
基于成本的优化

标签： MySQL 是怎样运⾏的

什么是成本

我们之前⽼说MySQL执⾏⼀个查询可以有不同的执⾏⽅案，它会选择
其中成本最低，或者说代价最低的那种⽅案去真正的执⾏查询。不过
我们之前对成本的描述是⾮常模糊的，其实在MySQL中⼀条查询语句
的执⾏成本是由下边这两个⽅⾯组成的：

I/O成本

我们的表经常使⽤的MyISAM、InnoDB存储引擎都是将数据和
索引都存储到磁盘上的，当我们想查询表中的记录时，需要先
把数据或者索引加载到内存中然后再操作。这个从磁盘到内存
这个加载的过程损耗的时间称之为I/O成本。

CPU成本

读取以及检测记录是否满⾜对应的搜索条件、对结果集进⾏排
序等这些操作损耗的时间称之为CPU成本。

对于InnoDB存储引擎来说，⻚是磁盘和内存之间交互的基本单位，
设计MySQL的⼤叔规定读取⼀个⻚⾯花费的成本默认是1.0，读取以
及检测⼀条记录是否符合搜索条件的成本默认是0.2。1.0、0.2这
些数字称之为成本常数，这两个成本常数我们最常⽤到，其余的成本
常数我们后边再说哈。

⼩贴⼠：

需要注意的是，不管读取记录时需不需要检测是否满⾜搜索条件，
其成本都算是0.2。

单表查询的成本

准备⼯作

为了故事的顺利发展，我们还得把之前⽤到的single_table表搬
来，怕⼤家忘了这个表⻓啥样，再给⼤家抄⼀遍：

CREATE TABLE single_table (
 id INT NOT NULL AUTO_INCREMENT,
 key1 VARCHAR(100),
 key2 INT,
 key3 VARCHAR(100),
 key_part1 VARCHAR(100),
 key_part2 VARCHAR(100),
 key_part3 VARCHAR(100),
 common_field VARCHAR(100),
 PRIMARY KEY (id),
 KEY idx_key1 (key1),
 UNIQUE KEY idx_key2 (key2),
 KEY idx_key3 (key3),
 KEY idx_key_part(key_part1, key_part2,
key_part3)
) Engine=InnoDB CHARSET=utf8;

还是假设这个表⾥边⼉有10000条记录，除id列外其余的列都插⼊
随机值。下边正式开始我们的表演。

基于成本的优化步骤

在⼀条单表查询语句真正执⾏之前，MySQL的查询优化器会找出执⾏
该语句所有可能使⽤的⽅案，对⽐之后找出成本最低的⽅案，这个成
本最低的⽅案就是所谓的执⾏计划，之后才会调⽤存储引擎提供的接
⼝真正的执⾏查询，这个过程总结⼀下就是这样：

1. 根据搜索条件，找出所有可能使⽤的索引

2. 计算全表扫描的代价

3. 计算使⽤不同索引执⾏查询的代价

4. 对⽐各种执⾏⽅案的代价，找出成本最低的那⼀个

下边我们就以⼀个实例来分析⼀下这些步骤，单表查询语句如下：

SELECT * FROM single_table WHERE
 key1 IN ('a', 'b', 'c') AND
 key2 > 10 AND key2 < 1000 AND
 key3 > key2 AND
 key_part1 LIKE '%hello%' AND
 common_field = '123';

乍看上去有点⼉复杂哦，我们⼀步⼀步分析⼀下。

1. 根据搜索条件，找出所有可能使⽤的索引

我们前边说过，对于B+树索引来说，只要索引列和常数使
⽤=、<=>、IN、NOT IN、IS NULL、IS NOT
NULL、>、<、>=、<=、BETWEEN、!=（不等于也可以写成<>）或
者LIKE操作符连接起来，就可以产⽣⼀个所谓的范围区间（LIKE匹
配字符串前缀也⾏），也就是说这些搜索条件都可能使⽤到索引，设
计MySQL的⼤叔把⼀个查询中可能使⽤到的索引称之为possible
keys。

我们分析⼀下上边查询中涉及到的⼏个搜索条件：

key1 IN ('a', 'b', 'c')，这个搜索条件可以使⽤⼆级
索引idx_key1。

key2 > 10 AND key2 < 1000，这个搜索条件可以使⽤⼆
级索引idx_key2。

key3 > key2，这个搜索条件的索引列由于没有和常数⽐
较，所以并不能使⽤到索引。

key_part1 LIKE '%hello%'，key_part1通过LIKE操作
符和以通配符开头的字符串做⽐较，不可以适⽤索引。

common_field = '123'，由于该列上压根⼉没有索引，所
以不会⽤到索引。

综上所述，上边的查询语句可能⽤到的索引，也就是possible
keys只有idx_key1和idx_key2。

2. 计算全表扫描的代价

对于InnoDB存储引擎来说，全表扫描的意思就是把聚簇索引中的记
录都依次和给定的搜索条件做⼀下⽐较，把符合搜索条件的记录加⼊
到结果集，所以需要将聚簇索引对应的⻚⾯加载到内存中，然后再检
测记录是否符合搜索条件。由于查询成本=I/O成本+CPU成本，所
以计算全表扫描的代价需要两个信息：

聚簇索引占⽤的⻚⾯数

该表中的记录数

这两个信息从哪来呢？设计MySQL的⼤叔为每个表维护了⼀系列的统
计信息，关于这些统计信息是如何收集起来的我们放在本章后边详细
唠叨，现在看看怎么查看这些统计信息哈。设计MySQL的⼤叔给我们

提供了SHOW TABLE STATUS语句来查看表的统计信息，如果要看
指定的某个表的统计信息，在该语句后加对应的LIKE语句就好了，
⽐⽅说我们要查看order_by_demo这个表的统计信息可以这么写：

mysql> USE xiaohaizi;
Database changed

mysql> SHOW TABLE STATUS LIKE 'single_table'\G
*************************** 1. row

 Name: single_table
 Engine: InnoDB
 Version: 10
 Row_format: Dynamic
 Rows: 9693
 Avg_row_length: 163
 Data_length: 1589248
Max_data_length: 0
 Index_length: 2752512
 Data_free: 4194304
 Auto_increment: 10001
 Create_time: 2018-12-10 13:37:23
 Update_time: 2018-12-10 13:38:03
 Check_time: NULL
 Collation: utf8_general_ci
 Checksum: NULL
 Create_options:
 Comment:
1 row in set (0.01 sec)

