
基于规则的优化

标签： MySQL 是怎样运⾏的

⼤家别忘了MySQL本质上是⼀个软件，设计MySQL的⼤叔并不能要求
使⽤这个软件的⼈个个都是数据库⾼⾼⼿，就像我写这本书的时候并
不能要求各位在学之前就会了⾥边⼉的知识。

吐槽⼀下：都会了的⼈谁还看呢，难道是为了精神上受感化？

也就是说我们⽆法避免某些同学写⼀些执⾏起来⼗分耗费性能的语
句。即使是这样，设计MySQL的⼤叔还是依据⼀些规则，竭尽全⼒的
把这个很糟糕的语句转换成某种可以⽐较⾼效执⾏的形式，这个过程
也可以被称作查询重写（就是⼈家觉得你写的语句不好，⾃⼰再重写
⼀遍）。本章详细唠叨⼀下⼀些⽐较重要的重写规则。

条件化简

我们编写的查询语句的搜索条件本质上是⼀个表达式，这些表达式可
能⽐较繁杂，或者不能⾼效的执⾏，MySQL的查询优化器会为我们简
化这些表达式。为了⽅便⼤家理解，我们后边举例⼦的时候都使⽤诸
如a、b、c之类的简单字⺟代表某个表的列名。

移除不必要的括号

有时候表达式⾥有许多⽆⽤的括号，⽐如这样：

((a = 5 AND b = c) OR ((a > c) AND (c < 5)))

看着就很烦，优化器会把那些⽤不到的括号给⼲掉，就是这样：

(a = 5 and b = c) OR (a > c AND c < 5)

常量传递（constant_propagation）

有时候某个表达式是某个列和某个常量做等值匹配，⽐如这样：

a = 5

当这个表达式和其他涉及列a的表达式使⽤AND连接起来时，可以将
其他表达式中的a的值替换为5，⽐如这样：

a = 5 AND b > a

就可以被转换为：

a = 5 AND b > 5

⼩贴⼠：

为啥⽤OR连接起来的表达式就不能进⾏常量传递呢？⾃⼰想想哈～

等值传递（equality_propagation）

有时候多个列之间存在等值匹配的关系，⽐如这样：

a = b and b = c and c = 5

这个表达式可以被简化为：

a = 5 and b = 5 and c = 5

移除没⽤的条件（trivial_condition_removal）

对于⼀些明显永远为TRUE或者FALSE的表达式，优化器会移除掉它
们，⽐如这个表达式：

(a < 1 and b = b) OR (a = 6 OR 5 != 5)

很明显，b = b这个表达式永远为TRUE，5 != 5这个表达式永远
为FALSE，所以简化后的表达式就是这样的：

(a < 1 and TRUE) OR (a = 6 OR FALSE)

可以继续被简化为

a < 1 OR a = 6

表达式计算

在查询开始执⾏之前，如果表达式中只包含常量的话，它的值会被先
计算出来，⽐如这个：

a = 5 + 1

因为5 + 1这个表达式只包含常量，所以就会被化简成：

a = 6

但是这⾥需要注意的是，如果某个列并不是以单独的形式作为表达式
的操作数时，⽐如出现在函数中，出现在某个更复杂表达式中，就像
这样：

ABS(a) > 5

或者：

-a < -8

优化器是不会尝试对这些表达式进⾏化简的。我们前边说过只有搜索
条件中索引列和常数使⽤某些运算符连接起来才可能使⽤到索引，所
以如果可以的话，最好让索引列以单独的形式出现在表达式中。

HAVING⼦句和WHERE⼦句的合并

如果查询语句中没有出现诸如SUM、MAX等等的聚集函数以及GROUP
BY⼦句，优化器就把HAVING⼦句和WHERE⼦句合并起来。

常量表检测

设计MySQL的⼤叔觉得下边这两种查询运⾏的特别快：

查询的表中⼀条记录没有，或者只有⼀条记录。

⼩贴⼠：

⼤家有没有觉得这⼀条有点⼉不对劲，我还没开始查表呢咋就
知道这表⾥边有⼏条记录呢？哈哈，这个其实依靠的是统计数
据。不过我们说过InnoDB的统计数据数据不准确，所以这⼀
条不能⽤于使⽤InnoDB作为存储引擎的表，只能适⽤于使
⽤Memory或者MyISAM存储引擎的表。

使⽤主键等值匹配或者唯⼀⼆级索引列等值匹配作为搜索条件
来查询某个表。

设计MySQL的⼤叔觉得这两种查询花费的时间特别少，少到可以忽
略，所以也把通过这两种⽅式查询的表称之为常量表（英⽂
名：constant tables）。优化器在分析⼀个查询语句时，先⾸先
执⾏常量表查询，然后把查询中涉及到该表的条件全部替换成常数，
最后再分析其余表的查询成本，⽐⽅说这个查询语句：

SELECT * FROM table1 INNER JOIN table2
 ON table1.column1 = table2.column2
 WHERE table1.primary_key = 1;

很明显，这个查询可以使⽤主键和常量值的等值匹配来查询table1
表，也就是在这个查询中table1表相当于常量表，在分析对
table2表的查询成本之前，就会执⾏对table1表的查询，并把查
询中涉及table1表的条件都替换掉，也就是上边的语句会被转换成
这样：

