
连接的原理

标签： MySQL 是怎样运⾏的

搞数据库⼀个避不开的概念就是Join，翻译成中⽂就是连接。相信
很多⼩伙伴在初学连接的时候有些⼀脸懵逼，理解了连接的语义之后
⼜可能不明⽩各个表中的记录到底是怎么连起来的，以⾄于在使⽤的
时候常常陷⼊下边两种误区：

误区⼀：业务⾄上，管他三七⼆⼗⼀，再复杂的查询也⽤在⼀
个连接语句中搞定。

误区⼆：敬⽽远之，上次 DBA 那给报过来的慢查询就是因为
使⽤了连接导致的，以后再也不敢⽤了。

所以本章就来扒⼀扒连接的原理。考虑到⼀部分⼩伙伴可能忘了连接
是个啥或者压根⼉就不知道，为了节省他们百度或者看其他书的宝贵
时间以及为了我的书凑字数，我们先来介绍⼀下 MySQL 中⽀持的⼀
些连接语法。

连接简介

连接的本质

为了故事的顺利发展，我们先建⽴两个简单的表并给它们填充⼀点数
据：

mysql> CREATE TABLE t1 (m1 int, n1 char(1));
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t2 (m2 int, n2 char(1));
Query OK, 0 rows affected (0.02 sec)

mysql> INSERT INTO t1 VALUES(1, 'a'), (2, 'b'),
(3, 'c');
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> INSERT INTO t2 VALUES(2, 'b'), (3, 'c'),
(4, 'd');
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

我们成功建⽴了t1、t2两个表，这两个表都有两个列，⼀个是INT
类型的，⼀个是CHAR(1)类型的，填充好数据的两个表⻓这样：

mysql> SELECT * FROM t1;
+------+------+
| m1 | n1 |
+------+------+
1	a
2	b
3	c
+------+------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+------+
| m2 | n2 |
+------+------+
2	b
3	c
4	d
+------+------+
3 rows in set (0.00 sec)

连接的本质就是把各个连接表中的记录都取出来依次匹配的组合加⼊
结果集并返回给⽤户。所以我们把t1和t2两个表连接起来的过程如
下图所示：

这个过程看起来就是把t1表的记录和t2的记录连起来组成新的更⼤
的记录，所以这个查询过程称之为连接查询。连接查询的结果集中包
含⼀个表中的每⼀条记录与另⼀个表中的每⼀条记录相互匹配的组
合，像这样的结果集就可以称之为笛卡尔积。因为表t1中有3条记
录，表t2中也有3条记录，所以这两个表连接之后的笛卡尔积就
有3×3=9⾏记录。在MySQL中，连接查询的语法也很随意，只要
在FROM语句后边跟多个表名就好了，⽐如我们把t1表和t2表连接起
来的查询语句可以写成这样：

mysql> SELECT * FROM t1, t2;
+------+------+------+------+
| m1 | n1 | m2 | n2 |
+------+------+------+------+
1	a	2	b
2	b	2	b
3	c	2	b
1	a	3	c
2	b	3	c
3	c	3	c
1	a	4	d
2	b	4	d
3	c	4	d
+------+------+------+------+
9 rows in set (0.00 sec)

连接过程简介

如果我们乐意，我们可以连接任意数量张表，但是如果没有任何限制
条件的话，这些表连接起来产⽣的笛卡尔积可能是⾮常巨⼤的。⽐⽅
说3个100⾏记录的表连接起来产⽣的笛卡尔积就
有100×100×100=1000000⾏数据！所以在连接的时候过滤掉特定
记录组合是有必要的，在连接查询中的过滤条件可以分成两种：

涉及单表的条件

这种只设计单表的过滤条件我们之前都提到过⼀万遍了，我们
之前也⼀直称为搜索条件，⽐如t1.m1 > 1是只针对t1表的
过滤条件，t2.n2 < 'd'是只针对t2表的过滤条件。

涉及两表的条件

这种过滤条件我们之前没⻅过，⽐如t1.m1 =
t2.m2、t1.n1 > t2.n2等，这些条件中涉及到了两个表，
我们稍后会仔细分析这种过滤条件是如何使⽤的哈。