虽然出现了很多统计选项，但我们⽬前只关⼼两个：

Rows

本选项表示表中的记录条数。对于使⽤MyISAM存储引擎的表
来说，该值是准确的，对于使⽤InnoDB存储引擎的表来说，
该值是⼀个估计值。从查询结果我们也可以看出来，由于我们
的single_table表是使⽤InnoDB存储引擎的，所以虽然实
际上表中有10000条记录，但是SHOW TABLE STATUS显示的
Rows值只有9693条记录。

Data_length

本选项表示表占⽤的存储空间字节数。使⽤MyISAM存储引擎
的表来说，该值就是数据⽂件的⼤⼩，对于使⽤InnoDB存储
引擎的表来说，该值就相当于聚簇索引占⽤的存储空间⼤⼩，
也就是说可以这样计算该值的⼤⼩：

Data_length = 聚簇索引的⻚⾯数量 x 每个⻚⾯的⼤⼩

我们的single_table使⽤默认16KB的⻚⾯⼤⼩，⽽上边查
询结果显示Data_length的值是1589248，所以我们可以反
向来推导出聚簇索引的⻚⾯数量：

聚簇索引的⻚⾯数量 = 1589248 ÷ 16 ÷ 1024 = 97

我们现在已经得到了聚簇索引占⽤的⻚⾯数量以及该表记录数的估计
值，所以就可以计算全表扫描成本了，但是设计MySQL的⼤叔在真实
计算成本时会进⾏⼀些微调，这些微调的值是直接硬编码到代码⾥
的，由于没有注释，我也不知道这些微调值是个啥⼦意思，但是由于
这些微调的值⼗分的⼩，并不影响我们分析，所以我们也没有必要在
这些微调值上纠结了。现在可以看⼀下全表扫描成本的计算过程：

I/O成本

97 x 1.0 + 1.1 = 98.1

97指的是聚簇索引占⽤的⻚⾯数，1.0指的是加载⼀个⻚⾯的
成本常数，后边的1.1是⼀个微调值，我们不⽤在意。

CPU成本：

9639 x 0.2 + 1.0 = 1939.6

9639指的是统计数据中表的记录数，对于InnoDB存储引擎来
说是⼀个估计值，0.2指的是访问⼀条记录所需的成本常数，
后边的1.0是⼀个微调值，我们不⽤在意。

总成本：

98.1 + 1939.6 = 2037.7

综上所述，对于single_table的全表扫描所需的总成本就
是2037.7。

⼩贴⼠：

我们前边说过表中的记录其实都存储在聚簇索引对应B+树的叶⼦节
点中，所以只要我们通过根节点获得了最左边的叶⼦节点，就可以
沿着叶⼦节点组成的双向链表把所有记录都查看⼀遍。也就是说全
表扫描这个过程其实有的B+树内节点是不需要访问的，但是设计
MySQL的⼤叔们在计算全表扫描成本时直接使⽤聚簇索引占⽤的⻚
⾯数作为计算I/O成本的依据，是不区分内节点和叶⼦节点的，有点
⼉简单暴⼒，⼤家注意⼀下就好了。

3. 计算使⽤不同索引执⾏查询的代价

从第1步分析我们得到，上述查询可能使⽤到idx_key1和
idx_key2这两个索引，我们需要分别分析单独使⽤这些索引执⾏查
询的成本，最后还要分析是否可能使⽤到索引合并。这⾥需要提⼀点
的是，MySQL查询优化器先分析使⽤唯⼀⼆级索引的成本，再分析使
⽤普通索引的成本，所以我们也先分析idx_key2的成本，然后再看
使⽤idx_key1的成本。

使⽤idx_key2执⾏查询的成本分析

idx_key2对应的搜索条件是：key2 > 10 AND key2 < 1000，
也就是说对应的范围区间就是：(10, 1000)，使⽤idx_key2搜索
的示意图就是这样⼦：

对于使⽤⼆级索引 + 回表⽅式的查询，设计MySQL的⼤叔计算这种
查询的成本依赖两个⽅⾯的数据：

范围区间数量

不论某个范围区间的⼆级索引到底占⽤了多少⻚⾯，查询优化
器粗暴的认为读取索引的⼀个范围区间的I/O成本和读取⼀个
⻚⾯是相同的。本例中使⽤idx_key2的范围区间只有⼀
个：(10, 1000)，所以相当于访问这个范围区间的⼆级索引
付出的I/O成本就是：

1 x 1.0 = 1.0

需要回表的记录数

优化器需要计算⼆级索引的某个范围区间到底包含多少条记
录，对于本例来说就是要计算idx_key2在(10, 1000)这个
范围区间中包含多少⼆级索引记录，计算过程是这样的：

步骤1：先根据key2 > 10这个条件访问⼀下idx_key2
对应的B+树索引，找到满⾜key2 > 10这个条件的第⼀
条记录，我们把这条记录称之为区间最左记录。我们前头
说过在B+数树中定位⼀条记录的过程是贼快的，是常数
级别的，所以这个过程的性能消耗是可以忽略不计的。

步骤2：然后再根据key2 < 1000这个条件继续从
idx_key2对应的B+树索引中找出第⼀条满⾜这个条件的
记录，我们把这条记录称之为区间最右记录，这个过程的
性能消耗也可以忽略不计的。

步骤3：如果区间最左记录和区间最右记录相隔不太远
（在MySQL 5.7.21这个版本⾥，只要相隔不⼤于10个
⻚⾯即可），那就可以精确统计出满⾜key2 > 10 AND
key2 < 1000条件的⼆级索引记录条数。否则只沿着区
间最左记录向右读10个⻚⾯，计算平均每个⻚⾯中包含
多少记录，然后⽤这个平均值乘以区间最左记录和区间最
右记录之间的⻚⾯数量就可以了。那么问题⼜来了，怎么
估计区间最左记录和区间最右记录之间有多少个⻚⾯呢？
解决这个问题还得回到B+树索引的结构中来：

如图，我们假设区间最左记录在⻚b中，区间最右记录在
⻚c中，那么我们想计算区间最左记录和区间最右记录之
间的⻚⾯数量就相当于计算⻚b和⻚c之间有多少⻚⾯，
⽽每⼀条⽬录项记录都对应⼀个数据⻚，所以计算⻚b和
⻚c之间有多少⻚⾯就相当于计算它们⽗节点（也就是⻚
a）中对应的⽬录项记录之间隔着⼏条记录。在⼀个⻚⾯
中统计两条记录之间有⼏条记录的成本就贼⼩了。

