
⼤大程序



多个.c⽂文件

• main()⾥里的代码太⻓长了适合分成⼏几个函数 

• ⼀一个源代码⽂文件太⻓长了适合分成⼏几个⽂文件 
• 两个独⽴立的源代码⽂文件不能编译形成可执⾏行的程序



编译单元

• ⼀一个.c⽂文件是⼀一个编译单元 

• 编译器每次编译只处理⼀一个编译单元



项⺫⽬目

• 在Dev C++中新建⼀一个项⺫⽬目，然后把⼏几个源代码⽂文件
加⼊入进去 

• 对于项⺫⽬目，Dev C++的编译会把⼀一个项⺫⽬目中所有的源
代码⽂文件都编译后，链接起来 

• 有的IDE有分开的编译和构建两个按钮，前者是对单
个源代码⽂文件编译，后者是对整个项⺫⽬目做链接



头⽂文件



函数原型
• 如果不给出函数原型，编译器会猜测你所调⽤用的函数
的所有参数都是int，返回类型也是int 

• 编译器在编译的时候只看当前的⼀一个编译单元，它不
会去看同⼀一个项⺫⽬目中的其他编译单元以找出那个函数
的原型 

• 如果你的函数并⾮非如此，程序链接的时候不会出错 
• 但是执⾏行的时候就不对了 
• 所以需要在调⽤用函数的地⽅方给出函数的原型，以告诉
编译器那个函数究竟⻓长什么样



头⽂文件

• 把函数原型放到⼀一个头⽂文件（以.h结尾）中，在需要
调⽤用这个函数的源代码⽂文件（.c⽂文件）中#include这
个头⽂文件，就能让编译器在编译的时候知道函数的原
型



#include

• #include是⼀一个编译预处理指令，和宏⼀一样，在编译
之前就处理了 

• 它把那个⽂文件的全部⽂文本内容原封不动地插⼊入到它所
在的地⽅方 

• 所以也不是⼀一定要在.c⽂文件的最前⾯面#include



“”还是<>
• #include有两种形式来指出要插⼊入的⽂文件 

• “”要求编译器⾸首先在当前⺫⽬目录（.c⽂文件所在的⺫⽬目录）
寻找这个⽂文件，如果没有，到编译器指定的⺫⽬目录去
找 

• <>让编译器只在指定的⺫⽬目录去找 

• 编译器⾃自⼰己知道⾃自⼰己的标准库的头⽂文件在哪⾥里 
• 环境变量和编译器命令⾏行参数也可以指定寻找头⽂文件
的⺫⽬目录



#include的误区

• #include不是⽤用来引⼊入库的 

• stdio.h⾥里只有printf的原型，printf的代码在另外的地
⽅方，某个.lib(Windows)或.a(Unix)中 

• 现在的C语⾔言编译器默认会引⼊入所有的标准库 

• #include <stdio.h>只是为了让编译器知道printf函数
的原型，保证你调⽤用时给出的参数值是正确的类型



头⽂文件

• 在使⽤用和定义这个函数的地⽅方都应该#include这个头
⽂文件 

• ⼀一般的做法就是任何.c都有对应的同名的.h，把所有
对外公开的函数的原型和全局变量的声明都放进去



不对外公开的函数

• 在函数前⾯面加上static就使得它成为只能在所在的编
译单元中被使⽤用的函数 

• 在全局变量前⾯面加上static就使得它成为只能在所在
的编译单元中被使⽤用的全局变量



声明



变量的声明

• int i;是变量的定义 

• extern int i;是变量的声明



声明和定义
• 声明是不产⽣生代码的东⻄西 

• 函数原型 
• 变量声明 
• 结构声明 
• 宏声明 
• 枚举声明 
• 类型声明 

• inline函数 

• 定义是产⽣生代码的东⻄西



头⽂文件

• 只有声明可以被放在头⽂文件中 
• 是规则不是法律 

• 否则会造成⼀一个项⺫⽬目中多个编译单元⾥里有重名的实体 
• ＊某些编译器允许⼏几个编译单元中存在同名的函数，
或者⽤用weak修饰符来强调这种存在



重复声明

• 同⼀一个编译单元⾥里，同名的结构不能被重复声明 
• 如果你的头⽂文件⾥里有结构的声明，很难这个头⽂文件不
会在⼀一个编译单元⾥里被#include多次 

• 所以需要“标准头⽂文件结构”



标准头⽂文件结构

• 运⽤用条件编译和宏，保证这个头⽂文件在
⼀一个编译单元中只会被#include⼀一次 

• #pragma once也能起到相同的作⽤用，
但是不是所有的编译器都⽀支持



＊前向声明

• 因为在这个地⽅方不需要具体知道Node
是怎样的，所以可以⽤用struct Node来
告诉编译器Node是⼀一个结构


