
10 | 到底应不应该返回对象？
2019-12-18 吴咏炜

现代C++实战30讲 进入课程

讲述：吴咏炜
时长 10:25 大小 7.16M



你好，我是吴咏炜。

前几讲里我们已经约略地提到了返回对象的问题，本讲里我们进一步展开这个话题，把返回

对象这个问题讲深讲透。

F.20

《C++ 核心指南》的 F.20 这一条款是这么说的 [1]：

F.20: For “out” output values, prefer return values to output parameters



 下载APP 

翻译一下：

在函数输出数值时，尽量使用返回值而非输出参数

这条可能会让一些 C++ 老手感到惊讶——在 C++11 之前的实践里，我们完全是采用相反

的做法的啊！

在解释 F.20 之前，我们先来看看我们之前的做法。

调用者负责管理内存，接口负责生成

一种常见的做法是，接口的调用者负责分配一个对象所需的内存并负责其生命周期，接口负

责生成或修改该对象。这种做法意味着对象可以默认构造（甚至只是一个结构），代码一般

使用错误码而非异常。

示例代码如下：

这种做法和 C 是兼容的，很多程序员出于惯性也沿用了 C 的这种做法。一种略为 C++ 点

的做法是使用引用代替指针，这样在上面的示例中就不需要使用 & 运算符了；但这样只是

语法略有区别，本质完全相同。如果对象有合理的析构函数的话，那这种做法的主要问题是

啰嗦、难于组合。你需要写更多的代码行，使用更多的中间变量，也就更容易犯错误。

假如我们已有矩阵变量 、 和 ，要执行一个操作

那在这种做法下代码大概会写成：

复制代码
1

2

3

MyObj obj;
ec = initialize(&obj);
…

A B C

R = A×B+C

理论上该方法可以有一个变体，不使用返回值，而使用异常来表示错误。实践中，我从来没

在实际系统中看到过这样的代码。

接口负责对象的堆上生成和内存管理

另外一种可能的做法是接口提供生成和销毁对象的函数，对象在堆上维护。fopen 和

fclose 就是这样的接口的实例。注意使用这种方法一般不推荐由接口生成对象，然后由调

用者通过调用 delete 来释放。在某些环境里，比如 Windows 上使用不同的运行时库

时，这样做会引发问题。

同样以上面的矩阵运算为例，代码大概就会写成这个样子：

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

error_code_t add(
 matrix* result,
 const matrix& lhs,
 const matrix& rhs);
error_code_t multiply(
 matrix* result,
 const matrix& lhs,
 const matrix& rhs);
…
 error_code_t ec;
 …
 matrix temp;
 ec = multiply(&temp, a, b);
 if (ec != SUCCESS) {
 goto end;
 }
 matrix r;
 ec = add(&r, temp, c);
 if (ec != SUCCESS) {
 goto end;
 }
 …
end:
 // 返回 ec 或类似错误处理

复制代码
1

2

3

4

matrix* add(
 const matrix* lhs,
 const matrix* rhs,
 error_code_t* ec);

可以注意到，虽然代码看似稍微自然了一点，但啰嗦程度却增加了，原因是正确的处理需要

考虑到各种不同错误路径下的资源释放问题。这儿也没有使用异常，因为异常在这种表达下

会产生内存泄漏，除非用上一堆 try 和 catch，但那样异常在表达简洁性上的优势就没有

了，没有实际的好处。

不过，如果我们同时使用智能指针和异常的话，就可以得到一个还不错的变体。如果接口接

受和返回的都是 shared_ptr<matrix>，那调用代码就简单了：

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

matrix* multiply(
 const matrix* lhs,
 const matrix* rhs,
 error_code_t* ec);
void deinitialize(matrix** mat);
…
 error_code_t ec;
 …
 matrix* temp = nullptr;
 matrix* r = nullptr;
 temp = multiply(a, b, &ec);
 if (!temp) {
 goto end;
 }
 r = add(temp, c, &ec);
 if (!r) {
 goto end;
 }
 …
end:
 if (temp) {
 deinitialize(&temp);
 }
 // 返回 ec 或类似错误处理

复制代码
1

2

3

4

5

6

7

8

shared_ptr<matrix> add(
 const shared_ptr<matrix>& lhs,
 const shared_ptr<matrix>& rhs);
shared_ptr<matrix> multiply(
 const shared_ptr<matrix>& lhs,
 const shared_ptr<matrix>& rhs);
…
 auto r = add(multiply(a, b), c);

调用这些接口必须要使用 shared_ptr，这不能不说是一个限制。另外，对象永远是在堆

上分配的，在很多场合，也会有一定的性能影响。

接口直接返回对象

最直接了当的代码，当然就是直接返回对象了。这回我们看实际可编译、运行的代码：

这段代码使用了 Armadillo，一个利用现代 C++ 特性的开源线性代数库 [2]。你可以看到

代码非常简洁，完全表意（imat22 是元素类型为整数的大小固定为 2 x 2 的矩阵）。它有

以下优点：

Armadillo 是个比较复杂的库，我们就不以 Armadillo 的代码为例来进一步讲解了。我们

可以用一个假想的 matrix 类来看看返回对象的代码是怎样编写的。

如何返回一个对象？

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

#include <armadillo>
#include <iostream>

using arma::imat22;
using std::cout;

int main()
{
 imat22 a{{1, 1}, {2, 2}};
 imat22 b{{1, 0}, {0, 1}};
 imat22 c{{2, 2}, {1, 1}};
 auto r = a * b + c;
 cout << r;
}