不过还有问题，如果⻚b和⻚c之间的⻚⾯实在太多，以
⾄于⻚b和⻚c对应的⽬录项记录都不在⼀个⻚⾯中该咋
办？继续递归啊，也就是再统计⻚b和⻚c对应的⽬录项
记录所在⻚之间有多少个⻚⾯。之前我们说过⼀个B+树
有4层⾼已经很了不得了，所以这个统计过程也不是很耗
费性能。

知道了如何统计⼆级索引某个范围区间的记录数之后，就需要
回到现实问题中来，根据上述算法测得idx_key2在区间(10,
1000)之间⼤约有95条记录。读取这95条⼆级索引记录需要付
出的CPU成本就是：

95 x 0.2 + 0.01 = 19.01

其中95是需要读取的⼆级索引记录条数，0.2是读取⼀条记录
成本常数，0.01是微调。

在通过⼆级索引获取到记录之后，还需要⼲两件事⼉：

根据这些记录⾥的主键值到聚簇索引中做回表操作

这⾥需要⼤家使劲⼉睁⼤⾃⼰滴溜溜的⼤眼睛仔细瞧，设
计MySQL的⼤叔评估回表操作的I/O成本依旧很豪放，他
们认为每次回表操作都相当于访问⼀个⻚⾯，也就是说⼆
级索引范围区间有多少记录，就需要进⾏多少次回表操
作，也就是需要进⾏多少次⻚⾯I/O。我们上边统计了使
⽤idx_key2⼆级索引执⾏查询时，预计有95条⼆级索引
记录需要进⾏回表操作，所以回表操作带来的I/O成本就
是：

95 x 1.0 = 95.0

其中95是预计的⼆级索引记录数，1.0是⼀个⻚⾯的I/O
成本常数。

回表操作后得到的完整⽤户记录，然后再检测其他搜索条
件是否成⽴

回表操作的本质就是通过⼆级索引记录的主键值到聚簇索
引中找到完整的⽤户记录，然后再检测除key2 > 10
AND key2 < 1000这个搜索条件以外的搜索条件是否成
⽴。因为我们通过范围区间获取到⼆级索引记录共95
条，也就对应着聚簇索引中95条完整的⽤户记录，读取
并检测这些完整的⽤户记录是否符合其余的搜索条件的
CPU成本如下：

 设计`MySQL`的⼤叔只计算这个查找过程所需的`I/O`成本，
也就是我们上⼀步骤中得到的`95.0`，在内存中的定位完整⽤户记
录的过程的成本是忽略不计的。在定位到这些完整的⽤户记录后，
需要检测除`key2 > 10 AND key2 < 1000`这个搜索条件以外
的搜索条件是否成⽴，这个⽐较过程花费的`CPU`成本就是：

    ```
    95 x 0.2 = 19.0
    ```
 其中`95`是待检测记录的条数，`0.2`是检测⼀条记录是否符
合给定的搜索条件的成本常数。

所以本例中使⽤idx_key2执⾏查询的成本就如下所示：

I/O成本：

1.0 + 95 x 1.0 = 96.0 (范围区间的数量 + 预估的⼆
级索引记录条数)

CPU成本：

95 x 0.2 + 0.01 + 95 x 0.2 = 38.01 （读取⼆级索
引记录的成本 + 读取并检测回表后聚簇索引记录的成本）

综上所述，使⽤idx_key2执⾏查询的总成本就是：

96.0 + 38.01 = 134.01

使⽤idx_key1执⾏查询的成本分析

idx_key1对应的搜索条件是：key1 IN ('a', 'b', 'c')，也
就是说相当于3个单点区间：

['a', 'a']
['b', 'b']

['c', 'c']

使⽤idx_key1搜索的示意图就是这样⼦：

与使⽤idx_key2的情况类似，我们也需要计算使⽤idx_key1时需
要访问的范围区间数量以及需要回表的记录数：

范围区间数量

使⽤idx_key1执⾏查询时很显然有3个单点区间，所以访问这
3个范围区间的⼆级索引付出的I/O成本就是：

3 x 1.0 = 3.0

需要回表的记录数

由于使⽤idx_key1时有3个单点区间，所以每个单点区间都需
要查找⼀遍对应的⼆级索引记录数：

查找单点区间['a', 'a']对应的⼆级索引记录数

计算单点区间对应的⼆级索引记录数和计算连续范围区间
对应的⼆级索引记录数是⼀样的，都是先计算区间最左记
录和区间最右记录，然后再计算它们之间的记录数，具体
算法上边都唠叨过了，就不赘述了。最后计算得到单点区
间['a', 'a']对应的⼆级索引记录数是：35。

查找单点区间['b', 'b']对应的⼆级索引记录数

与上同理，计算得到本单点区间对应的记录数是：44。

查找单点区间['c', 'c']对应的⼆级索引记录数

与上同理，计算得到本单点区间对应的记录数是：39。

所以，这三个单点区间总共需要回表的记录数就是：

35 + 44 + 39 = 118

读取这些⼆级索引记录的CPU成本就是：

118 x 0.2 + 0.01 = 23.61

得到总共需要回表的记录数之后，就要考虑：

根据这些记录⾥的主键值到聚簇索引中做回表操作

所需的I/O成本就是：

118 x 1.0 = 118.0

回表操作后得到的完整⽤户记录，然后再⽐较其他搜索条
件是否成⽴

此步骤对应的CPU成本就是：

118 x 0.2 = 23.6

所以本例中使⽤idx_key1执⾏查询的成本就如下所示：

I/O成本：

3.0 + 118 x 1.0 = 121.0 (范围区间的数量 + 预估的
⼆级索引记录条数)

CPU成本：

118 x 0.2 + 0.01 + 118 x 0.2 = 47.21 （读取⼆级
索引记录的成本 + 读取并检测回表后聚簇索引记录的成本）

综上所述，使⽤idx_key1执⾏查询的总成本就是：

121.0 + 47.21 = 168.21

是否有可能使⽤索引合并（Index Merge）

本例中有关key1和key2的搜索条件是使⽤AND连接起来的，⽽对于
idx_key1和idx_key2都是范围查询，也就是说查找到的⼆级索引
记录并不是按照主键值进⾏排序的，并不满⾜使⽤Intersection
索引合并的条件，所以并不会使⽤索引合并。

