开启事务，就是关闭⾃动提交

在开始事务第⼀个操作之前，执⾏ start transaction开启事务
依次执⾏事务中的每个DML操作
如果在执⾏的过程中的任何位置出现异常，则执⾏ rollback回滚事务
如果事务中所有的DML操作都执⾏成功，则在最后执⾏ commit提交事务

-- 借书业务

-- 【开启事务】（关闭⾃动提交---⼿动提交）
start transaction;

1

2

3

4

13.4 事务隔离级别

数据库允许多个事务并⾏，多个事务之间是隔离的、相互独⽴的；如果事务之间不相互
隔离并且操作同⼀数据时，可能会导致数据的⼀致性被破坏。

MySQL数据库事务隔离级别：

13.4.1 读未提交（read uncommitted）

T2可以读取T1执⾏但未提交的数据；可能会导致出现脏读

脏读，⼀个事务读取到了另⼀个事务中未提交的数据

13.4.2 读已提交（read committed）

T2只能读取T1已经提交的数据；避免了脏读，但可能会导致不可重复度（虚读）

不可重复度（虚读）: 在同⼀个事务中，两次查询操作读取到数据不⼀致

例如：T2进⾏第⼀次查询之后在第⼆次查询之前，T1修改并提交了数据，T2进⾏第⼆次
查询时读取到的数据和第⼀次查询读取到数据不⼀致。

-- 操作1：在借书记录表中添加记录
insert into records(snum,bid,borrow_num,is_return,borrow_date)

values('1007',4,2,0,sysdate());

-- select aaa;

-- 【事务回滚】（清除连接缓存中的操作,撤销当前事务已经执⾏的操作）
-- rollback;

-- 操作2：修改图书库存
update books set book_stock=book_stock-2 where book_id=4;

-- 【提交事务】（将连接缓存中的操作写⼊数据⽂件）
commit;

5

6

7

8

9

10

11

12

13

14

15

16

17

隔离级别 脏读 不可重复读(虚读) 幻读

read uncommitted √ √ √

read committed × √ √

repeatable read × × √

serializable × × ×

13.4.3 可重复读（repeatable read）

T2执⾏第⼀次查询之后，在事务结束之前其他事务不能修改对应的数据；避免了不可重复读
(虚读)，但可能会导致幻读

幻读，T2对数据表中的数据进⾏修改然后查询，在查询之前T1向数据表中新增了⼀条数
据，就导致T2以为修改了所有数据，但却查询出了与修改不⼀致的数据（T1事务新增的
数据）

13.4.4 串⾏化(serializable)

同时只允许⼀个事务对数据表进⾏操作；避免了脏读、虚读、幻读问题

13.4.5 设置数据库事务隔离级别

我们可以通过设置数据库默认的事务隔离级别来控制事务之间的隔离性；

也可以通过客户端与数据库连接设置来设置事务间的隔离性（在应⽤程序中设置--
Spring）；

MySQL数据库默认的隔离级别为可重复读

查看MySQL数据库默认的隔离级别

设置MySQL默认隔离级别

⼗四、数据库设计
MySQL数据库作为数据存储的介质为应⽤系统提供数据存储的服务，我们如何设计出合
理的数据库、数据表以满⾜应⽤系统的数据存储需求呢？

⻋库：是⽤来存放⻋辆的，⻋库都需要划分⻋位，如果不划分⻋位，⻋⼦杂乱⽆章的存
放可能会导致⻋辆堵塞，同时也可能造成场地的浪费——有限的场地能够停放最多的⻋
辆，同时⽅便每⼀辆⻋的出⼊
数据库，是⽤来存放数据的，我们需要设计合理的数据表——能够完成数据的存储，同
时能够⽅便的提取应⽤系统所需的数据

14.1 数据库设计流程

数据库是为应⽤系统服务的，数据库存储什么样的数据也是由应⽤系统来决定的。

当我们进⾏应⽤系统开发时，我们⾸先要明确应⽤系统的功能需求——软件系统的需求
分析

1. 根据应⽤系统的功能，分析数据实体(实体，就是要存储的数据对象)

电商系统：商品、⽤户、订单....

教务管理系统：学⽣、课程、成绩...

2. 提取实体的数据项（数据项，就是实体的属性）

商品(商品名称、商品图⽚、商品描述...)

⽤户(姓名、登录名、登录密码...)

