
单表访问⽅法

标签： MySQL 是怎样运⾏的

对于我们这些MySQL的使⽤者来说，MySQL其实就是⼀个软件，平时
⽤的最多的就是查询功能。DBA时不时丢过来⼀些慢查询语句让优
化，我们如果连查询是怎么执⾏的都不清楚还优化个⽑线，所以是时
候掌握真正的技术了。我们在第⼀章的时候就曾说过，MySQL
Server有⼀个称为查询优化器的模块，⼀条查询语句进⾏语法解析
之后就会被交给查询优化器来进⾏优化，优化的结果就是⽣成⼀个所
谓的执⾏计划，这个执⾏计划表明了应该使⽤哪些索引进⾏查询，表
之间的连接顺序是啥样的，最后会按照执⾏计划中的步骤调⽤存储引
擎提供的⽅法来真正的执⾏查询，并将查询结果返回给⽤户。不过查
询优化这个主题有点⼉⼤，在学会跑之前还得先学会⾛，所以本章先
来瞅瞅MySQL怎么执⾏单表查询（就是FROM⼦句后边只有⼀个表，
最简单的那种查询～）。不过需要强调的⼀点是，在学习本章前务必
看过前边关于记录结构、数据⻚结构以及索引的部分，如果你不能保
证这些东⻄已经完全掌握，那么本章不适合你。

为了故事的顺利发展，我们先得有个表：

CREATE TABLE single_table (
 id INT NOT NULL AUTO_INCREMENT,
 key1 VARCHAR(100),
 key2 INT,
 key3 VARCHAR(100),
 key_part1 VARCHAR(100),
 key_part2 VARCHAR(100),
 key_part3 VARCHAR(100),
 common_field VARCHAR(100),
 PRIMARY KEY (id),
 KEY idx_key1 (key1),
 UNIQUE KEY idx_key2 (key2),
 KEY idx_key3 (key3),
 KEY idx_key_part(key_part1, key_part2,
key_part3)
) Engine=InnoDB CHARSET=utf8;

我们为这个single_table表建⽴了1个聚簇索引和4个⼆级索引，
分别是：

为id列建⽴的聚簇索引。

为key1列建⽴的idx_key1⼆级索引。

为key2列建⽴的idx_key2⼆级索引，⽽且该索引是唯⼀⼆级
索引。

为key3列建⽴的idx_key3⼆级索引。

为key_part1、key_part2、key_part3列建⽴的
idx_key_part⼆级索引，这也是⼀个联合索引。

然后我们需要为这个表插⼊ 10000 ⾏记录，除id列外其余的列都插
⼊随机值就好了，具体的插⼊语句我就不写了，⾃⼰写个程序插⼊吧
（id列是⾃增主键列，不需要我们⼿动插⼊）。

访问⽅法（access method）的概念

想必各位都⽤过⾼德地图来查找到某个地⽅的路线吧（此处没有为⾼
德地图打⼴告的意思，他们没给我钱，⼤家⽤百度地图也可以啊），
如果我们搜⻄安钟楼到⼤雁塔之间的路线的话，地图软件会给出 n
种路线供我们选择，如果我们实在闲的没事⼉⼲并且⾜够有钱的话，
还可以⽤南辕北辙的⽅式绕地球⼀圈到达⽬的地。也就是说，不论采
⽤哪⼀种⽅式，我们最终的⽬标就是到达⼤雁塔这个地⽅。回
到MySQL中来，我们平时所写的那些查询语句本质上只是⼀种声明式
的语法，只是告诉MySQL我们要获取的数据符合哪些规则，⾄于
MySQL背地⾥是怎么把查询结果搞出来的那是MySQL⾃⼰的事⼉。对
于单个表的查询来说，设计 MySQL 的⼤叔把查询的执⾏⽅式⼤致分
为下边两种：

使⽤全表扫描进⾏查询

这种执⾏⽅式很好理解，就是把表的每⼀⾏记录都扫⼀遍嘛，
把符合搜索条件的记录加⼊到结果集就完了。不管是啥查询都
可以使⽤这种⽅式执⾏，当然，这种也是最笨的执⾏⽅式。

使⽤索引进⾏查询

因为直接使⽤全表扫描的⽅式执⾏查询要遍历好多记录，所以
代价可能太⼤了。如果查询语句中的搜索条件可以使⽤到某个
索引，那直接使⽤索引来执⾏查询可能会加快查询执⾏的时
间。使⽤索引来执⾏查询的⽅式五花⼋⻔，⼜可以细分为许多
种类：

针对主键或唯⼀⼆级索引的等值查询

针对普通⼆级索引的等值查询

针对索引列的范围查询

直接扫描整个索引

设计MySQL的⼤叔把MySQL执⾏查询语句的⽅式称之为访问⽅法或者
访问类型。同⼀个查询语句可能可以使⽤多种不同的访问⽅法来执
⾏，虽然最后的查询结果都是⼀样的，但是执⾏的时间可能差⽼⿐⼦
远了，就像是从钟楼到⼤雁塔，你可以坐⽕箭去，也可以坐⻜机去，
当然也可以坐乌⻳去。下边细细道来各种访问⽅法的具体内容。

const

有的时候我们可以通过主键列来定位⼀条记录，⽐⽅说这个查询：

SELECT * FROM single_table WHERE id = 1438;

