
04 | 如何发布和引用服务？
2018-08-30 胡忠想

从0开始学微服务 进入课程

讲述：胡忠想
时长 07:55 大小 3.63M

从这期开始，我将陆续给你讲解微服务各个基本组件的原理和实现方式。

今天我要与你分享的第一个组件是服务发布和引用。我在前面说过，想要构建微服务，首先

要解决的问题是，服务提供者如何发布一个服务，服务消费者如何引用这个服务。具体来

说，就是这个服务的接口名是什么？调用这个服务需要传递哪些参数？接口的返回值是什么

类型？以及一些其他接口描述信息。

我前面说过，最常见的服务发布和引用的方式有三种：



RESTful API

XML 配置



 下载APP 

下面我就结合具体的实例，逐个讲解每一种方式的具体使用方法以及各自的应用场景，以便

你在选型时作参考。

RESTful API

首先来说说 RESTful API 的方式，主要被用作 HTTP 或者 HTTPS 协议的接口定义，即使

在非微服务架构体系下，也被广泛采用。

下面是开源服务化框架Motan发布 RESTful API 的例子，它发布了三个 RESTful 格式的

API，接口声明如下：

具体的服务实现如下：

IDL 文件

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

@Path("/rest")
 public interface RestfulService {
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 List<User> getUsers(@QueryParam("uid") int uid);

 @GET
 @Path("/primitive")
 @Produces(MediaType.TEXT_PLAIN)
 String testPrimitiveType();

 @POST
 @Consumes(MediaType.APPLICATION_FORM_URLENCODED)
 @Produces(MediaType.APPLICATION_JSON)
 Response add(@FormParam("id") int id, @FormParam("name") String name);

复制代码

1

2

3

4

5

6

7

8

public class RestfulServerDemo implements RestfulService {

 @Override
 public List<User> getUsers(@CookieParam("uid") int uid) {
 return Arrays.asList(new User(uid, "name" + uid));
 }

 @Override

复制代码

http://github.com/weibocom/motan

服务提供者这一端通过部署代码到 Tomcat 中，并配置 Tomcat 中如下的 web.xml，就可

以通过 servlet 的方式对外提供 RESTful API。

这样服务消费者就可以通过 HTTP 协议调用服务了，因为 HTTP 协议本身是一个公开的协

议，对于服务消费者来说几乎没有学习成本，所以比较适合用作跨业务平台之间的服务协

议。比如你有一个服务，不仅需要在业务部门内部提供服务，还需要向其他业务部门提供服

务，甚至开放给外网提供服务，这时候采用 HTTP 协议就比较合适，也省去了沟通服务协

议的成本。

XML 配置

9

10

11

12

13

14

15

16

 public String testPrimitiveType() {
 return "helloworld!";
 }

 @Override
 public Response add(@FormParam("id") int id, @FormParam("name") String name) {
 return Response.ok().cookie(new NewCookie("ck", String.valueOf(id))).entity(new
 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

<listener>
 <listener-class>com.weibo.api.motan.protocol.restful.support.servlet.RestfulServlet
 </listener>

 <servlet>
 <servlet-name>dispatcher</servlet-name>
 <servlet-class>org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher</se
 <load-on-startup>1</load-on-startup>
 <init-param>
 <param-name>resteasy.servlet.mapping.prefix</param-name>
 <param-value>/servlet</param-value> <!-- 此处实际为 servlet-mapping 的 url-patt
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>dispatcher</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

复制代码

接下来再来给你讲下 XML 配置方式，这种方式的服务发布和引用主要分三个步骤：

我继续以服务化框架 Motan 为例，它还支持以 XML 配置的方式来发布和引用服务。

首先，服务提供者定义接口。

然后服务提供者实现接口。

最后服务提供者进程启动时，加载 server.xml 配置文件，开启 8002 端口监听。

server.xml 配置如下：

服务提供者定义接口，并实现接口。

服务提供者进程启动时，通过加载 server.xml 配置文件将接口暴露出去。

服务消费者进程启动时，通过加载 client.xml 配置文件来引入要调用的接口。

1

2

3

public interface FooService {
 public String hello(String name);
}

复制代码

1

2

3

4

5

6

7

public class FooServiceImpl implements FooService {

 public String hello(String name) {
 System.out.println(name + " invoked rpc service");
 return "hello " + name;
 }
}