⼩贴⼠：

MySQL查询优化器计算索引合并成本的算法也⽐较麻烦，所以我们
这也就不展开唠叨了。

4. 对⽐各种执⾏⽅案的代价，找出成本最低的那⼀个

下边把执⾏本例中的查询的各种可执⾏⽅案以及它们对应的成本列出
来：

全表扫描的成本：2037.7

使⽤idx_key2的成本：134.01

使⽤idx_key1的成本：168.21

很显然，使⽤idx_key2的成本最低，所以当然选择idx_key2来执
⾏查询喽。

⼩贴⼠：

考虑到⼤家的阅读体验，为了最⼤限度的减少⼤家在理解优化器⼯
作原理的过程中遇到的懵逼情况，这⾥对优化器在单表查询中对⽐
各种执⾏⽅案的代价的⽅式稍稍的做了简化，不过毕竟⼤部分同学
不需要去看MySQL的源码，把⼤致的精神传递正确就好了哈。

基于索引统计数据的成本计算

有时候使⽤索引执⾏查询时会有许多单点区间，⽐如使⽤IN语句就
很容易产⽣⾮常多的单点区间，⽐如下边这个查询（下边查询语句中
的...表示还有很多参数）：

SELECT * FROM single_table WHERE key1 IN ('aa1',
'aa2', 'aa3', ... , 'zzz');

很显然，这个查询可能使⽤到的索引就是idx_key1，由于这个索引
并不是唯⼀⼆级索引，所以并不能确定⼀个单点区间对应的⼆级索引
记录的条数有多少，需要我们去计算。计算⽅式我们上边已经介绍过
了，就是先获取索引对应的B+树的区间最左记录和区间最右记录，

然后再计算这两条记录之间有多少记录（记录条数少的时候可以做到
精确计算，多的时候只能估算）。设计MySQL的⼤叔把这种通过直接
访问索引对应的B+树来计算某个范围区间对应的索引记录条数的⽅
式称之为index dive。

⼩贴⼠：

dive直译为中⽂的意思是跳⽔、俯冲的意思，原谅我的英⽂⽔平捉
急，我实在不知道怎么翻译 index dive，索引跳⽔？索引俯冲？
好像都不太合适，所以压根⼉就不翻译了。不过⼤家要意会index
dive就是直接利⽤索引对应的B+树来计算某个范围区间对应的记录
条数。

有零星⼏个单点区间的话，使⽤index dive的⽅式去计算这些单点
区间对应的记录数也不是什么问题，可是你架不住有的孩⼦憋⾜了劲
往IN语句⾥塞东⻄呀，我就⻅过有的同学写的IN语句⾥有20000个
参数的��，这就意味着MySQL的查询优化器为了计算这些单点区
间对应的索引记录条数，要进⾏20000次index dive操作，这性
能损耗可就⼤了，搞不好计算这些单点区间对应的索引记录条数的成
本⽐直接全表扫描的成本都⼤了。设计MySQL的⼤叔们多聪明啊，他
们当然考虑到了这种情况，所以提供了⼀个系统变量
eq_range_index_dive_limit，我们看⼀下在MySQL 5.7.21
中这个系统变量的默认值：

mysql> SHOW VARIABLES LIKE '%dive%';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| eq_range_index_dive_limit | 200 |
+---------------------------+-------+
1 row in set (0.08 sec)

也就是说如果我们的IN语句中的参数个数⼩于200个的话，将使
⽤index dive的⽅式计算各个单点区间对应的记录条数，如果⼤于

或等于200个的话，可就不能使⽤index dive了，要使⽤所谓的索
引统计数据来进⾏估算。怎么个估算法？继续往下看。

像会为每个表维护⼀份统计数据⼀样，MySQL也会为表中的每⼀个索
引维护⼀份统计数据，查看某个表中索引的统计数据可以使⽤SHOW
INDEX FROM 表名的语法，⽐如我们查看⼀下single_table的各
个索引的统计数据可以这么写：

mysql> SHOW INDEX FROM single_table;
+--------------+------------+--------------+-----
---------+-------------+-----------+-------------
+----------+--------+------+------------+--------
-+---------------+
| Table | Non_unique | Key_name |
Seq_in_index | Column_name | Collation |
Cardinality | Sub_part | Packed | Null |
Index_type | Comment | Index_comment |
+--------------+------------+--------------+-----
---------+-------------+-----------+-------------
+----------+--------+------+------------+--------
-+---------------+
| single_table | 0 | PRIMARY |
1 | id | A | 9693 |
NULL | NULL | | BTREE | |
|
| single_table | 0 | idx_key2 |
1 | key2 | A | 9693 |
NULL | NULL | YES | BTREE | |
|
| single_table | 1 | idx_key1 |
1 | key1 | A | 968 |
NULL | NULL | YES | BTREE | |
|

| single_table | 1 | idx_key3 |
1 | key3 | A | 799 |
NULL | NULL | YES | BTREE | |
|
| single_table | 1 | idx_key_part |
1 | key_part1 | A | 9673 |
NULL | NULL | YES | BTREE | |
|
| single_table | 1 | idx_key_part |
2 | key_part2 | A | 9999 |
NULL | NULL | YES | BTREE | |
|
| single_table | 1 | idx_key_part |
3 | key_part3 | A | 10000 |
NULL | NULL | YES | BTREE | |
|
+--------------+------------+--------------+-----
---------+-------------+-----------+-------------
+----------+--------+------+------------+--------
-+---------------+
7 rows in set (0.01 sec)

哇唔，竟然有这么多属性，不过好在这些属性都不难理解，我们就都
介绍⼀遍吧：

属性名 描述

Table 索引所属表的名称。

Non_unique 索引列的值是否是唯⼀的，聚簇索引和唯⼀⼆级索
引的该列值为0，普通⼆级索引该列值为1。

Key_name 索引的名称。

Seq_in_index

索引列在索引中的位置，从1开始计数。⽐如对于
联合索引idx_key_part，来
说，key_part1、key_part2和key_part3对

应的位置分别是1、2、3。
Column_name 索引列的名称。

Collation 索引列中的值是按照何种排序⽅式存放的，值为A
时代表升序存放，为NULL时代表降序存放。

Cardinality 索引列中不重复值的数量。后边我们会重点看这个
属性的。

Sub_part

对于存储字符串或者字节串的列来说，有时候我们
只想对这些串的前n个字符或字节建⽴索引，这个
属性表示的就是那个n值。如果对完整的列建⽴索
引的话，该属性的值就是NULL。