MySQL会直接利⽤主键值在聚簇索引中定位对应的⽤户记录，就像这
样：

原谅我把聚簇索引对应的复杂的B+树结构搞了⼀个极度精简版，为
了突出重点，我们忽略掉了⻚的结构，直接把所有的叶⼦节点的记录
都放在⼀起展示，⽽且记录中只展示我们关⼼的索引列，对于
single_table表的聚簇索引来说，展示的就是id列。我们想突出
的重点就是：B+树叶⼦节点中的记录是按照索引列排序的，对于的
聚簇索引来说，它对应的B+树叶⼦节点中的记录就是按照id列排序
的。B+树本来就是⼀个矮矮的⼤胖⼦，所以这样根据主键值定位⼀
条记录的速度贼快。类似的，我们根据唯⼀⼆级索引列来定位⼀条记
录的速度也是贼快的，⽐如下边这个查询：

SELECT * FROM single_table WHERE key2 = 3841;

这个查询的执⾏过程的示意图就是这样：

可以看到这个查询的执⾏分两步，第⼀步先从idx_key2对应的B+树
索引中根据key2列与常数的等值⽐较条件定位到⼀条⼆级索引记
录，然后再根据该记录的id值到聚簇索引中获取到完整的⽤户记
录。

设计MySQL的⼤叔认为通过主键或者唯⼀⼆级索引列与常数的等值⽐
较来定位⼀条记录是像坐⽕箭⼀样快的，所以他们把这种通过主键或
者唯⼀⼆级索引列来定位⼀条记录的访问⽅法定义为：const，意思
是常数级别的，代价是可以忽略不计的。不过这种const访问⽅法只
能在主键列或者唯⼀⼆级索引列和⼀个常数进⾏等值⽐较时才有效，
如果主键或者唯⼀⼆级索引是由多个列构成的话，索引中的每⼀个列
都需要与常数进⾏等值⽐较，这个const访问⽅法才有效（这是因为
只有该索引中全部列都采⽤等值⽐较才可以定位唯⼀的⼀条记录）。

对于唯⼀⼆级索引来说，查询该列为NULL值的情况⽐较特殊，⽐如
这样：

SELECT * FROM single_table WHERE key2 IS NULL;

因为唯⼀⼆级索引列并不限制NULL值的数量，所以上述语句可能访
问到多条记录，也就是说上边这个语句不可以使⽤const访问⽅法来
执⾏。

ref

有时候我们对某个普通的⼆级索引列与常数进⾏等值⽐较，⽐如这
样：

SELECT * FROM single_table WHERE key1 = 'abc';

对于这个查询，我们当然可以选择全表扫描来逐⼀对⽐搜索条件是否
满⾜要求，我们也可以先使⽤⼆级索引找到对应记录的id值，然后
再回表到聚簇索引中查找完整的⽤户记录。由于普通⼆级索引并不限
制索引列值的唯⼀性，所以可能找到多条对应的记录，也就是说使⽤
⼆级索引来执⾏查询的代价取决于等值匹配到的⼆级索引记录条数。
如果匹配的记录较少，则回表的代价还是⽐较低的，所以MySQL可能
选择使⽤索引⽽不是全表扫描的⽅式来执⾏查询。设计MySQL的⼤叔
就把这种搜索条件为⼆级索引列与常数等值⽐较，采⽤⼆级索引来执
⾏查询的访问⽅法称为：ref。我们看⼀下采⽤ref访问⽅法执⾏查
询的图示：

从图示中可以看出，对于普通的⼆级索引来说，通过索引列进⾏等值
⽐较后可能匹配到多条连续的记录，⽽不是像主键或者唯⼀⼆级索引
那样最多只能匹配1条记录，所以这种ref访问⽅法⽐const差了那
么⼀丢丢，但是在⼆级索引等值⽐较时匹配的记录数较少时的效率还
是很⾼的（如果匹配的⼆级索引记录太多那么回表的成本就太⼤
了），跟坐⾼铁差不多。不过需要注意下边两种情况：

⼆级索引列值为NULL的情况

不论是普通的⼆级索引，还是唯⼀⼆级索引，它们的索引列对
包含NULL值的数量并不限制，所以我们采⽤key IS NULL这
种形式的搜索条件最多只能使⽤ref的访问⽅法，⽽不
是const的访问⽅法。

对于某个包含多个索引列的⼆级索引来说，只要是最左边的连
续索引列是与常数的等值⽐较就可能采⽤ref的访问⽅法，⽐
⽅说下边这⼏个查询：

SELECT * FROM single_table WHERE key_part1 =
'god like';

SELECT * FROM single_table WHERE key_part1 =
'god like' AND key_part2 = 'legendary';