复制代码

1

2

3

4

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:motan="http://api.weibo.com/schema/motan"

复制代码

服务提供者加载 server.xml 的代码如下：

服务消费者要想调用服务，就必须在进程启动时，加载配置 client.xml，引用接口定义，然

后发起调用。

client.xml 配置如下：

5

6

7

8

9

10

11

12

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframew
 http://api.weibo.com/schema/motan http://api.weibo.com/schema/motan.xsd">

 <!-- service implemention bean -->
 <bean id="serviceImpl" class="quickstart.FooServiceImpl" />
 <!-- exporting service by Motan -->
 <motan:service interface="quickstart.FooService" ref="serviceImpl" export="8002" />
</beans>

1

2

3

4

5

6

7

8

9

10

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Server {

 public static void main(String[] args) throws InterruptedException {
 ApplicationContext applicationContext = new ClassPathXmlApplicationContext("clas
 System.out.println("server start...");
 }
}

复制代码

1

2

3

4

5

6

7

8

9

10

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:motan="http://api.weibo.com/schema/motan"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframewo
 http://api.weibo.com/schema/motan http://api.weibo.com/schema/motan.xsd">

 <!-- reference to the remote service -->
 <motan:referer id="remoteService" interface="quickstart.FooService" directUrl="local
</beans>

复制代码

服务消费者启动时，加载 client.xml 的代码如下。

就这样，通过在服务提供者和服务消费者之间维持一份对等的 XML 配置文件，来保证服务

消费者按照服务提供者的约定来进行服务调用。在这种方式下，如果服务提供者变更了接口

定义，不仅需要更新服务提供者加载的接口描述文件 server.xml，还需要同时更新服务消

费者加载的接口描述文件 client.xml。

一般是私有 RPC 框架会选择 XML 配置这种方式来描述接口，因为私有 RPC 协议的性能要

比 HTTP 协议高，所以在对性能要求比较高的场景下，采用 XML 配置的方式比较合适。但

这种方式对业务代码侵入性比较高，XML 配置有变更的时候，服务消费者和服务提供者都

要更新，所以适合公司内部联系比较紧密的业务之间采用。如果要应用到跨部门之间的业务

调用，一旦有 XML 配置变更，需要花费大量精力去协调不同部门做升级工作。在我经历的

实际项目里，就遇到过一次底层服务的接口升级，需要所有相关的调用方都升级，为此花费

了大量时间去协调沟通不同部门之间的升级工作，最后经历了大半年才最终完成。所以对于

XML 配置方式的服务描述，一旦应用到多个部门之间的接口格式约定，如果有变更，最好

是新增接口，不到万不得已不要对原有的接口格式做变更。

IDL 文件

IDL 就是接口描述语言（interface description language）的缩写，通过一种中立的方式

来描述接口，使得在不同的平台上运行的对象和不同语言编写的程序可以相互通信交流。比

如你用 Java 语言实现提供的一个服务，也能被 PHP 语言调用。

1

2

3

4

5

6

7

8

9

10

11

12

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Client {

 public static void main(String[] args) throws InterruptedException {
 ApplicationContext ctx = new ClassPathXmlApplicationContext("classpath:motan_cli
 FooService service = (FooService) ctx.getBean("remoteService");
 System.out.println(service.hello("motan"));
 }
}

复制代码

也就是说 IDL 主要是用作跨语言平台的服务之间的调用，有两种最常用的 IDL：一个是

Facebook 开源的Thrift 协议，另一个是 Google 开源的gRPC 协议。无论是 Thrift 协议

还是 gRPC 协议，它们的工作原理都是类似的。

接下来，我以 gRPC 协议为例，给你讲讲如何使用 IDL 文件方式来描述接口。

gRPC 协议使用 Protobuf 简称 proto 文件来定义接口名、调用参数以及返回值类型。

比如文件 helloword.proto 定义了一个接口 SayHello 方法，它的请求参数是

HelloRequest，它的返回值是 HelloReply。

假如服务提供者使用的是 Java 语言，那么利用 protoc 插件即可自动生成 Server 端的

Java 代码。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// The greeter service definition.
service Greeter {
 // Sends a greeting
 rpc SayHello (HelloRequest) returns (HelloReply) {}
 rpc SayHelloAgain (HelloRequest) returns (HelloReply) {}