Packed 索引列如何被压缩，NULL值表示未被压缩。这个
属性我们暂时不了解，可以先忽略掉。

Null 该索引列是否允许存储NULL值。

Index_type 使⽤索引的类型，我们最常⻅的就是BTREE，其实
也就是B+树索引。

Comment 索引列注释信息。

Index_comment索引注释信息。

上述属性除了Packed⼤家可能看不懂以外，应该没有啥看不懂的
了，如果有的话肯定是⼤家看前边⽂章的时候跳过了啥东⻄。其实我
们现在最在意的是Cardinality属性，Cardinality直译过来就
是基数的意思，表示索引列中不重复值的个数。⽐如对于⼀个⼀万⾏
记录的表来说，某个索引列的Cardinality属性是10000，那意味
着该列中没有重复的值，如果Cardinality属性是1的话，就意味
着该列的值全部是重复的。不过需要注意的是，对于InnoDB存储引
擎来说，使⽤SHOW INDEX语句展示出来的某个索引列的
Cardinality属性是⼀个估计值，并不是精确的。关于这
个Cardinality属性的值是如何被计算出来的我们后边再说，先看
看它有什么⽤途。

前边说道，当IN语句中的参数个数⼤于或等于系统变量
eq_range_index_dive_limit的值的话，就不会使⽤index
dive的⽅式计算各个单点区间对应的索引记录条数，⽽是使⽤索引
统计数据，这⾥所指的索引统计数据指的是这两个值：

使⽤SHOW TABLE STATUS展示出的Rows值，也就是⼀个表
中有多少条记录。

这个统计数据我们在前边唠叨全表扫描成本的时候说过很多遍
了，就不赘述了。

使⽤SHOW INDEX语句展示出的Cardinality属性。

结合上⼀个Rows统计数据，我们可以针对索引列，计算出平均
⼀个值重复多少次。

⼀个值的重复次数 ≈ Rows ÷ Cardinality

以single_table表的idx_key1索引为例，它的Rows值是9693，
它对应索引列key1的Cardinality值是968，所以我们可以计算
key1列平均单个值的重复次数就是：

9693 ÷ 968 ≈ 10（条）

此时再看上边那条查询语句：

SELECT * FROM single_table WHERE key1 IN ('aa1',
'aa2', 'aa3', ... , 'zzz');

假设IN语句中有20000个参数的话，就直接使⽤统计数据来估算这
些参数需要单点区间对应的记录条数了，每个参数⼤约对应10条记
录，所以总共需要回表的记录数就是：

20000 x 10 = 200000

使⽤统计数据来计算单点区间对应的索引记录条数可⽐index dive

的⽅式简单多了，但是它的致命弱点就是：不精确！。使⽤统计数据
算出来的查询成本与实际所需的成本可能相差⾮常⼤。

⼩贴⼠：

⼤家需要注意⼀下，在MySQL 5.7.3以及之前的版本中，
eq_range_index_dive_limit的默认值为10，之后的版本默认
值为200。所以如果⼤家采⽤的是5.7.3以及之前的版本的话，很容
易采⽤索引统计数据⽽不是index dive的⽅式来计算查询成本。
当你的查询中使⽤到了IN查询，但是却实际没有⽤到索引，就应该
考虑⼀下是不是由于 eq_range_index_dive_limit 值太⼩导
致的。

连接查询的成本

准备⼯作

连接查询⾄少是要有两个表的，只有⼀个single_table表是不够
的，所以为了故事的顺利发展，我们直接构造⼀个和
single_table表⼀模⼀样的single_table2表。为了简便起⻅，
我们把single_table表称为s1表，把single_table2表称为s2
表。

Condition filtering介绍

我们前边说过，MySQL中连接查询采⽤的是嵌套循环连接算法，驱动
表会被访问⼀次，被驱动表可能会被访问多次，所以对于两表连接查
询来说，它的查询成本由下边两个部分构成：

单次查询驱动表的成本

多次查询被驱动表的成本（具体查询多少次取决于对驱动表查
询的结果集中有多少条记录）

我们把对驱动表进⾏查询后得到的记录条数称之为驱动表的扇出（英
⽂名：fanout）。很显然驱动表的扇出值越⼩，对被驱动表的查询
次数也就越少，连接查询的总成本也就越低。当查询优化器想计算整
个连接查询所使⽤的成本时，就需要计算出驱动表的扇出值，有的时
候扇出值的计算是很容易的，⽐如下边这两个查询：

查询⼀：

SELECT * FROM single_table AS s1 INNER JOIN
single_table2 AS s2;

假设使⽤s1表作为驱动表，很显然对驱动表的单表查询只能使
⽤全表扫描的⽅式执⾏，驱动表的扇出值也很明确，那就是驱
动表中有多少记录，扇出值就是多少。我们前边说过，统计数
据中s1表的记录⾏数是9693，也就是说优化器就直接会把
9693当作在s1表的扇出值。

查询⼆：

SELECT * FROM single_table AS s1 INNER JOIN
single_table2 AS s2
WHERE s1.key2 >10 AND s1.key2 < 1000;

仍然假设s1表是驱动表的话，很显然对驱动表的单表查询可以
使⽤idx_key2索引执⾏查询。此时idx_key2的范围区间
(10, 1000)中有多少条记录，那么扇出值就是多少。我们前
边计算过，满⾜idx_key2的范围区间(10, 1000)的记录数
是95条，也就是说本查询中优化器会把95当作驱动表s1的扇
出值。

事情当然不会总是⼀帆⻛顺的，要不然剧情就太平淡了。有的时候扇
出值的计算就变得很棘⼿，⽐⽅说下边⼏个查询：

查询三：

SELECT * FROM single_table AS s1 INNER JOIN
single_table2 AS s2
 WHERE s1.common_field > 'xyz';

本查询和查询⼀类似，只不过对于驱动表s1多了⼀
个common_field > 'xyz'的搜索条件。查询优化器⼜不会
真正的去执⾏查询，所以它只能猜这9693记录⾥有多少条记录
满⾜common_field > 'xyz'条件。

查询四：

SELECT * FROM single_table AS s1 INNER JOIN
single_table2 AS s2
 WHERE s1.key2 > 10 AND s1.key2 < 1000 AND
 s1.common_field > 'xyz';

本查询和查询⼆类似，只不过对于驱动表s1也多了⼀
个common_field > 'xyz'的搜索条件。不过因为本查询可
以使⽤idx_key2索引，所以只需要从符合⼆级索引范围区间
的记录中猜有多少条记录符合common_field > 'xyz'条
件，也就是只需要猜在95条记录中有多少符合common_field
> 'xyz'条件。