SELECT * FROM single_table WHERE key_part1 =
'god like' AND key_part2 = 'legendary' AND
key_part3 = 'penta kill';

但是如果最左边的连续索引列并不全部是等值⽐较的话，它的
访问⽅法就不能称为ref了，⽐⽅说这样：

SELECT * FROM single_table WHERE key_part1 =
'god like' AND key_part2 > 'legendary';

ref_or_null

有时候我们不仅想找出某个⼆级索引列的值等于某个常数的记录，还
想把该列的值为NULL的记录也找出来，就像下边这个查询：

SELECT * FROM single_demo WHERE key1 = 'abc' OR
key1 IS NULL;

当使⽤⼆级索引⽽不是全表扫描的⽅式执⾏该查询时，这种类型的查
询使⽤的访问⽅法就称为ref_or_null，这个ref_or_null访问
⽅法的执⾏过程如下：

可以看到，上边的查询相当于先分别从idx_key1索引对应的B+树中
找出key1 IS NULL和key1 = 'abc'的两个连续的记录范围，然
后根据这些⼆级索引记录中的id值再回表查找完整的⽤户记录。

range

我们之前介绍的⼏种访问⽅法都是在对索引列与某⼀个常数进⾏等值
⽐较的时候才可能使⽤到（ref_or_null⽐较奇特，还计算了值
为NULL的情况），但是有时候我们⾯对的搜索条件更复杂，⽐如下
边这个查询：

SELECT * FROM single_table WHERE key2 IN (1438,
6328) OR (key2 >= 38 AND key2 <= 79);

我们当然还可以使⽤全表扫描的⽅式来执⾏这个查询，不过也可以使
⽤⼆级索引 + 回表的⽅式执⾏，如果采⽤⼆级索引 + 回表的⽅式
来执⾏的话，那么此时的搜索条件就不只是要求索引列与常数的等值
匹配了，⽽是索引列需要匹配某个或某些范围的值，在本查询中
key2列的值只要匹配下列3个范围中的任何⼀个就算是匹配成功了：

key2的值是1438

key2的值是6328

key2的值在38和79之间。

设计MySQL的⼤叔把这种利⽤索引进⾏范围匹配的访问⽅法称之
为：range。

⼩贴⼠：

此处所说的使⽤索引进⾏范围匹配中的 `索引` 可以是聚簇索引，
也可以是⼆级索引。

如果把这⼏个所谓的key2列的值需要满⾜的范围在数轴上体现出来
的话，那应该是这个样⼦：

也就是从数学的⻆度看，每⼀个所谓的范围都是数轴上的⼀个区间，
3个范围也就对应着3个区间：

范围1：key2 = 1438

范围2：key2 = 6328

范围3：key2 ∈ [38, 79]，注意这⾥是闭区间。

我们可以把那种索引列等值匹配的情况称之为单点区间，上边所说的
范围1和范围2都可以被称为单点区间，像范围3这种的我们可以称为
连续范围区间。

index

看下边这个查询：

SELECT key_part1, key_part2, key_part3 FROM
single_table WHERE key_part2 = 'abc';

由于key_part2并不是联合索引idx_key_part最左索引列，所以
我们⽆法使⽤ref或者range访问⽅法来执⾏这个语句。但是这个查
询符合下边这两个条件：

它的查询列表只有3个列：key_part1, key_part2,
key_part3，⽽索引idx_key_part⼜包含这三个列。

搜索条件中只有key_part2列。这个列也包含在索
引idx_key_part中。

也就是说我们可以直接通过遍历idx_key_part索引的叶⼦节点的
记录来⽐较key_part2 = 'abc'这个条件是否成⽴，把匹配成功
的⼆级索引记录的key_part1, key_part2, key_part3列的值直
接加到结果集中就⾏了。由于⼆级索引记录⽐聚簇索记录⼩的多（聚
簇索引记录要存储所有⽤户定义的列以及所谓的隐藏列，⽽⼆级索引
记录只需要存放索引列和主键），⽽且这个过程也不⽤进⾏回表操
作，所以直接遍历⼆级索引⽐直接遍历聚簇索引的成本要⼩很多，设
计MySQL的⼤叔就把这种采⽤遍历⼆级索引记录的执⾏⽅式称之
为：index。

all

最直接的查询执⾏⽅式就是我们已经提了⽆数遍的全表扫描，对于
InnoDB表来说也就是直接扫描聚簇索引，设计MySQL的⼤叔把这种
使⽤全表扫描执⾏查询的⽅式称之为：all。

注意事项

重温 ⼆级索引 + 回表

⼀般情况下只能利⽤单个⼆级索引执⾏查询，⽐⽅说下边的这个查
询：

SELECT * FROM single_table WHERE key1 = 'abc' AND
key2 > 1000;