下边我们就要看⼀下携带过滤条件的连接查询的⼤致执⾏过程了，⽐
⽅说下边这个查询语句：

SELECT * FROM t1, t2 WHERE t1.m1 > 1 AND t1.m1 =
t2.m2 AND t2.n2 < 'd';

在这个查询中我们指明了这三个过滤条件：

t1.m1 > 1

t1.m1 = t2.m2

t2.n2 < 'd'

那么这个连接查询的⼤致执⾏过程如下：

1. ⾸先确定第⼀个需要查询的表，这个表称之为驱动表。怎样在
单表中执⾏查询语句我们在前⼀章都唠叨过了，只需要选取代
价最⼩的那种访问⽅法去执⾏单表查询语句就好了（就是说从
const、ref、ref_or_null、range、index、all这些执⾏⽅法
中选取代价最⼩的去执⾏查询）。此处假设使⽤t1作为驱动
表，那么就需要到t1表中找满⾜t1.m1 > 1的记录，因为表
中的数据太少，我们也没在表上建⽴⼆级索引，所以此处查询
t1表的访问⽅法就设定为all吧，也就是采⽤全表扫描的⽅式
执⾏单表查询。关于如何提升连接查询的性能我们之后再说，
现在先把基本概念捋清楚哈。所以查询过程就如下图所示：

我们可以看到，t1表中符合t1.m1 > 1的记录有两条。

2. 针对上⼀步骤中从驱动表产⽣的结果集中的每⼀条记录，分别
需要到t2表中查找匹配的记录，所谓匹配的记录，指的是符合
过滤条件的记录。因为是根据t1表中的记录去找t2表中的记
录，所以t2表也可以被称之为被驱动表。上⼀步骤从驱动表中
得到了2条记录，所以需要查询2次t2表。此时涉及两个表的列
的过滤条件t1.m1 = t2.m2就派上⽤场了：

当t1.m1 = 2时，过滤条件t1.m1 = t2.m2就相当于
t2.m2 = 2，所以此时t2表相当于有了t1.m1 =
2、t2.n2 < 'd'这两个过滤条件，然后到t2表中执⾏
单表查询。

当t1.m1 = 3时，过滤条件t1.m1 = t2.m2就相当于
t2.m2 = 3，所以此时t2表相当于有了t1.m1 =
3、t2.n2 < 'd'这两个过滤条件，然后到t2表中执⾏
单表查询。

所以整个连接查询的执⾏过程就如下图所示：

也就是说整个连接查询最后的结果只有两条符合过滤条件的记
录：

+------+------+------+------+
| m1 | n1 | m2 | n2 |
+------+------+------+------+
| 2 | b | 2 | b |
| 3 | c | 3 | c |
+------+------+------+------+

从上边两个步骤可以看出来，我们上边唠叨的这个两表连接查询共需
要查询1次t1表，2次t2表。当然这是在特定的过滤条件下的结果，
如果我们把t1.m1 > 1这个条件去掉，那么从t1表中查出的记录就
有3条，就需要查询3次t3表了。也就是说在两表连接查询中，驱动
表只需要访问⼀次，被驱动表可能被访问多次。

内连接和外连接

为了⼤家更好理解后边内容，我们先创建两个有现实意义的表，

CREATE TABLE student (
 number INT NOT NULL AUTO_INCREMENT COMMENT '学
号',
 name VARCHAR(5) COMMENT '姓名',
 major VARCHAR(30) COMMENT '专业',
 PRIMARY KEY (number)
) Engine=InnoDB CHARSET=utf8 COMMENT '学⽣信息表';

CREATE TABLE score (
 number INT COMMENT '学号',
 subject VARCHAR(30) COMMENT '科⽬',
 score TINYINT COMMENT '成绩',
 PRIMARY KEY (number, score)
) Engine=InnoDB CHARSET=utf8 COMMENT '学⽣成绩表';