查询五：

SELECT * FROM single_table AS s1 INNER JOIN
single_table2 AS s2
 WHERE s1.key2 > 10 AND s1.key2 < 1000 AND
 s1.key1 IN ('a', 'b', 'c') AND
 s1.common_field > 'xyz';

本查询和查询⼆类似，不过在驱动表s1选取idx_key2索引执
⾏查询后，优化器需要从符合⼆级索引范围区间的记录中猜有
多少条记录符合下边两个条件：

key1 IN ('a', 'b', 'c')

common_field > 'xyz'

也就是优化器需要猜在95条记录中有多少符合上述两个条件
的。

说了这么多，其实就是想表达在这两种情况下计算驱动表扇出值时需
要靠猜：

如果使⽤的是全表扫描的⽅式执⾏的单表查询，那么计算驱动
表扇出时需要猜满⾜搜索条件的记录到底有多少条。

如果使⽤的是索引执⾏的单表扫描，那么计算驱动表扇出的时
候需要猜满⾜除使⽤到对应索引的搜索条件外的其他搜索条件
的记录有多少条。

设计MySQL的⼤叔把这个猜的过程称之为condition
filtering。当然，这个过程可能会使⽤到索引，也可能使⽤到统
计数据，也可能就是设计MySQL的⼤叔单纯的瞎猜，整个评估过程挺
复杂的，再仔细的唠叨⼀遍可能引起⼤家的⽣理不适，所以我们就跳
过了哈。

⼩贴⼠：

在MySQL 5.7之前的版本中，查询优化器在计算驱动表扇出时，如
果是使⽤全表扫描的话，就直接使⽤表中记录的数量作为扇出值，
如果使⽤索引的话，就直接使⽤满⾜范围条件的索引记录条数作为
扇出值。在MySQL 5.7中，设计MySQL的⼤叔引⼊了这个
condition filtering的功能，就是还要猜⼀猜剩余的那些搜索
条件能把驱动表中的记录再过滤多少条，其实本质上就是为了让成
本估算更精确。

我们所说的纯粹瞎猜其实是很不严谨的，设计MySQL的⼤叔们称之
为启发式规则（heuristic），⼤家有兴趣的可以再深⼊了解⼀下
哈。

两表连接的成本分析

连接查询的成本计算公式是这样的：

连接查询总成本 = 单次访问驱动表的成本 + 驱动表扇出数 x 单
次访问被驱动表的成本

对于左（外）连接和右（外）连接查询来说，它们的驱动表是固定
的，所以想要得到最优的查询⽅案只需要：

分别为驱动表和被驱动表选择成本最低的访问⽅法。

可是对于内连接来说，驱动表和被驱动表的位置是可以互换的，所以
需要考虑两个⽅⾯的问题：

不同的表作为驱动表最终的查询成本可能是不同的，也就是需
要考虑最优的表连接顺序。

然后分别为驱动表和被驱动表选择成本最低的访问⽅法。

很显然，计算内连接查询成本的⽅式更麻烦⼀些，下边我们就以内连
接为例来看看如何计算出最优的连接查询⽅案。

⼩贴⼠：

左（外）连接和右（外）连接查询在某些特殊情况下可以被优化为
内连接查询，我们在之后的章节中会仔细唠叨的，稍安勿躁。

⽐如对于下边这个查询来说：

SELECT * FROM single_table AS s1 INNER JOIN
single_table2 AS s2
 ON s1.key1 = s2.common_field
 WHERE s1.key2 > 10 AND s1.key2 < 1000 AND
 s2.key2 > 1000 AND s2.key2 < 2000;

可以选择的连接顺序有两种：

s1连接s2，也就是s1作为驱动表，s2作为被驱动表。

s2连接s1，也就是s2作为驱动表，s1作为被驱动表。

查询优化器需要分别考虑这两种情况下的最优查询成本，然后选取那
个成本更低的连接顺序以及该连接顺序下各个表的最优访问⽅法作为
最终的查询计划。我们分别来看⼀下（定性的分析⼀下，不像分析单
表查询那样定量的分析了）：

使⽤s1作为驱动表的情况

分析对于驱动表的成本最低的执⾏⽅案

⾸先看⼀下涉及s1表单表的搜索条件有哪些：

s1.key2 > 10 AND s1.key2 < 1000

所以这个查询可能使⽤到idx_key2索引，从全表扫描和
使⽤idx_key2这两个⽅案中选出成本最低的那个，这个
过程我们上边都唠叨过了，很显然使⽤idx_key2执⾏查
询的成本更低些。

然后分析对于被驱动表的成本最低的执⾏⽅案

此时涉及被驱动表idx_key2的搜索条件就是：

s2.common_field = 常数（这是因为对驱动
表s1结果集中的每⼀条记录，都需要进⾏⼀次被驱
动表s2的访问，此时那些涉及两表的条件现在相当
于只涉及被驱动表s2了。）

s2.key2 > 1000 AND s2.key2 < 2000

很显然，第⼀个条件由于common_field没有⽤到索
引，所以并没有什么卵⽤，此时访问single_table2表
时可⽤的⽅案也是全表扫描和使⽤idx_key2两种，很显
然使⽤idx_key2的成本更⼩。

所以此时使⽤single_table作为驱动表时的总成本就是（暂
时不考虑使⽤join buffer对成本的影响）：

使⽤idx_key2访问s1的成本 + s1的扇出 × 使⽤
idx_key2访问s2的成本

使⽤s2作为驱动表的情况

分析对于驱动表的成本最低的执⾏⽅案

⾸先看⼀下涉及s2表单表的搜索条件有哪些：

s2.key2 > 10 AND s2.key2 < 1000

所以这个查询可能使⽤到idx_key2索引，从全表扫描和
使⽤idx_key2这两个⽅案中选出成本最低的那个，这个
过程我们上边都唠叨过了，很显然使⽤idx_key2执⾏查
询的成本更低些。

然后分析对于被驱动表的成本最低的执⾏⽅案

此时涉及被驱动表idx_key2的搜索条件就是：

s1.key1 = 常数

s1.key2 > 1000 AND s1.key2 < 2000

这时就很有趣了，使⽤idx_key1可以进⾏ref⽅式的访
问，使⽤idx_key2可以使⽤range⽅式的访问。这是优
化器需要从全表扫描、使⽤idx_key1、使⽤idx_key2
这⼏个⽅案⾥选出⼀个成本最低的⽅案。这⾥有个问题
啊，因为idx_key2的范围区间是确定的：(10,
1000)，怎么计算使⽤idx_key2的成本我们上边已经说
过了，可是在没有真正执⾏查询前，s1.key1 = 常数中
的常数值我们是不知道的，怎么衡量使⽤idx_key1执⾏
查询的成本呢？其实很简单，直接使⽤索引统计数据就好
了（就是索引列平均⼀个值重复多少次）。⼀般情况
下，ref的访问⽅式要⽐range成本最低，这⾥假设使
⽤idx_key1进⾏对s2的访问。