查询优化器会识别到这个查询中的两个搜索条件：

key1 = 'abc'

key2 > 1000

优化器⼀般会根据single_table表的统计数据来判断到底使⽤哪
个条件到对应的⼆级索引中查询扫描的⾏数会更少，选择那个扫描⾏
数较少的条件到对应的⼆级索引中查询（关于如何⽐较的细节我们后
边的章节中会唠叨）。然后将从该⼆级索引中查询到的结果经过回表
得到完整的⽤户记录后再根据其余的WHERE条件过滤记录。⼀般来
说，等值查找⽐范围查找需要扫描的⾏数更少（也就是ref的访问⽅
法⼀般⽐range好，但这也不总是⼀定的，也可能采⽤ref访问⽅法
的那个索引列的值为特定值的⾏数特别多），所以这⾥假设优化器决
定使⽤idx_key1索引进⾏查询，那么整个查询过程可以分为两个步
骤：

步骤1：使⽤⼆级索引定位记录的阶段，也就是根据条件key1
= 'abc'从idx_key1索引代表的B+树中找到对应的⼆级索引
记录。

步骤2：回表阶段，也就是根据上⼀步骤中找到的记录的主键
值进⾏回表操作，也就是到聚簇索引中找到对应的完整的⽤户
记录，再根据条件key2 > 1000到完整的⽤户记录继续过
滤。将最终符合过滤条件的记录返回给⽤户。

这⾥需要特别提醒⼤家的⼀点是，因为⼆级索引的节点中的记录只包
含索引列和主键，所以在步骤1中使⽤idx_key1索引进⾏查询时只
会⽤到与key1列有关的搜索条件，其余条件，⽐如key2 > 1000这
个条件在步骤1中是⽤不到的，只有在步骤2完成回表操作后才能继
续针对完整的⽤户记录中继续过滤。

⼩贴⼠：

需要注意的是，我们说⼀般情况下执⾏⼀个查询只会⽤到⼆级索
引，不过还是有特殊情况的，我们后边会详细唠叨的。

明确range访问⽅法使⽤的范围区间

其实对于B+树索引来说，只要索引列和常数使⽤=、<=>、IN、NOT
IN、IS NULL、IS NOT
NULL、>、<、>=、<=、BETWEEN、!=（不等于也可以写成<>）或
者LIKE操作符连接起来，就可以产⽣⼀个所谓的区间。

⼩贴⼠：

LIKE操作符⽐较特殊，只有在匹配完整字符串或者匹配字符串前缀
时才可以利⽤索引，具体原因我们在前边的章节中唠叨过了，这⾥
就不赘述了。

IN操作符的效果和若⼲个等值匹配操作符`=`之间⽤`OR`连接起来
是⼀样的，也就是说会产⽣多个单点区间，⽐如下边这两个语句的
效果是⼀样的：

SELECT * FROM single_table WHERE key2 IN (1438,
6328);

SELECT * FROM single_table WHERE key2 = 1438 OR
key2 = 6328;

不过在⽇常的⼯作中，⼀个查询的WHERE⼦句可能有很多个⼩的搜索
条件，这些搜索条件需要使⽤AND或者OR操作符连接起来，虽然⼤家
都知道这两个操作符的作⽤，但我还是要再说⼀遍：

cond1 AND cond2 ：只有当cond1和cond2都为TRUE时整
个表达式才为TRUE。

cond1 OR cond2：只要cond1或者cond2中有⼀个为TRUE
整个表达式就为TRUE。

当我们想使⽤range访问⽅法来执⾏⼀个查询语句时，重点就是找出
该查询可⽤的索引以及这些索引对应的范围区间。下边分两种情况看
⼀下怎么从由AND或OR组成的复杂搜索条件中提取出正确的范围区
间。

所有搜索条件都可以使⽤某个索引的情况

有时候每个搜索条件都可以使⽤到某个索引，⽐如下边这个查询语
句：

SELECT * FROM single_table WHERE key2 > 100 AND
key2 > 200;

这个查询中的搜索条件都可以使⽤到key2，也就是说每个搜索条件
都对应着⼀个idx_key2的范围区间。这两个⼩的搜索条件使⽤AND
连接起来，也就是要取两个范围区间的交集，在我们使⽤range访问
⽅法执⾏查询时，使⽤的idx_key2索引的范围区间的确定过程就如
下图所示：

key2 > 100和key2 > 200交集当然就是key2 > 200了，也就是
说上边这个查询使⽤idx_key2的范围区间就是(200, +∞)。这东
⻄⼩学都学过吧，再不济初中肯定都学过。我们再看⼀下使⽤OR将
多个搜索条件连接在⼀起的情况：

SELECT * FROM single_table WHERE key2 > 100 OR
key2 > 200;

OR意味着需要取各个范围区间的并集，所以上边这个查询在我们使
⽤range访问⽅法执⾏查询时，使⽤的idx_key2索引的范围区间的
确定过程就如下图所示：

也就是说上边这个查询使⽤idx_key2的范围区间就是(100，
+∞)。

有的搜索条件⽆法使⽤索引的情况

⽐如下边这个查询：

SELECT * FROM single_table WHERE key2 > 100 AND
common_field = 'abc';