我们新建了⼀个学⽣信息表，⼀个学⽣成绩表，然后我们向上述两个
表中插⼊⼀些数据，为节省篇幅，具体插⼊过程就不唠叨了，插⼊后
两表中的数据如下：

mysql> SELECT * FROM student;
+----------+-----------+-------------------------
-+
| number | name | major
|
+----------+-----------+-------------------------
-+
20180101	杜⼦腾	软件学院
20180102	范统	计算机科学与⼯程
20180103	史珍⾹	计算机科学与⼯程
+----------+-----------+-------------------------
-+
3 rows in set (0.00 sec)

mysql> SELECT * FROM score;
+----------+-----------------------------+-------
+
| number | subject | score
|
+----------+-----------------------------+-------
+
20180101	⺟猪的产后护理	78
20180101	论萨达姆的战争准备	88
20180102	论萨达姆的战争准备	98
20180102	⺟猪的产后护理	100
+----------+-----------------------------+-------
+
4 rows in set (0.00 sec)

现在我们想把每个学⽣的考试成绩都查询出来就需要进⾏两表连接了
（因为score中没有姓名信息，所以不能单纯只查询score表）。连
接过程就是从student表中取出记录，在score表中查找number相

同的成绩记录，所以过滤条件就是student.number =
socre.number，整个查询语句就是这样：

mysql> SELECT * FROM student, score WHERE
student.number = score.number;
+----------+-----------+-------------------------
-+----------+-----------------------------+------
-+
| number | name | major
| number | subject | score
|
+----------+-----------+-------------------------
-+----------+-----------------------------+------
-+
| 20180101 | 杜⼦腾 | 软件学院 |
20180101 | ⺟猪的产后护理 | 78 |
| 20180101 | 杜⼦腾 | 软件学院 |
20180101 | 论萨达姆的战争准备 | 88 |
| 20180102 | 范统 | 计算机科学与⼯程 |
20180102 | 论萨达姆的战争准备 | 98 |
| 20180102 | 范统 | 计算机科学与⼯程 |
20180102 | ⺟猪的产后护理 | 100 |
+----------+-----------+-------------------------
-+----------+-----------------------------+------
-+
4 rows in set (0.00 sec)

字段有点多哦，我们少查询⼏个字段：

mysql> SELECT s1.number, s1.name, s2.subject,
s2.score FROM student AS s1, score AS s2 WHERE
s1.number = s2.number;
+----------+-----------+-------------------------
----+-------+
| number | name | subject
| score |
+----------+-----------+-------------------------
----+-------+
| 20180101 | 杜⼦腾 | ⺟猪的产后护理
| 78 |
| 20180101 | 杜⼦腾 | 论萨达姆的战争准备
| 88 |
| 20180102 | 范统 | 论萨达姆的战争准备
| 98 |
| 20180102 | 范统 | ⺟猪的产后护理
| 100 |
+----------+-----------+-------------------------
----+-------+
4 rows in set (0.00 sec)

从上述查询结果中我们可以看到，各个同学对应的各科成绩就都被查
出来了，可是有个问题，史珍⾹同学，也就是学号为20180103的同
学因为某些原因没有参加考试，所以在score表中没有对应的成绩记
录。那如果⽼师想查看所有同学的考试成绩，即使是缺考的同学也应
该展示出来，但是到⽬前为⽌我们介绍的连接查询是⽆法完成这样的
需求的。我们稍微思考⼀下这个需求，其本质是想：驱动表中的记录
即使在被驱动表中没有匹配的记录，也仍然需要加⼊到结果集。为了
解决这个问题，就有了内连接和外连接的概念：

对于内连接的两个表，驱动表中的记录在被驱动表中找不到匹
配的记录，该记录不会加⼊到最后的结果集，我们上边提到的
连接都是所谓的内连接。

对于外连接的两个表，驱动表中的记录即使在被驱动表中没有
匹配的记录，也仍然需要加⼊到结果集。

在MySQL中，根据选取驱动表的不同，外连接仍然可以细分为
2种：

左外连接

选取左侧的表为驱动表。

右外连接

选取右侧的表为驱动表。

可是这样仍然存在问题，即使对于外连接来说，有时候我们也并不想
把驱动表的全部记录都加⼊到最后的结果集。这就犯难了，有时候匹
配失败要加⼊结果集，有时候⼜不要加⼊结果集，这咋办，有点⼉愁
啊。。。噫，把过滤条件分为两种不就解决了这个问题了么，所以放
在不同地⽅的过滤条件是有不同语义的：