所以此时使⽤single_table作为驱动表时的总成本就是：

使⽤idx_key2访问s2的成本 + s1的扇出 × 使⽤
idx_key1访问s1的成本

最后优化器会⽐较这两种⽅式的最优访问成本，选取那个成本更低的
连接顺序去真正的执⾏查询。从上边的计算过程也可以看出来，连接
查询成本占⼤头的其实是驱动表扇出数 x 单次访问被驱动表的成
本，所以我们的优化重点其实是下边这两个部分：

尽量减少驱动表的扇出

对被驱动表的访问成本尽量低

这⼀点对于我们实际书写连接查询语句时⼗分有⽤，我们需要
尽量在被驱动表的连接列上建⽴索引，这样就可以使⽤ref访
问⽅法来降低访问被驱动表的成本了。如果可以，被驱动表的
连接列最好是该表的主键或者唯⼀⼆级索引列，这样就可以把
访问被驱动表的成本降到更低了。

多表连接的成本分析

⾸先要考虑⼀下多表连接时可能产⽣出多少种连接顺序：

对于两表连接，⽐如表A和表B连接

只有 AB、BA这两种连接顺序。其实相当于2 × 1 = 2种连接
顺序。

对于三表连接，⽐如表A、表B、表C进⾏连接

有ABC、ACB、BAC、BCA、CAB、CBA这么6种连接顺序。其
实相当于3 × 2 × 1 = 6种连接顺序。

对于四表连接的话，则会有4 × 3 × 2 × 1 = 24种连接顺
序。

对于n表连接的话，则有 n × (n-1) × (n-2) × ··· × 1
种连接顺序，就是n的阶乘种连接顺序，也就是n!。

有n个表进⾏连接，MySQL查询优化器要每⼀种连接顺序的成本都计
算⼀遍么？那可是n!种连接顺序呀。其实真的是要都算⼀遍，不过
设计MySQL的⼤叔们想了很多办法减少计算⾮常多种连接顺序的成本
的⽅法：

提前结束某种顺序的成本评估

MySQL在计算各种链接顺序的成本之前，会维护⼀个全局的变
量，这个变量表示当前最⼩的连接查询成本。如果在分析某个
连接顺序的成本时，该成本已经超过当前最⼩的连接查询成
本，那就压根⼉不对该连接顺序继续往下分析了。⽐⽅说A、
B、C三个表进⾏连接，已经得到连接顺序ABC是当前的最⼩连
接成本，⽐⽅说10.0，在计算连接顺序BCA时，发现B和C的连
接成本就已经⼤于10.0时，就不再继续往后分析BCA这个连接
顺序的成本了。

系统变量optimizer_search_depth

为了防⽌⽆穷⽆尽的分析各种连接顺序的成本，设计MySQL的
⼤叔们提出了optimizer_search_depth系统变量，如果连
接表的个数⼩于该值，那么就继续穷举分析每⼀种连接顺序的
成本，否则只对与optimizer_search_depth值相同数量的
表进⾏穷举分析。很显然，该值越⼤，成本分析的越精确，越
容易得到好的执⾏计划，但是消耗的时间也就越⻓，否则得到
不是很好的执⾏计划，但可以省掉很多分析连接成本的时间。

根据某些规则压根⼉就不考虑某些连接顺序

即使是有上边两条规则的限制，但是分析多个表不同连接顺序
成本花费的时间还是会很⻓，所以设计MySQL的⼤叔⼲脆提出
了⼀些所谓的启发式规则（就是根据以往经验指定的⼀些规
则），凡是不满⾜这些规则的连接顺序压根⼉就不分析，这样
可以极⼤的减少需要分析的连接顺序的数量，但是也可能造成
错失最优的执⾏计划。他们提供了⼀个系统变量
optimizer_prune_level来控制到底是不是⽤这些启发式
规则。

调节成本常数

我们前边之介绍了两个成本常数：

读取⼀个⻚⾯花费的成本默认是1.0
检测⼀条记录是否符合搜索条件的成本默认是0.2

其实除了这两个成本常数，MySQL还⽀持好多呢，它们被存储到了
mysql数据库（这是⼀个系统数据库，我们之前介绍过）的两个表
中：

mysql> SHOW TABLES FROM mysql LIKE '%cost%';
+--------------------------+
| Tables_in_mysql (%cost%) |
+--------------------------+
| engine_cost |
| server_cost |
+--------------------------+
2 rows in set (0.00 sec)

我们在第⼀章中就说过，⼀条语句的执⾏其实是分为两层的：

server层

存储引擎层

在server层进⾏连接管理、查询缓存、语法解析、查询优化等操
作，在存储引擎层执⾏具体的数据存取操作。也就是说⼀条语句
在server层中执⾏的成本是和它操作的表使⽤的存储引擎是没关系
的，所以关于这些操作对应的成本常数就存储在了server_cost表
中，⽽依赖于存储引擎的⼀些操作对应的成本常数就存储在了
engine_cost表中。

mysql.server_cost表

server_cost表中在server层进⾏的⼀些操作对应的成本常数，
具体内容如下：

mysql> SELECT * FROM mysql.server_cost;
+------------------------------+------------+----
-----------------+---------+
| cost_name | cost_value |
last_update | comment |
+------------------------------+------------+----
-----------------+---------+
| disk_temptable_create_cost | NULL |
2018-01-20 12:03:21 | NULL |
| disk_temptable_row_cost | NULL |
2018-01-20 12:03:21 | NULL |
| key_compare_cost | NULL |
2018-01-20 12:03:21 | NULL |
| memory_temptable_create_cost | NULL |
2018-01-20 12:03:21 | NULL |
| memory_temptable_row_cost | NULL |
2018-01-20 12:03:21 | NULL |
| row_evaluate_cost | NULL |
2018-01-20 12:03:21 | NULL |
+------------------------------+------------+----
-----------------+---------+
6 rows in set (0.05 sec)