请注意，这个查询语句中能利⽤的索引只有idx_key2⼀个，
⽽idx_key2这个⼆级索引的记录中⼜不包含common_field这个字
段，所以在使⽤⼆级索引idx_key2定位定位记录的阶段⽤不
到common_field = 'abc'这个条件，这个条件是在回表获取了完
整的⽤户记录后才使⽤的，⽽范围区间是为了到索引中取记录中提出
的概念，所以在确定范围区间的时候不需要考虑common_field =
'abc'这个条件，我们在为某个索引确定范围区间的时候只需要把⽤
不到相关索引的搜索条件替换为TRUE就好了。

⼩贴⼠：

之所以把⽤不到索引的搜索条件替换为TRUE，是因为我们不打算使
⽤这些条件进⾏在该索引上进⾏过滤，所以不管索引的记录满不满
⾜这些条件，我们都把它们选取出来，待到之后回表的时候再使⽤
它们过滤。

我们把上边的查询中⽤不到idx_key2的搜索条件替换后就是这样：

SELECT * FROM single_table WHERE key2 > 100 AND
TRUE;

化简之后就是这样：

SELECT * FROM single_table WHERE key2 > 100;

也就是说最上边那个查询使⽤idx_key2的范围区间就是：(100,
+∞)。

再来看⼀下使⽤OR的情况：

SELECT * FROM single_table WHERE key2 > 100 OR
common_field = 'abc';

同理，我们把使⽤不到idx_key2索引的搜索条件替换为TRUE：

SELECT * FROM single_table WHERE key2 > 100 OR
TRUE;

接着化简：

SELECT * FROM single_table WHERE TRUE;

额，这也就说说明如果我们强制使⽤idx_key2执⾏查询的话，对应
的范围区间就是(-∞, +∞)，也就是需要将全部⼆级索引的记录进⾏
回表，这个代价肯定⽐直接全表扫描都⼤了。也就是说⼀个使⽤到索
引的搜索条件和没有使⽤该索引的搜索条件使⽤OR连接起来后是⽆
法使⽤该索引的。

复杂搜索条件下找出范围匹配的区间

有的查询的搜索条件可能特别复杂，光是找出范围匹配的各个区间就
挺烦的，⽐⽅说下边这个：

SELECT * FROM single_table WHERE
 (key1 > 'xyz' AND key2 = 748) OR
 (key1 < 'abc' AND key1 > 'lmn') OR
 (key1 LIKE '%suf' AND key1 > 'zzz' AND
(key2 < 8000 OR common_field = 'abc')) ;

我滴个神，这个搜索条件真是绝了，不过⼤家不要被复杂的表象迷住
了双眼，按着下边这个套路分析⼀下：

⾸先查看WHERE⼦句中的搜索条件都涉及到了哪些列，哪些列
可能使⽤到索引。

这个查询的搜索条件涉及到了key1、key2、common_field
这3个列，然后key1列有普通的⼆级索引idx_key1，key2列
有唯⼀⼆级索引idx_key2。

对于那些可能⽤到的索引，分析它们的范围区间。

假设我们使⽤idx_key1执⾏查询

我们需要把那些⽤不到该索引的搜索条件暂时移除
掉，移除⽅法也简单，直接把它们替换为TRUE就好
了。上边的查询中除了有关key2和
common_field列不能使⽤到idx_key1索引
外，key1 LIKE '%suf'也使⽤不到索引，所以
把这些搜索条件替换为TRUE之后的样⼦就是这样：

(key1 > 'xyz' AND TRUE) OR
(key1 < 'abc' AND key1 > 'lmn') OR
(TRUE AND key1 > 'zzz' AND (TRUE OR
TRUE))

化简⼀下上边的搜索条件就是下边这样：

(key1 > 'xyz') OR
(key1 < 'abc' AND key1 > 'lmn') OR
(key1 > 'zzz')

替换掉永远为TRUE或FALSE的条件

因为符合key1 < 'abc' AND key1 > 'lmn'永
远为FALSE，所以上边的搜索条件可以被写成这
样：

(key1 > 'xyz') OR (key1 > 'zzz')

继续化简区间

key1 > 'xyz'和key1 > 'zzz'之间使⽤OR操
作符连接起来的，意味着要取并集，所以最终的结
果化简的到的区间就是：key1 > xyz。也就是
说：上边那个有⼀坨搜索条件的查询语句如果使⽤
idx_key1 索引执⾏查询的话，需要把满⾜key1 >
xyz的⼆级索引记录都取出来，然后拿着这些记录
的id再进⾏回表，得到完整的⽤户记录之后再使⽤
其他的搜索条件进⾏过滤。

假设我们使⽤idx_key2执⾏查询

我们需要把那些⽤不到该索引的搜索条件暂时使
⽤TRUE条件替换掉，其中有关key1和
common_field的搜索条件都需要被替换掉，替换
结果就是：

(TRUE AND key2 = 748) OR
(TRUE AND TRUE) OR
(TRUE AND TRUE AND (key2 < 8000 OR
TRUE))