WHERE⼦句中的过滤条件

WHERE⼦句中的过滤条件就是我们平时⻅的那种，不论是内连
接还是外连接，凡是不符合WHERE⼦句中的过滤条件的记录都
不会被加⼊最后的结果集。

ON⼦句中的过滤条件

对于外连接的驱动表的记录来说，如果⽆法在被驱动表中找到
匹配ON⼦句中的过滤条件的记录，那么该记录仍然会被加⼊到
结果集中，对应的被驱动表记录的各个字段使⽤NULL值填充。

需要注意的是，这个ON⼦句是专⻔为外连接驱动表中的记录在
被驱动表找不到匹配记录时应不应该把该记录加⼊结果集这个
场景下提出的，所以如果把ON⼦句放到内连接中，MySQL会把

它和WHERE⼦句⼀样对待，也就是说：内连接中的WHERE⼦句
和ON⼦句是等价的。

⼀般情况下，我们都把只涉及单表的过滤条件放到WHERE⼦句中，把
涉及两表的过滤条件都放到ON⼦句中，我们也⼀般把放到ON⼦句中
的过滤条件也称之为连接条件。

⼩贴⼠：

左外连接和右外连接简称左连接和右连接，所以下边提到的左外连
接和右外连接中的`外`字都⽤括号扩起来，以表示这个字⼉可有可
⽆。

左（外）连接的语法

左（外）连接的语法还是挺简单的，⽐如我们要把t1表和t2表进⾏
左外连接查询可以这么写：

SELECT * FROM t1 LEFT [OUTER] JOIN t2 ON 连接条件
[WHERE 普通过滤条件];

其中中括号⾥的OUTER单词是可以省略的。对于LEFT JOIN类型的
连接来说，我们把放在左边的表称之为外表或者驱动表，右边的表称
之为内表或者被驱动表。所以上述例⼦中t1就是外表或者驱动
表，t2就是内表或者被驱动表。需要注意的是，对于左（外）连接
和右（外）连接来说，必须使⽤ON⼦句来指出连接条件。了解了左
（外）连接的基本语法之后，再次回到我们上边那个现实问题中来，
看看怎样写查询语句才能把所有的学⽣的成绩信息都查询出来，即使
是缺考的考⽣也应该被放到结果集中：

mysql> SELECT s1.number, s1.name, s2.subject,
s2.score FROM student AS s1 LEFT JOIN score AS s2
ON s1.number = s2.number;
+----------+-----------+-------------------------
----+-------+
| number | name | subject
| score |
+----------+-----------+-------------------------
----+-------+
| 20180101 | 杜⼦腾 | ⺟猪的产后护理
| 78 |
| 20180101 | 杜⼦腾 | 论萨达姆的战争准备
| 88 |
| 20180102 | 范统 | 论萨达姆的战争准备
| 98 |
| 20180102 | 范统 | ⺟猪的产后护理
| 100 |
| 20180103 | 史珍⾹ | NULL
| NULL |
+----------+-----------+-------------------------
----+-------+
5 rows in set (0.04 sec)

从结果集中可以看出来，虽然史珍⾹并没有对应的成绩记录，但是由
于采⽤的是连接类型为左（外）连接，所以仍然把她放到了结果集
中，只不过在对应的成绩记录的各列使⽤NULL值填充⽽已。

右（外）连接的语法

右（外）连接和左（外）连接的原理是⼀样⼀样的，语法也只是把
LEFT换成RIGHT⽽已：

SELECT * FROM t1 RIGHT [OUTER] JOIN t2 ON 连接条件
[WHERE 普通过滤条件];

只不过驱动表是右边的表，被驱动表是左边的表，具体就不唠叨了。

内连接的语法

内连接和外连接的根本区别就是在驱动表中的记录不符合ON⼦句中
的连接条件时不会把该记录加⼊到最后的结果集，我们最开始唠叨的
那些连接查询的类型都是内连接。不过之前仅仅提到了⼀种最简单的
内连接语法，就是直接把需要连接的多个表都放到FROM⼦句后边。
其实针对内连接，MySQL提供了好多不同的语法，我们以t1和t2表
为例瞅瞅：