代码直观、容易理解。

乘法和加法可以组合在一行里写出来，无需中间变量。

性能也没有问题。实际执行中，没有复制发生，计算结果直接存放到了变量 r 上。更妙

的是，因为矩阵大小是已知的，这儿不需要任何动态内存，所有对象及其数据全部存放

在栈上。

一个用来返回的对象，通常应当是可移动构造 / 赋值的，一般也同时是可拷贝构造 / 赋值

的。如果这样一个对象同时又可以默认构造，我们就称其为一个半正则（semiregular）的

对象。如果可能的话，我们应当尽量让我们的类满足半正则这个要求。

半正则意味着我们的 matrix 类提供下面的成员函数：

我们先看一下在没有返回值优化的情况下 C++ 是怎样返回对象的。以矩阵乘法为例，代码

应该像下面这样：

注意对于一个本地变量，我们永远不应该返回其引用（或指针），不管是作为左值还是右

值。从标准的角度，这会导致未定义行为（undefined behavior），从实际的角度，这样

的对象一般放在栈上可以被调用者正常覆盖使用的部分，随便一个函数调用或变量定义就可

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

class matrix {
public:
 // 普通构造
 matrix(size_t rows, size_t cols);
 // 半正则要求的构造
 matrix();
 matrix(const matrix&);
 matrix(matrix&&);
 // 半正则要求的赋值
 matrix& operator=(const matrix&);
 matrix& operator=(matrix&&);
};

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

matrix operator*(const matrix& lhs,
 const matrix& rhs)
{
 if (lhs.cols() != rhs.rows()) {
 throw runtime_error(
 "sizes mismatch");
 }
 matrix result(lhs.rows(),
 rhs.cols());
 // 具体计算过程
 return result;
}

能覆盖这个对象占据的内存。这还是这个对象的析构不做事情的情况：如果析构函数会释放

内存或破坏数据的话，那你访问到的对象即使内存没有被覆盖，也早就不是有合法数据的对

象了……

回到正题。我们需要回想起，在  [第 3 讲] 里说过的，返回非引用类型的表达式结果是个

纯右值（prvalue）。在执行 auto r = … 的时候，编译器会认为我们实际是在构造

matrix r(…)，而“…”部分是一个纯右值。因此编译器会首先试图匹配

matrix(matrix&&)，在没有时则试图匹配 matrix(const matrix&)；也就是说，有

移动支持时使用移动，没有移动支持时则拷贝。

返回值优化（拷贝消除）

我们再来看一个能显示生命期过程的对象的例子：

如果你认为执行结果里应当有一行“Copy A”或“Move A”的话，你就忽视了返回值优

化的威力了。即使完全关闭优化，三种主流编译器（GCC、Clang 和 MSVC）都只输出两

行：

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

#include <iostream>

using namespace std;

// Can copy and move
class A {
public:
 A() { cout << "Create A\n"; }
 ~A() { cout << "Destroy A\n"; }
 A(const A&) { cout << "Copy A\n"; }
 A(A&&) { cout << "Move A\n"; }
};

A getA_unnamed()
{
 return A();
}

int main()
{
 auto a = getA_unnamed();
}

Create A

Destroy A

我们把代码稍稍改一下：

这回结果有了一点点小变化。虽然 GCC 和 Clang 的结果完全不变，但 MSVC 在非优化编

译的情况下产生了不同的输出（优化编译——使用命令行参数 /O1、/O2 或 /Ox——则不

变）：

Create A

Move A

Destroy A

Destroy A

也就是说，返回内容被移动构造了。

我们继续变形一下：

复制代码
1

2

3

4

5

6

7

8

9

10

A getA_named()
{
 A a;
 return a;
}

int main()
{
 auto a = getA_named();
}

复制代码
1

2

3

4

5

6

7

8

#include <stdlib.h>

A getA_duang()
{
 A a1;
 A a2;
 if (rand() > 42) {
 return a1;

这回所有的编译器都被难倒了，输出是：

Create A

Create A

Move A

Destroy A

Destroy A

Destroy A

关于返回值优化的实验我们就做到这里。下一步，我们试验一下把移动构造函数删除：

我们可以立即看到“Copy A”出现在了结果输出中，说明目前结果变成拷贝构造了。

如果再进一步，把拷贝构造函数也删除呢？是不是上面的 getA_unnamed、getA_named

和 getA_duang 都不能工作了？

在 C++14 及之前确实是这样的。但从 C++17 开始，对于类似于 getA_unnamed 这样的

情况，即使对象不可拷贝、不可移动，这个对象仍然是可以被返回的！C++17 要求对于这

种情况，对象必须被直接构造在目标位置上，不经过任何拷贝或移动的步骤 [3]。

回到 F.20

9

10

11

12

13

14

15

16

17

 } else {
 return a2;
 }
}

int main()
{
 auto a = getA_duang();
}

复制代码
1 A(A&&) = delete;

理解了 C++ 里的对返回值的处理和返回值优化之后，我们再回过头看一下 F.20 里陈述的

理由的话，应该就显得很自然了：

A return value is self-documenting, whereas a & could be either in-out or out-

only and is liable to be misused.