3. 根据数据库设计三范式规范视图的数据项 检查实体的数据项是否满⾜数据库设计三范式

如果实体的数据项不满⾜三范式，可能会导致数据的冗余，从⽽引起数据维护困难、破坏数据⼀致性

等问题

-- 在MySQL8.0.3 之前
select @@tx_isolation;

-- 在MySQL8.0.3 之后
select @@transaction_isolation;

1

2

3

4

5

6

set session transaction isolation level <read committed>;1

4. 绘制E-R图 （实体关系图，直观的展示实体与实体之间的关系）

5. 数据库建模

三线图进⾏数据表设计
PowerDesigner
PDMan

6. 建库建表 编写SQL指令创建数据库、数据表

7. 添加测试数据，SQL测试

14.2 数据库设计案例

学校图书馆图书管理系统（借书）

14.2.1 数据实体

学⽣
类别
图书
借书记录
管理员

14.2.2 提取数据项

学⽣（学号、姓名、性别、年龄、院系编号）

院系（院系编号、院系名称、院系说明...）

类别（类别ID，类别名称，类别描述）

图书（图书ID，图书名称，图书作者，图书封⾯，图书价格，图书库存...）

借书记录（记录ID，学号，图书编号，数量，是否归还，借书⽇期，还书⽇期）

管理员（管理员ID，登录名，登录密码，员⼯编号）

员⼯（员⼯编号，员⼯姓名，⼿机，qq，邮箱）

14.2.3 数据库设计三范式

第⼀范式：要求数据表中的字段（列）不可再分

以下表不满⾜第⼀范式（在数据库中创建不出不满⾜第⼀范式的表）

将细分的列作为单独的⼀列：

第⼆范式：不存在⾮关键字段对关键字段的部分依赖

以下表不满⾜第⼆范式

将每个关键字段列出来\关键字段的组合也列出来，依次检查每个⾮关键字段

第三范式：不存在⾮关键字段之间的传递依赖

以下数据表不满⾜第三范式

将关键字段和被依赖的⾮关键字段分别作为主键，依次检查所有的⾮关键字段的依赖关系

14.2.4 数据库建模（E-R图）

E-R (Entity-Relationship) 实体关系图，⽤于直观的体现实体与实体之间的关联关系（⼀
对⼀、⼀对多、多对⼀、多对多）

E-R图基本图例

E-R图示例

三线图 统⼀数据实体的表结构

每个实体创建⼀张数据表

多对多关联：需额外常⻅⼀个数据表维护关系，关系表分别创建外键与两张表关联

⼀对多、多对⼀关联：在多的⼀端添加外键与⼀的⼀端的主键建⽴主外键约束

⼀对⼀关联：在任意⼀端创建外键与另⼀端建⽴主外键关联，并且将外键设置为unique

14.2.5 数据库建模（PD）

E-R图实际上就是数据模建模的⼀部分：

E-R 图 数据表设计 建库建表
PowerDesigner建模⼯具 导出数据表
PDMan建模⼯具

1. 下载并安装PowerDesigner建模⼯具

2. PowerDesigner使⽤

概念数据模型（选择workspace--右键new--Conceptual Data Model），相当于E-R

逻辑数据模型（打开概念数据模型--tools--Generate Logical Data Model）,体现了
实体的主外键关联

物理数据模型（打开逻辑数据模型--tools--Generate Physical Data Mode---选择数
据库类型及版本）

可以对物理数据模型进⾏微调
可以通过物理数据模型⽣成建库建表的SQL语句（在物理数据模型的窗⼝中----
Database⼯具条---Generate Database--⽣成SQL⽂件）
通过数据库的管理⼯具执⾏SQL⽂件就可以完成数据表的创建

⾯向对象模型（打开概念数据模型/逻辑数据模型/物理数据模型---tools--Generate
Object-Orentited Model）

可以根据语⾔设置，⽣成实体类（Java）
如果想要借助于PD建模⼯具⽣成Java代码，创建概念的模型时实体名、属性名
都要符合Java程序的命名规范。

在企业项⽬开发，我们通常是不会使⽤建模⼯具来⽣成数据表、实体类的，因为⽣
成的代码规范不合乎我们的代码需求

14.2.6 数据库建模（PDMan）

下载安装PDMan

创建项⽬——在项⽬中创建数据表

在项⽬中⽣成关系图

	一、MySQL课程内容
	1.1 数据库介绍
	1.2 MySQL数据库
	1.3 SQL 结构化查询语言
	1.4 SQL 高级
	1.5 数据库设计
	1.6 数据库事务

	二、数据库介绍
	2.1 数据库概念
	2.2 关系型数据库与非关系型数据库
	2.3 常见的数据库产品
	2.4 数据库术语

	三、MySQL数据库环境准备
	3.1 MySQL版本及下载
	3.1.1 版本
	3.1.2 下载

	3.2 MySQL 安装
	3.3 MySQL配置
	3.3.1 端口配置
	3.3.2 账号密码设置
	3.3.3 服务名称

	3.4 MySQL 服务的启动与停止
	3.4.1 计算机管理窗口
	3.4.2 windows命令行

	3.5 MySQL卸载

	四、MySQL的管理工具
	4.1 MySQL Command line Client使用
	4.2 可视化工具Navicat使用
	4.2.1 Navicat工具下载及安装
	4.2.2 创建连接