SELECT * FROM t1 [INNER | CROSS] JOIN t2 [ON 连接
条件] [WHERE 普通过滤条件];

也就是说在MySQL中，下边这⼏种内连接的写法都是等价的：

SELECT * FROM t1 JOIN t2;

SELECT * FROM t1 INNER JOIN t2;

SELECT * FROM t1 CROSS JOIN t2;

上边的这些写法和直接把需要连接的表名放到FROM语句之后，⽤逗
号,分隔开的写法是等价的：

 SELECT * FROM t1, t2;

现在我们虽然介绍了很多种内连接的书写⽅式，不过熟悉⼀种就好
了，这⾥我们推荐INNER JOIN的形式书写内连接（因为INNER
JOIN语义很明确嘛，可以和LEFT JOIN和RIGHT JOIN很轻松的区
分开）。这⾥需要注意的是，由于在内连接中ON⼦句和WHERE⼦句
是等价的，所以内连接中不要求强制写明ON⼦句。

我们前边说过，连接的本质就是把各个连接表中的记录都取出来依次
匹配的组合加⼊结果集并返回给⽤户。不论哪个表作为驱动表，两表
连接产⽣的笛卡尔积肯定是⼀样的。⽽对于内连接来说，由于凡是不
符合ON⼦句或WHERE⼦句中的条件的记录都会被过滤掉，其实也就
相当于从两表连接的笛卡尔积中把不符合过滤条件的记录给踢出去，
所以对于内连接来说，驱动表和被驱动表是可以互换的，并不会影响
最后的查询结果。但是对于外连接来说，由于驱动表中的记录即使在
被驱动表中找不到符合ON⼦句连接条件的记录，所以此时驱动表和
被驱动表的关系就很重要了，也就是说左外连接和右外连接的驱动表
和被驱动表不能轻易互换。

⼩结

上边说了很多，给⼤家的感觉不是很直观，我们直接把表t1和t2的
三种连接⽅式写在⼀起，这样⼤家理解起来就很easy了：

mysql> SELECT * FROM t1 INNER JOIN t2 ON t1.m1 =
t2.m2;
+------+------+------+------+
| m1 | n1 | m2 | n2 |
+------+------+------+------+
| 2 | b | 2 | b |
| 3 | c | 3 | c |
+------+------+------+------+
2 rows in set (0.00 sec)

mysql> SELECT * FROM t1 LEFT JOIN t2 ON t1.m1 =
t2.m2;
+------+------+------+------+
| m1 | n1 | m2 | n2 |
+------+------+------+------+
2	b	2	b
3	c	3	c
1	a	NULL	NULL
+------+------+------+------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM t1 RIGHT JOIN t2 ON t1.m1 =
t2.m2;
+------+------+------+------+
| m1 | n1 | m2 | n2 |
+------+------+------+------+
2	b	2	b
3	c	3	c
NULL	NULL	4	d
+------+------+------+------+
3 rows in set (0.00 sec)

连接的原理

上边贼啰嗦的介绍都只是为了唤醒⼤家对连接、内连接、外连接这些
概念的记忆，这些基本概念是为了真正进⼊本章主题做的铺垫。真正
的重点是MySQL采⽤了什么样的算法来进⾏表与表之间的连接，了
解了这个之后，⼤家才能明⽩为啥有的连接查询运⾏的快如闪电，有
的却慢如蜗⽜。

嵌套循环连接（Nested-Loop Join）

我们前边说过，对于两表连接来说，驱动表只会被访问⼀遍，但被驱
动表却要被访问到好多遍，具体访问⼏遍取决于对驱动表执⾏单表查
询后的结果集中的记录条数。对于内连接来说，选取哪个表为驱动表
都没关系，⽽外连接的驱动表是固定的，也就是说左（外）连接的驱
动表就是左边的那个表，右（外）连接的驱动表就是右边的那个表。
我们上边已经⼤致介绍过t1表和t2表执⾏内连接查询的⼤致过程，
我们温习⼀下：