返回值是可以自我描述的；而 & 参数既可能是输入输出，也可能是仅输出，且很容易被

误用。

我想我对返回对象的可读性，已经给出了充足的例子。对于其是否有性能影响这一问题，也

给出了充分的说明。

我们最后看一下 F.20 里描述的例外情况：

内容小结

C++ 里已经对返回对象做了大量的优化，目前在函数里直接返回对象可以得到更可读、可

组合的代码，同时在大部分情况下我们可以利用移动和返回值优化消除性能问题。

课后思考

请你考虑一下：

“对于非值类型，比如返回值可能是子对象的情况，使用 unique_ptr 或

shared_ptr 来返回对象。”也就是面向对象、工厂方法这样的情况，像  [第 1 讲] 里

给出的 create_shape 应该这样改造。

“对于移动代价很高的对象，考虑将其分配在堆上，然后返回一个句柄（如

unique_ptr），或传递一个非 const 的目标对象的引用来填充（用作输出参

数）。”也就是说不方便移动的，那就只能使用一个 RAII 对象来管理生命周期，或者老

办法输出参数了。

“要在一个内层循环里在多次函数调用中重用一个自带容量的对象：将其当作输入 / 输

出参数并将其按引用传递。”这也是个需要继续使用老办法的情况。

你的项目使用了返回对象了吗？如果没有的话，本讲内容有没有说服你？1.

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

欢迎留言和我交流你的想法。

参考资料

[1] Bjarne Stroustrup and Herb Sutter (editors), “C++ core guidelines”, item F.20.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out (非官方中

文版可参见 https://github.com/lynnboy/CppCoreGuidelines-zh-CN)

[2] Conrad Sanderson and Ryan Curtin, Armadillo. http://arma.sourceforge.net/

[3] cppreference.com, “Copy elision”.

https://en.cppreference.com/w/cpp/language/copy_elision

[3a] cppreference.com, “复制消除”.

https://zh.cppreference.com/w/cpp/language/copy_elision

这讲里我们没有深入讨论赋值；请你思考一下，如果例子里改成赋值，会有什么样的变

化？

2.

上一篇 09 | 易用性改进 II：字面量、静态断言和成员函数说明符

nelson
2019-12-19

文稿中的代码片段
ec = multiply(&temp, a, b);
if (result != SUCCESS)
{
 goto end; …
展开

作者回复: 多谢。已修正。

  1

木瓜777
2019-12-18

项目中一直使用您说的老方法，目前看编译器有优化的话，后面会逐步考虑采用返回对象
的方法！ 有个问题问下，如果要返回空对象，该如何做？ 是直接采用空的构造函数？

作者回复: 用默认构造函数代表空，或者用 optional<对象> （不构造）代表空，或者抛异常代表

不正常（视是否不正常而定）。

optional 会在第 22 讲里讨论。

  1

小一日一
2019-12-18

我认为老师应该讲一下NRVO/RVO与std::move()的区别，这个问题曾经困扰过我，从stac
koverflow的问题来看，学习c++11时大多数人都思考过这个问题：https://stackoverflo
w.com/questions/4986673/c11-rvalues-and-move-semantics-confusion-return-stat
ement

展开

精选留言 (4)  写留言

作者回复: 简单来说，在对本地变量进行返回时，不用 std::move。实际上，我在第 3 讲就写了：

“有一种常见的 C++ 编程错误，是在函数里返回一个本地对象的引用。由于在函数结束时本地对

象即被销毁，返回一个指向本地对象的引用属于未定义行为。理论上来说，程序出任何奇怪的行

为都是正常的。

“在 C++11 之前，返回一个本地对象意味着这个对象会被拷贝，除非编译器发现可以做返回值优

化（named return value optimization，或 NRVO），能把对象直接构造到调用者的栈上。从

C++11 开始，返回值优化仍可以发生，但在没有返回值优化的情况下，编译器将试图把本地对象

移动出去，而不是拷贝出去。这一行为不需要程序员手工用 `std::move` 进行干预——使用`std::

move` 对于移动行为没有帮助，反而会影响返回值优化。”

 1  1

hello world
2019-12-18

请问老师这个C++20什么时候发布编译器之类的啊？还是说已经有了？

作者回复: 看这个页面吧：

https://en.cppreference.com/w/cpp/compiler_support

目前 GCC 领先一些（可以用 -std=c++2a 启用 20 的功能），但还没有哪家完整支持 C++20。

 2  1