哎呀呀，key2 < 8000 OR TRUE的结果肯定
是TRUE呀，也就是说化简之后的搜索条件成这样
了：

key2 = 748 OR TRUE

这个化简之后的结果就更简单了：

TRUE

这个结果也就意味着如果我们要使⽤idx_key2索
引执⾏查询语句的话，需要扫描idx_key2⼆级索
引的所有记录，然后再回表，这不是得不偿失么，
所以这种情况下不会使⽤idx_key2索引的。

索引合并

我们前边说过MySQL在⼀般情况下执⾏⼀个查询时最多只会⽤到单个
⼆级索引，但不是还有特殊情况么，在这些特殊情况下也可能在⼀个
查询中使⽤到多个⼆级索引，设计MySQL的⼤叔把这种使⽤到多个索
引来完成⼀次查询的执⾏⽅法称之为：index merge，具体的索引
合并算法有下边三种。

Intersection合并

Intersection翻译过来的意思是交集。这⾥是说某个查询可以使
⽤多个⼆级索引，将从多个⼆级索引中查询到的结果取交集，⽐⽅说
下边这个查询：

SELECT * FROM single_table WHERE key1 = 'a' AND
key3 = 'b';

假设这个查询使⽤Intersection合并的⽅式执⾏的话，那这个过
程就是这样的：

从idx_key1⼆级索引对应的B+树中取出key1 = 'a'的相关
记录。

从idx_key3⼆级索引对应的B+树中取出key3 = 'b'的相关
记录。

⼆级索引的记录都是由索引列 + 主键构成的，所以我们可以
计算出这两个结果集中id值的交集。

按照上⼀步⽣成的id值列表进⾏回表操作，也就是从聚簇索引
中把指定id值的完整⽤户记录取出来，返回给⽤户。

这⾥有同学会思考：为啥不直接使⽤idx_key1或者idx_key2只根
据某个搜索条件去读取⼀个⼆级索引，然后回表后再过滤另外⼀个搜
索条件呢？这⾥要分析⼀下两种查询执⾏⽅式之间需要的成本代价。

只读取⼀个⼆级索引的成本：

按照某个搜索条件读取⼀个⼆级索引

根据从该⼆级索引得到的主键值进⾏回表操作，然后再过滤其
他的搜索条件

读取多个⼆级索引之后取交集成本：

按照不同的搜索条件分别读取不同的⼆级索引

将从多个⼆级索引得到的主键值取交集，然后进⾏回表操作

虽然读取多个⼆级索引⽐读取⼀个⼆级索引消耗性能，但是读取⼆级
索引的操作是顺序I/O，⽽回表操作是随机I/O，所以如果只读取⼀
个⼆级索引时需要回表的记录数特别多，⽽读取多个⼆级索引之后取
交集的记录数⾮常少，当节省的因为回表⽽造成的性能损耗⽐访问多
个⼆级索引带来的性能损耗更⾼时，读取多个⼆级索引后取交集⽐只
读取⼀个⼆级索引的成本更低。

MySQL在某些特定的情况下才可能会使⽤到Intersection索引合
并：

情况⼀：⼆级索引列是等值匹配的情况，对于联合索引来说，
在联合索引中的每个列都必须等值匹配，不能出现只出现匹配
部分列的情况。

⽐⽅说下边这个查询可能⽤到idx_key1和idx_key_part这
两个⼆级索引进⾏Intersection索引合并的操作：

SELECT * FROM single_table WHERE key1 = 'a'
AND key_part1 = 'a' AND key_part2 = 'b' AND
key_part3 = 'c';

⽽下边这两个查询就不能进⾏Intersection索引合并：

SELECT * FROM single_table WHERE key1 > 'a'
AND key_part1 = 'a' AND key_part2 = 'b' AND
key_part3 = 'c';

SELECT * FROM single_table WHERE key1 = 'a'
AND key_part1 = 'a';

第⼀个查询是因为对key1进⾏了范围匹配，第⼆个查询是因为
联合索引idx_key_part中的key_part2列并没有出现在搜
索条件中，所以这两个查询不能进⾏Intersection索引合
并。

情况⼆：主键列可以是范围匹配

⽐⽅说下边这个查询可能⽤到主键和idx_key_part进
⾏Intersection索引合并的操作：

SELECT * FROM single_table WHERE id > 100 AND
key1 = 'a';

为啥呢？凭啥呀？突然冒出这么两个规定让⼤家⼀脸懵逼，下边我们
慢慢品⼀品这⾥头的⽞机。这话还得从InnoDB的索引结构说起，你
要是记不清麻烦再回头看看。对于InnoDB的⼆级索引来说，记录先
是按照索引列进⾏排序，如果该⼆级索引是⼀个联合索引，那么会按
照联合索引中的各个列依次排序。⽽⼆级索引的⽤户记录是由索引列
+ 主键构成的，⼆级索引列的值相同的记录可能会有好多条，这些
索引列的值相同的记录⼜是按照主键的值进⾏排序的。所以重点来
了，之所以在⼆级索引列都是等值匹配的情况下才可能使
⽤Intersection索引合并，是因为只有在这种情况下根据⼆级索
引查询出的结果集是按照主键值排序的。

so？还是没看懂根据⼆级索引查询出的结果集是按照主键值排序的
对使⽤Intersection索引合并有啥好处？⼩伙⼦，别忘了
Intersection索引合并会把从多个⼆级索引中查询出的主键值求
交集，如果从各个⼆级索引中查询的到的结果集本身就是已经按照主
键排好序的，那么求交集的过程就很easy啦。假设某个查询使
⽤Intersection索引合并的⽅式从idx_key1和idx_key2这两个
⼆级索引中获取到的主键值分别是：