}

// The request message containing the user's name.
message HelloRequest {
 string name = 1;
}

// The response message containing the greetings
message HelloReply {
 string message = 1;
}

复制代码

1

2

3

4

5

6

7

private class GreeterImpl extends GreeterGrpc.GreeterImplBase {

 @Override
 public void sayHello(HelloRequest req, StreamObserver<HelloReply> responseObserver) {
 HelloReply reply = HelloReply.newBuilder().setMessage("Hello " + req.getName()).buil
 responseObserver.onNext(reply);
 responseObserver.onCompleted();

复制代码

假如服务消费者使用的也是 Java 语言，那么利用 protoc 插件即可自动生成 Client 端的

Java 代码。

假如服务消费者使用的是 PHP 语言，那么利用 protoc 插件即可自动生成 Client 端的 PHP

代码。

8

9

10

11

12

13

14

15

16

 }

 @Override
 public void sayHelloAgain(HelloRequest req, StreamObserver<HelloReply> responseObserve
 HelloReply reply = HelloReply.newBuilder().setMessage("Hello again " + req.getName(
 responseObserver.onNext(reply);
 responseObserver.onCompleted();
 }
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

public void greet(String name) {
 logger.info("Will try to greet " + name + " ...");
 HelloRequest request = HelloRequest.newBuilder().setName(name).build();
 HelloReply response;
 try {
 response = blockingStub.sayHello(request);
 } catch (StatusRuntimeException e) {
 logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());
 return;
 }
 logger.info("Greeting: " + response.getMessage());
 try {
 response = blockingStub.sayHelloAgain(request);
 } catch (StatusRuntimeException e) {
 logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());
 return;
 }
 logger.info("Greeting: " + response.getMessage());
}

复制代码

1

2

3

4

 $request = new Helloworld\HelloRequest();
 $request->setName($name);
 list($reply, $status) = $client->SayHello($request)->wait();
 $message = $reply->getMessage();

复制代码

由此可见，gRPC 协议的服务描述是通过 proto 文件来定义接口的，然后再使用 protoc 来

生成不同语言平台的客户端和服务端代码，从而具备跨语言服务调用能力。

有一点特别需要注意的是，在描述接口定义时，IDL 文件需要对接口返回值进行详细定义。

如果接口返回值的字段比较多，并且经常变化时，采用 IDL 文件方式的接口定义就不太合

适了。一方面可能会造成 IDL 文件过大难以维护，另一方面只要 IDL 文件中定义的接口返

回值有变更，都需要同步所有的服务消费者都更新，管理成本就太高了。

我在项目实践过程中，曾经考虑过采用 Protobuf 文件来描述微博内容接口，但微博内容返

回的字段有几百个，并且有些字段不固定，返回什么字段是业务方自定义的，这种情况采用

Protobuf 文件来描述的话会十分麻烦，所以最终不得不放弃这种方式。

总结

今天我给你介绍了服务描述最常见的三种方式：RESTful API、XML 配置以及 IDL 文件。

具体采用哪种服务描述方式是根据实际情况决定的，通常情况下，如果只是企业内部之间的

服务调用，并且都是 Java 语言的话，选择 XML 配置方式是最简单的。如果企业内部存在

多个服务，并且服务采用的是不同语言平台，建议使用 IDL 文件方式进行描述服务。如果

还存在对外开放服务调用的情形的话，使用 RESTful API 方式则更加通用。

思考题

针对你的业务场景思考一下，假如要进行服务化，你觉得使用哪种服务描述最合适？为什

么？

5

6

 list($reply, $status) = $client->SayHelloAgain($request)->wait();
 $message = $reply->getMessage();