步骤1：选取驱动表，使⽤与驱动表相关的过滤条件，选取代
价最低的单表访问⽅法来执⾏对驱动表的单表查询。

步骤2：对上⼀步骤中查询驱动表得到的结果集中每⼀条记
录，都分别到被驱动表中查找匹配的记录。

通⽤的两表连接过程如下图所示：

如果有3个表进⾏连接的话，那么步骤2中得到的结果集就像是新的
驱动表，然后第三个表就成为了被驱动表，重复上边过程，也就是步
骤2中得到的结果集中的每⼀条记录都需要到t3表中找⼀找有没有匹
配的记录，⽤伪代码表示⼀下这个过程就是这样：

for each row in t1 { #此处表示遍历满⾜对t1单表查询结
果集中的每⼀条记录

 for each row in t2 { #此处表示对于某条t1表的记
录来说，遍历满⾜对t2单表查询结果集中的每⼀条记录

 for each row in t3 { #此处表示对于某条t1和
t2表的记录组合来说，对t3表进⾏单表查询
 if row satisfies join conditions,
send to client
 }
 }
}

这个过程就像是⼀个嵌套的循环，所以这种驱动表只访问⼀次，但被
驱动表却可能被多次访问，访问次数取决于对驱动表执⾏单表查询后
的结果集中的记录条数的连接执⾏⽅式称之为嵌套循环连接
（Nested-Loop Join），这是最简单，也是最笨拙的⼀种连接查
询算法。

使⽤索引加快连接速度

我们知道在嵌套循环连接的步骤2中可能需要访问多次被驱动表，如
果访问被驱动表的⽅式都是全表扫描的话，妈呀，那得要扫描好多次
呀～～～ 但是别忘了，查询t2表其实就相当于⼀次单表扫描，我们
可以利⽤索引来加快查询速度哦。回顾⼀下最开始介绍的t1表和t2
表进⾏内连接的例⼦：

SELECT * FROM t1, t2 WHERE t1.m1 > 1 AND t1.m1 =
t2.m2 AND t2.n2 < 'd';

我们使⽤的其实是嵌套循环连接算法执⾏的连接查询，再把上边那个
查询执⾏过程表拉下来给⼤家看⼀下：

查询驱动表t1后的结果集中有两条记录，嵌套循环连接算法需要对
被驱动表查询2次：

当t1.m1 = 2时，去查询⼀遍t2表，对t2表的查询语句相当
于：

SELECT * FROM t2 WHERE t2.m2 = 2 AND t2.n2 <
'd';

当t1.m1 = 3时，再去查询⼀遍t2表，此时对t2表的查询语
句相当于：

SELECT * FROM t2 WHERE t2.m2 = 3 AND t2.n2 <
'd';

可以看到，原来的t1.m1 = t2.m2这个涉及两个表的过滤条件在针
对t2表做查询时关于t1表的条件就已经确定了，所以我们只需要单
单优化对t2表的查询了，上述两个对t2表的查询语句中利⽤到的列
是m2和n2列，我们可以：

在m2列上建⽴索引，因为对m2列的条件是等值查找，⽐如
t2.m2 = 2、t2.m2 = 3等，所以可能使⽤到ref的访问⽅
法，假设使⽤ref的访问⽅法去执⾏对t2表的查询的话，需要
回表之后再判断t2.n2 < d这个条件是否成⽴。

这⾥有⼀个⽐较特殊的情况，就是假设m2列是t2表的主键或者
唯⼀⼆级索引列，那么使⽤t2.m2 = 常数值这样的条件从t2
表中查找记录的过程的代价就是常数级别的。我们知道在单表
中使⽤主键值或者唯⼀⼆级索引列的值进⾏等值查找的⽅式称
之为const，⽽设计MySQL的⼤叔把在连接查询中对被驱动表
使⽤主键值或者唯⼀⼆级索引列的值进⾏等值查找的查询执⾏
⽅式称之为：eq_ref。

在n2列上建⽴索引，涉及到的条件是t2.n2 < 'd'，可能⽤
到range的访问⽅法，假设使⽤range的访问⽅法对t2表的查
询的话，需要回表之后再判断在m2列上的条件是否成⽴。