从idx_key1中获取到已经排好序的主键值：1、3、5

从idx_key2中获取到已经排好序的主键值：2、3、4

那么求交集的过程就是这样：逐个取出这两个结果集中最⼩的主键
值，如果两个值相等，则加⼊最后的交集结果中，否则丢弃当前较⼩
的主键值，再取该丢弃的主键值所在结果集的后⼀个主键值来⽐较，

直到某个结果集中的主键值⽤完了，如果还是觉得不太明⽩那继续往
下看：

先取出这两个结果集中较⼩的主键值做⽐较，因为1 < 2，所
以把idx_key1的结果集的主键值1丢弃，取出后边的3来⽐
较。

因为3 > 2，所以把idx_key2的结果集的主键值2丢弃，取出
后边的3来⽐较。

因为3 = 3，所以把3加⼊到最后的交集结果中，继续两个结
果集后边的主键值来⽐较。

后边的主键值也不相等，所以最后的交集结果中只包含主键
值3。

别看我们写的啰嗦，这个过程其实可快了，时间复杂度是O(n)，但
是如果从各个⼆级索引中查询出的结果集并不是按照主键排序的话，
那就要先把结果集中的主键值排序完再来做上边的那个过程，就⽐较
耗时了。

⼩贴⼠：

按照有序的主键值去回表取记录有个专有名词⼉，叫：Rowid
Ordered Retrieval，简称ROR，以后⼤家在某些地⽅⻅到这个
名词⼉就眼熟了。

另外，不仅是多个⼆级索引之间可以采⽤Intersection索引合
并，索引合并也可以有聚簇索引参加，也就是我们上边写的情况⼆：
在搜索条件中有主键的范围匹配的情况下也可以使
⽤Intersection索引合并索引合并。为啥主键这就可以范围匹配
了？还是得回到应⽤场景⾥，⽐如看下边这个查询：

SELECT * FROM single_table WHERE key1 = 'a' AND
id > 100;

假设这个查询可以采⽤Intersection索引合并，我们理所当然的
以为这个查询会分别按照id > 100这个条件从聚簇索引中获取⼀些
记录，在通过key1 = 'a'这个条件从idx_key1⼆级索引中获取⼀
些记录，然后再求交集，其实这样就把问题复杂化了，没必要从聚簇
索引中获取⼀次记录。别忘了⼆级索引的记录中都带有主键值的，所
以可以在从idx_key1中获取到的主键值上直接运⽤条件id > 100
过滤就⾏了，这样多简单。所以涉及主键的搜索条件只不过是为了从
别的⼆级索引得到的结果集中过滤记录罢了，是不是等值匹配不重
要。

当然，上边说的情况⼀和情况⼆只是发⽣Intersection索引合并
的必要条件，不是充分条件。也就是说即使情况⼀、情况⼆成⽴，也
不⼀定发⽣Intersection索引合并，这得看优化器的⼼情。优化
器在下边两个条件满⾜的情况下才趋向于使⽤Intersection索引
合并：

单独根据搜索条件从某个⼆级索引中获取的记录数太多，导致
回表开销太⼤

通过Intersection索引合并后需要回表的记录数⼤⼤减少

Union合并

我们在写查询语句时经常想把既符合某个搜索条件的记录取出来，也
把符合另外的某个搜索条件的记录取出来，我们说这些不同的搜索条
件之间是OR关系。有时候OR关系的不同搜索条件会使⽤到同⼀个索
引，⽐⽅说这样：

SELECT * FROM single_table WHERE key1 = 'a' OR
key3 = 'b'

Intersection是交集的意思，这适⽤于使⽤不同索引的搜索条件
之间使⽤AND连接起来的情况；Union是并集的意思，适⽤于使⽤不
同索引的搜索条件之间使⽤OR连接起来的情况。与Intersection

索引合并类似，MySQL在某些特定的情况下才可能会使⽤到Union索
引合并：

情况⼀：⼆级索引列是等值匹配的情况，对于联合索引来说，
在联合索引中的每个列都必须等值匹配，不能出现只出现匹配
部分列的情况。

⽐⽅说下边这个查询可能⽤到idx_key1和idx_key_part这
两个⼆级索引进⾏Union索引合并的操作：

SELECT * FROM single_table WHERE key1 = 'a'
OR (key_part1 = 'a' AND key_part2 = 'b' AND
key_part3 = 'c');