欢迎你在留言区写下自己的思考，与我一起讨论。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 03 | 初探微服务架构

下一篇 05 | 如何注册和发现服务？

三木子
2018-08-30

 29

老师可否提供一个微博的restfull api设计规范文档呢？想要学习下。

钟悠
2018-08-30

 17

边看文章，边想dubbo

展开

精选留言 (51)  写留言

Liam
2018-08-30

 13

三种方式都用过：

A项目使用Consul，对应restful
B项目使用dubbo, 对应XML
C项目涉及java和python服务之间调用，使用thrift，对应IDL

展开

岳阳楼
2018-08-30

 9

没理解说IDL兼容的问题，查了一下，Protobuf是支持版本兼容的，新增字段或者删除字段
都可以兼容。能细致的讲一下您对这个的见解么，谢谢！

展开

小胖狗
2018-08-30

 8

我们这边是这样的。同一个服务，对内提供的话就使用RPC，对外提供的话，就走Restful
API

明天更美好
2018-08-30

 6

我觉得我们如果做的话，xml方式适合，我们对性能要求交高，对在提供能力要求
1.5wtps，响应60ms以内，所以xml比较合适，但是我还想请教胡老师一个问题，就是我
们目前还是单体应用，有23接口，就认证接口并发交高，有必要做微服务吗？目前光
tomcat部署了30多个，感觉好烦，每次升级换包老半天。而且是没网部署。

展开

王江华
2018-08-30

 5

目前我们用的php+thirft，还没有做服务注册，服务化刚刚开始，后续还有好多坑要趟

A:春哥大魔...
2018-08-30

 4

请问在rpc调用和mq调用之间怎样做取舍，因为很多场景下两者之间的选择貌似都可以呢

陈华应
2018-08-30

 4

一般是两种结合，各个服务之间的调用通过xml的形式，对外暴露restful接口，如给前端调
用等。dubbo，pigeon， springboot实现两种不同形式的服务接口定义与调用。目前都
是JAVA，还没有涉及到多语言。

Hurt
2018-08-30

 4

目前 微服务 还是以java为主吗 老师

展开

三木子
2018-08-30

 3

现在的服务是通过dubbo xml配置服务访问。将以前的一个应用拆分成两个独立服务，一
个基础服务，一个业务服务，业务依赖基础服务。基础服务只服务于业务，所以用xml配置
引用比较高效。业务对外提供服务restfull api，共别的系统调用！

展开

郁
2018-08-30

 3

对内grpc，对外http+json

展开

oddrock
2018-08-30

 2

老师好，提一个问题。
您说：“在这种方式下，如果服务提供者变更了接口定义，不仅需要更新服务提供者加载
的接口描述文件 server.xml，还需要同时更新服务消费者加载的接口描述文件
client.xml。”
 …
展开

不够
2018-08-30

 2

我司的微服务大多数都是内部调用，比较在意性能，采用的xml，依赖相同的api接口，有
接口变更时，一般就升级接口

展开

耳东陈
2018-09-04

 1

服务规范、服务描述之前通过文档规范，稍有改动跨部门沟通简直就是噩梦，现在使用
Swagger 轻松解决问题

heigh
2018-09-01

 1

请教，idl走的七层还是四层协议？

展开

作者回复: idl跟通信协议无关，grpc用的是http2，可以理解是七层，thrift用的是tcp，四层

long.mr
2018-09-01

 1

老师，刚刚说的消息字段太多的时候proto文件中添加字段的修改成本很大，实际上指的的
是编译 发布成本吗? 就是依赖该服务端模块需要重新编译是吧?那字段多的时候应该考虑哪
种方式呢，xml配置起来好麻烦，restful的话 同样也需要告知业务方让他们修改对应的客
户端。 感觉好难选择，个人认为内部的话统一使用proto，对外提供服务时候，用rpc搭建
一个http的server也是挺方便的吧。

展开

feimeng053...
2018-08-30

 1

微博内容不用protobuf，用的什么？

展开

何磊  1

2018-08-30

一个微服务应该能够同时支持rpc与http协议的调用。

展开

高进
2019-03-01



对外restful
对内xml
跨语言idl

展开