假设m2和n2列上都存在索引的话，那么就需要从这两个⾥边⼉挑⼀
个代价更低的去执⾏对t2表的查询。当然，建⽴了索引不⼀定使⽤
索引，只有在⼆级索引 + 回表的代价⽐全表扫描的代价更低时才会
使⽤索引。

另外，有时候连接查询的查询列表和过滤条件中可能只涉及被驱动表
的部分列，⽽这些列都是某个索引的⼀部分，这种情况下即使不能使
⽤eq_ref、ref、ref_or_null或者range这些访问⽅法执⾏对被
驱动表的查询的话，也可以使⽤索引扫描，也就是index的访问⽅法
来查询被驱动表。所以我们建议在真实⼯作中最好不要使⽤*作为查
询列表，最好把真实⽤到的列作为查询列表。

基于块的嵌套循环连接（Block Nested-Loop Join）

扫描⼀个表的过程其实是先把这个表从磁盘上加载到内存中，然后从
内存中⽐较匹配条件是否满⾜。现实⽣活中的表可不像t1、t2这种
只有3条记录，成千上万条记录都是少的，⼏百万、⼏千万甚⾄⼏亿
条记录的表到处都是。内存⾥可能并不能完全存放的下表中所有的记
录，所以在扫描表前边记录的时候后边的记录可能还在磁盘上，等扫
描到后边记录的时候可能内存不⾜，所以需要把前边的记录从内存中
释放掉。我们前边⼜说过，采⽤嵌套循环连接算法的两表连接过程
中，被驱动表可是要被访问好多次的，如果这个被驱动表中的数据特
别多⽽且不能使⽤索引进⾏访问，那就相当于要从磁盘上读好⼏次这
个表，这个I/O代价就⾮常⼤了，所以我们得想办法：尽量减少访问
被驱动表的次数。

当被驱动表中的数据⾮常多时，每次访问被驱动表，被驱动表的记录
会被加载到内存中，在内存中的每⼀条记录只会和驱动表结果集的⼀
条记录做匹配，之后就会被从内存中清除掉。然后再从驱动表结果集
中拿出另⼀条记录，再⼀次把被驱动表的记录加载到内存中⼀遍，周
⽽复始，驱动表结果集中有多少条记录，就得把被驱动表从磁盘上加
载到内存中多少次。所以我们可不可以在把被驱动表的记录加载到内
存的时候，⼀次性和多条驱动表中的记录做匹配，这样就可以⼤⼤减

少重复从磁盘上加载被驱动表的代价了。所以设计MySQL的⼤叔提出
了⼀个join buffer的概念，join buffer就是执⾏连接查询前
申请的⼀块固定⼤⼩的内存，先把若⼲条驱动表结果集中的记录装在
这个join buffer中，然后开始扫描被驱动表，每⼀条被驱动表的
记录⼀次性和join buffer中的多条驱动表记录做匹配，因为匹配
的过程都是在内存中完成的，所以这样可以显著减少被驱动表的I/O
代价。使⽤join buffer的过程如下图所示：

最好的情况是join buffer⾜够⼤，能容纳驱动表结果集中的所有
记录，这样只需要访问⼀次被驱动表就可以完成连接操作了。设计
MySQL的⼤叔把这种加⼊了join buffer的嵌套循环连接算法称之
为基于块的嵌套连接（Block Nested-Loop Join）算法。

这个join buffer的⼤⼩是可以通过启动参数或者系统变量
join_buffer_size进⾏配置，默认⼤⼩为262144字节（也就
是256KB），最⼩可以设置为128字节。当然，对于优化被驱动表的
查询来说，最好是为被驱动表加上效率⾼的索引，如果实在不能使⽤
索引，并且⾃⼰的机器的内存也⽐较⼤可以尝试调
⼤join_buffer_size的值来对连接查询进⾏优化。

另外需要注意的是，驱动表的记录并不是所有列都会被放到join
buffer中，只有查询列表中的列和过滤条件中的列才会被放到join
buffer中，所以再次提醒我们，最好不要把*作为查询列表，只需
要把我们关⼼的列放到查询列表就好了，这样还可以在join
buffer中放置更多的记录呢哈。