⽽下边这两个查询就不能进⾏Union索引合并：

SELECT * FROM single_table WHERE key1 > 'a'
OR (key_part1 = 'a' AND key_part2 = 'b' AND
key_part3 = 'c');

SELECT * FROM single_table WHERE key1 = 'a'
OR key_part1 = 'a';

第⼀个查询是因为对key1进⾏了范围匹配，第⼆个查询是因为
联合索引idx_key_part中的key_part2列并没有出现在搜
索条件中，所以这两个查询不能进⾏Union索引合并。

情况⼆：主键列可以是范围匹配

情况三：使⽤Intersection索引合并的搜索条件

这种情况其实也挺好理解，就是搜索条件的某些部分使
⽤Intersection索引合并的⽅式得到的主键集合和其他⽅式
得到的主键集合取交集，⽐⽅说这个查询：

SELECT * FROM single_table WHERE key_part1 =
'a' AND key_part2 = 'b' AND key_part3 = 'c'
OR (key1 = 'a' AND key3 = 'b');

优化器可能采⽤这样的⽅式来执⾏这个查询：

先按照搜索条件key1 = 'a' AND key3 = 'b'从索
引idx_key1和idx_key3中使⽤Intersection索引合
并的⽅式得到⼀个主键集合。

再按照搜索条件key_part1 = 'a' AND key_part2
= 'b' AND key_part3 = 'c'从联合索
引idx_key_part中得到另⼀个主键集合。

采⽤Union索引合并的⽅式把上述两个主键集合取并集，
然后进⾏回表操作，将结果返回给⽤户。

当然，查询条件符合了这些情况也不⼀定就会采⽤Union索引合并，
也得看优化器的⼼情。优化器在下边两个条件满⾜的情况下才趋向于
使⽤Union索引合并：

单独根据搜索条件从某个⼆级索引中获取的记录数⽐较少

通过Intersection索引合并后需要回表的记录数⼤⼤减少

Sort-Union合并

Union索引合并的使⽤条件太苛刻，必须保证各个⼆级索引列在进⾏
等值匹配的条件下才可能被⽤到，⽐⽅说下边这个查询就⽆法使⽤
到Union索引合并：

SELECT * FROM single_table WHERE key1 < 'a' OR
key3 > 'z'

这是因为根据key1 < 'a'从idx_key1索引中获取的⼆级索引记录
的主键值不是排好序的，根据key3 > 'z'从idx_key3索引中获取
的⼆级索引记录的主键值也不是排好序的，但是key1 < 'a'和
key3 > 'z'这两个条件⼜特别让我们动⼼，所以我们可以这样：

先根据key1 < 'a'条件从idx_key1⼆级索引总获取记录，
并按照记录的主键值进⾏排序

再根据key3 > 'z'条件从idx_key3⼆级索引总获取记录，
并按照记录的主键值进⾏排序

因为上述的两个⼆级索引主键值都是排好序的，剩下的操作和
Union索引合并⽅式就⼀样了。

我们把上述这种先按照⼆级索引记录的主键值进⾏排序，之后按
照Union索引合并⽅式执⾏的⽅式称之为Sort-Union索引合并，很
显然，这种Sort-Union索引合并⽐单纯的Union索引合并多了⼀步
对⼆级索引记录的主键值排序的过程。

⼩贴⼠：

为啥有Sort-Union索引合并，就没有Sort-Intersection索引
合并么？是的，的确没有Sort-Intersection索引合并这么⼀
说，

Sort-Union的适⽤场景是单独根据搜索条件从某个⼆级索引中获
取的记录数⽐较少，这样即使对这些⼆级索引记录按照主键值进⾏
排序的成本也不会太⾼

⽽Intersection索引合并的适⽤场景是单独根据搜索条件从某个
⼆级索引中获取的记录数太多，导致回表开销太⼤，合并后可以明
显降低回表开销，但是如果加⼊Sort-Intersection后，就需要
为⼤量的⼆级索引记录按照主键值进⾏排序，这个成本可能⽐回表
查询都⾼了，所以也就没有引⼊Sort-Intersection这个玩意
⼉。

索引合并注意事项

联合索引替代Intersection索引合并

SELECT * FROM single_table WHERE key1 = 'a' AND
key3 = 'b';

这个查询之所以可能使⽤Intersection索引合并的⽅式执⾏，还
不是因为idx_key1和idx_key2是两个单独的B+树索引，你要是把
这两个列搞⼀个联合索引，那直接使⽤这个联合索引就把事情搞定
了，何必⽤啥索引合并呢，就像这样：

ALTER TABLE single_table drop index idx_key1,
idx_key3, add index idx_key1_key3(key1, key3);

这样我们把没⽤的idx_key1、idx_key3都⼲掉，再添加⼀个联合
索引idx_key1_key3，使⽤这个联合索引进⾏查询简直是⼜快⼜
好，既不⽤多读⼀棵B+树，也不⽤合并结果，何乐⽽不为？

⼩贴⼠：

不过⼩⼼有单独对key3列进⾏查询的业务场景，这样⼦不得不再把
key3列的单独索引给加上。