	五、MySQL逻辑结构
	5.1 逻辑结构
	5.2 记录/元组

	六、SQL 结构化查询语言
	6.1 SQL概述
	6.1.1 SQL发展
	6.1.2 SQL分类

	6.2 SQL基本语法
	6.3 DDL 数据定义语言
	6.3.1 DDL-数据库操作
	6.3.2 DDL-数据表操作

	6.4 MySQL数据类型
	6.4.1 数值类型
	6.4.2 字符串类型
	6.4.3 日期类型

	6.5 字段约束
	6.5.1 约束介绍
	6.5.2 非空约束
	6.5.3 唯一约束
	6.5.4 主键约束
	6.5.5 主键自动增长
	6.5.6 联合主键
	6.5.7 外键约束

	6.6 DML 数据操纵语言
	6.6.1 插入数据
	6.6.2 删除数据
	6.6.3 修改数据

	6.7 DQL 数据查询语言
	6.7.1 查询基础语法
	6.7.2 where 子句
	6.7.3 LIKE 子句
	6.7.4 对查询结果的处理
	6.7.5 排序 - order by
	6.7.6 聚合函数
	6.7.7 日期函数 和 字符串函数
	6.7.8 分组查询 - group by
	6.7.9 分页查询 - limit

	七、数据表的关联关系
	7.1 关联关系介绍
	7.2 一对一关联
	7.3 一对多与多对一
	7.4 多对多关联
	7.5 外键约束
	7.6 外键约束-级联

	八、连接查询
	8.1 数据准备
	8.1.1 创建数据表
	8.1.2 添加数据

	8.2 内连接 INNER JOIN
	8.2.1 笛卡尔积
	8.2.2 内连接条件

	8.2 左连接 LEFT JOIN
	8.3 右连接 RIGHT JOIN
	8.4 数据表别名
	8.5 子查询/嵌套查询
	8.5.1 子查询返回单个值-单行单列
	8.5.2 子查询返回多个值-多行单列
	8.5.3 子查询返回多个值-多行多列

	九、存储过程
	9.1 存储过程介绍
	9.1.1 SQL指令执行过程
	9.1.2 存储过程的介绍
	9.1.3 存储过程优缺点分析

	9.2 创建存储过程
	9.2.1 存储过程创建语法
	9.2.2 示例

	9.3 调用存储过程
	9.4 存储过程中变量的使用
	9.4.1 定义局部变量
	9.4.2 定义用户变量
	9.4.3 给变量设置值
	9.4.4 将查询结果赋值给变量
	9.4.5 用户变量使用注意事项

	9.5 存储过程的参数
	9.5.1 IN 输入参数
	9.5.2 OUT 输出参数
	9.5.3 INOUT 输入输出参数

	9.6 存储过程中流程控制
	9.6.1 分支语句
	9.6.2 循环语句

	9.7 存储过程管理
	9.7.1 查询存储过程
	9.7.2 修改存储过程
	9.7.3 删除存储过程

	9.8 存储过程练习案例
	9.8.1 数据准备
	9.8.2 创建存储过程实现借书业务
	9.8.3 创建存储过程实现还书业务

	9.9 游标
	9.1.1 游标的概念
	9.1.2 游标的使用步骤
	9.1.3 游标使用案例

	十、触发器
	10.1 触发器的介绍
	10.2 触发器的使用
	10.2.1 案例说明
	10.2.2 创建触发器
	10.2.3 查看触发器
	10.2.3 测试触发器
	10.2.4 删除触发器

	10.3 NEW与OLD
	10.3.1 NEW
	10.3.2 OLD

	10.4 触发器使用总结
	10.4.1 优点
	10.4.2 缺点
	10.4.3 使用建议

	十一、视图
	11.1 视图的概念
	11.2 视图的作用
	11.3 创建视图
	11.3.1 语法
	11.3.2 实例

	11.4 视图数据的特性
	11.5 查询视图结构
	11.6 修改视图
	11.7 删除视图

	十二、索引
	12.1 索引的介绍
	12.2 索引的分类
	12.3 创建索引
	12.3.1 唯一索引
	12.3.2 普通索引
	12.3.3 组合索引
	12.3.4 全文索引

	12.4 索引使用
	12.5 查看索引
	12.6 删除索引
	12.7 索引的使用总结
	12.7.1 优点
	12.7.2 缺点
	12.7.3 注意事项

	十三、数据库事务
	13.1 数据库事务介绍
	13.2 数据库事务特性
	13.3 MySQL事务管理
	13.3.1 自动提交
	13.3.2 事务管理

	13.4 事务隔离级别
	13.4.1 读未提交（read uncommitted）
	13.4.2 读已提交（read committed）
	13.4.3 可重复读（repeatable read）
	13.4.4 串行化(serializable)
	13.4.5 设置数据库事务隔离级别

	十四、数据库设计
	14.1 数据库设计流程
	14.2 数据库设计案例
	14.2.1 数据实体
	14.2.2 提取数据项
	14.2.3 数据库设计三范式
	14.2.4 数据库建模（E-R图）
	14.2.5 数据库建模（PD）
	14.2.6 数据库建模（PDMan）