我们先看⼀下server_cost各个列都分别是什么意思：

cost_name

表示成本常数的名称。

cost_value

表示成本常数对应的值。如果该列的值为NULL的话，意味着对
应的成本常数会采⽤默认值。

last_update

表示最后更新记录的时间。

comment

注释。

从server_cost中的内容可以看出来，⽬前在server层的⼀些操
作对应的成本常数有以下⼏种：

成本常数名称
默认
值
描述

disk_temptable_create_cost 40.0

创建基于磁盘的临时表
的成本，如果增⼤这个
值的话会让优化器尽量
少的创建基于磁盘的临
时表。

disk_temptable_row_cost 1.0

向基于磁盘的临时表写
⼊或读取⼀条记录的成
本，如果增⼤这个值的
话会让优化器尽量少的
创建基于磁盘的临时
表。

key_compare_cost 0.1

两条记录做⽐较操作的
成本，多⽤在排序操作
上，如果增⼤这个值的
话会提升filesort的
成本，让优化器可能更
倾向于使⽤索引完成排
序⽽不是filesort。
创建基于内存的临时表
的成本，如果增⼤这个

memory_temptable_create_cost 2.0 值的话会让优化器尽量
少的创建基于内存的临
时表。

memory_temptable_row_cost 0.2

向基于内存的临时表写
⼊或读取⼀条记录的成
本，如果增⼤这个值的
话会让优化器尽量少的
创建基于内存的临时
表。

row_evaluate_cost 0.2

这个就是我们之前⼀直
使⽤的检测⼀条记录是
否符合搜索条件的成
本，增⼤这个值可能让
优化器更倾向于使⽤索
引⽽不是直接全表扫
描。

⼩贴⼠：

MySQL在执⾏诸如DISTINCT查询、分组查询、Union查询以及某些
特殊条件下的排序查询都可能在内部先创建⼀个临时表，使⽤这个
临时表来辅助完成查询（⽐如对于DISTINCT查询可以建⼀个带
有UNIQUE索引的临时表，直接把需要去重的记录插⼊到这个临时表
中，插⼊完成之后的记录就是结果集了）。在数据量⼤的情况下可
能创建基于磁盘的临时表，也就是为该临时表使⽤MyISAM、
InnoDB等存储引擎，在数据量不⼤时可能创建基于内存的临时表，
也就是使⽤Memory存储引擎。关于更多临时表的细节我们并不打算
展开唠叨，因为展开可能⼜需要好⼏万字了，⼤家知道创建临时表
和对这个临时表进⾏写⼊和读取的操作代价还是很⾼的就⾏了。

这些成本常数在server_cost中的初始值都是NULL，意味着优化器
会使⽤它们的默认值来计算某个操作的成本，如果我们想修改某个成
本常数的值的话，需要做两个步骤：

对我们感兴趣的成本常数做更新操作

⽐⽅说我们想把检测⼀条记录是否符合搜索条件的成本增⼤
到0.4，那么就可以这样写更新语句：

UPDATE mysql.server_cost
 SET cost_value = 0.4
 WHERE cost_name = 'row_evaluate_cost';

让系统重新加载这个表的值。

使⽤下边语句即可：

FLUSH OPTIMIZER_COSTS;

当然，在你修改完某个成本常数后想把它们再改回默认值的话，可以
直接把cost_value的值设置为NULL，再使⽤FLUSH
OPTIMIZER_COSTS语句让系统重新加载它就好了。

mysql.engine_cost表

engine_cost表表中在存储引擎层进⾏的⼀些操作对应的成本常
数，具体内容如下：

mysql> SELECT * FROM mysql.engine_cost;
+-------------+-------------+--------------------
----+------------+---------------------+---------
+
| engine_name | device_type | cost_name
| cost_value | last_update | comment |
+-------------+-------------+--------------------
----+------------+---------------------+---------
+
| default | 0 | io_block_read_cost
| NULL | 2018-01-20 12:03:21 | NULL |
| default | 0 |
memory_block_read_cost | NULL | 2018-01-20
12:03:21 | NULL |
+-------------+-------------+--------------------
----+------------+---------------------+---------
+
2 rows in set (0.05 sec)

与server_cost相⽐，engine_cost多了两个列：

engine_name列

指成本常数适⽤的存储引擎名称。如果该值为default，意味
着对应的成本常数适⽤于所有的存储引擎。

device_type列

指存储引擎使⽤的设备类型，这主要是为了区分常规的机械硬
盘和固态硬盘，不过在MySQL 5.7.21这个版本中并没有对机
械硬盘的成本和固态硬盘的成本作区分，所以该值默认是0。

我们从engine_cost表中的内容可以看出来，⽬前⽀持的存储引擎
成本常数只有两个：

成本常数名称
默
认
值
描述

io_block_read_cost 1.0

从磁盘上读取⼀个块对应的成
本。请注意我使⽤的是块，⽽不
是⻚这个词⼉。对于InnoDB存储
引擎来说，⼀个⻚就是⼀个块，
不过对于MyISAM存储引擎来说，
默认是以4096字节作为⼀个块
的。增⼤这个值会加重I/O成
本，可能让优化器更倾向于选择
使⽤索引执⾏查询⽽不是执⾏全
表扫描。

memory_block_read_cost1.0
与上⼀个参数类似，只不过衡量
的是从内存中读取⼀个块对应的
成本。

⼤家看完这两个成本常数的默认值是不是有些疑惑，怎么从内存中和
从磁盘上读取⼀个块的默认成本是⼀样的，脑⼦瓦特了？这主要是因
为在MySQL⽬前的实现中，并不能准确预测某个查询需要访问的块中
有哪些块已经加载到内存中，有哪些块还停留在磁盘上，所以设计
MySQL的⼤叔们很粗暴的认为不管这个块有没有加载到内存中，使⽤
的成本都是1.0，不过随着MySQL的发展，等到可以准确预测哪些块
在磁盘上，那些块在内存中的那⼀天，这两个成本常数的默认值可能
会改⼀改吧。

与更新server_cost表中的记录⼀样，我们也可以通过更新
engine_cost表中的记录来更改关于存储引擎的成本常数，我们也
可以通过为engine_cost表插⼊新记录的⽅式来添加只针对某种存
储引擎的成本常数：

插⼊针对某个存储引擎的成本常数

⽐如我们想增⼤InnoDB存储引擎⻚⾯I/O的成本，书写正常的
插⼊语句即可：

INSERT INTO mysql.engine_cost
 VALUES ('InnoDB', 0,
'io_block_read_cost', 2.0,
 CURRENT_TIMESTAMP, 'increase Innodb I/O
cost');

让系统重新加载这个表的值。

使⽤下边语句即可：

FLUSH OPTIMIZER_COSTS;