SELECT table1表记录的各个字段的常量值, table2.* FROM
table1 INNER JOIN table2
 ON table1表column1列的常量值 = table2.column2;

外连接消除

我们前边说过，内连接的驱动表和被驱动表的位置可以相互转换，⽽
左（外）连接和右（外）连接的驱动表和被驱动表是固定的。这就导
致内连接可能通过优化表的连接顺序来降低整体的查询成本，⽽外连
接却⽆法优化表的连接顺序。为了故事的顺利发展，我们还是把之前
介绍连接原理时⽤过的t1和t2表请出来，为了防⽌⼤家早就忘掉
了，我们再看⼀下这两个表的结构：

CREATE TABLE t1 (
 m1 int,
 n1 char(1)
) Engine=InnoDB, CHARSET=utf8;

CREATE TABLE t2 (
 m2 int,
 n2 char(1)
) Engine=InnoDB, CHARSET=utf8;

为了唤醒⼤家的记忆，我们再把这两个表中的数据给展示⼀下：

mysql> SELECT * FROM t1;
+------+------+
| m1 | n1 |
+------+------+
1	a
2	b
3	c
+------+------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM t2;
+------+------+
| m2 | n2 |
+------+------+
2	b
3	c
4	d
+------+------+
3 rows in set (0.00 sec)

我们之前说过，外连接和内连接的本质区别就是：对于外连接的驱动
表的记录来说，如果⽆法在被驱动表中找到匹配ON⼦句中的过滤条
件的记录，那么该记录仍然会被加⼊到结果集中，对应的被驱动表记
录的各个字段使⽤NULL值填充；⽽内连接的驱动表的记录如果⽆法
在被驱动表中找到匹配ON⼦句中的过滤条件的记录，那么该记录会
被舍弃。查询效果就是这样：

mysql> SELECT * FROM t1 INNER JOIN t2 ON t1.m1 =
t2.m2;
+------+------+------+------+
| m1 | n1 | m2 | n2 |
+------+------+------+------+
| 2 | b | 2 | b |
| 3 | c | 3 | c |
+------+------+------+------+
2 rows in set (0.00 sec)

mysql> SELECT * FROM t1 LEFT JOIN t2 ON t1.m1 =
t2.m2;
+------+------+------+------+
| m1 | n1 | m2 | n2 |
+------+------+------+------+
2	b	2	b
3	c	3	c
1	a	NULL	NULL
+------+------+------+------+
3 rows in set (0.00 sec)

对于上边例⼦中的（左）外连接来说，由于驱动表t1中m1=1,
n1='a'的记录⽆法在被驱动表t2中找到符合ON⼦句条件t1.m1 =
t2.m2的记录，所以就直接把这条记录加⼊到结果集，对应的t2表
的m2和n2列的值都设置为NULL。

⼩贴⼠：

右（外）连接和左（外）连接其实只在驱动表的选取⽅式上是不同
的，其余⽅⾯都是⼀样的，所以优化器会⾸先把右（外）连接查询
转换成左（外）连接查询。我们后边就不再唠叨右（外）连接了。

我们知道WHERE⼦句的杀伤⼒⽐较⼤，凡是不符合WHERE⼦句中条
件的记录都不会参与连接。只要我们在搜索条件中指定关于被驱动表
相关列的值不为NULL，那么外连接中在被驱动表中找不到符合ON⼦
句条件的驱动表记录也就被排除出最后的结果集了，也就是说：在这
种情况下：外连接和内连接也就没有什么区别了！⽐⽅说这个查询：

mysql> SELECT * FROM t1 LEFT JOIN t2 ON t1.m1 =
t2.m2 WHERE t2.n2 IS NOT NULL;
+------+------+------+------+
| m1 | n1 | m2 | n2 |
+------+------+------+------+
| 2 | b | 2 | b |
| 3 | c | 3 | c |
+------+------+------+------+
2 rows in set (0.01 sec)

由于指定了被驱动表t2的n2列不允许为NULL，所以上边的t1和t2
表的左（外）连接查询和内连接查询是⼀样⼀样的。当然，我们也可
以不⽤显式的指定被驱动表的某个列IS NOT NULL，只要隐含的有
这个意思就⾏了，⽐⽅说这样：

mysql> SELECT * FROM t1 LEFT JOIN t2 ON t1.m1 =
t2.m2 WHERE t2.m2 = 2;
+------+------+------+------+
| m1 | n1 | m2 | n2 |
+------+------+------+------+
| 2 | b | 2 | b |
+------+------+------+------+
1 row in set (0.00 sec)

在这个例⼦中，我们在WHERE⼦句中指定了被驱动表t2的m2列等于
2，也就相当于间接的指定了m2列不为NULL值，所以上边的这个左
（外）连接查询其实和下边这个内连接查询是等价的：

mysql> SELECT * FROM t1 INNER JOIN t2 ON t1.m1 =
t2.m2 WHERE t2.m2 = 2;
+------+------+------+------+
| m1 | n1 | m2 | n2 |
+------+------+------+------+
| 2 | b | 2 | b |
+------+------+------+------+
1 row in set (0.00 sec)

我们把这种在外连接查询中，指定的WHERE⼦句中包含被驱动表中的
列不为NULL值的条件称之为空值拒绝（英⽂名：reject-NULL）。
在被驱动表的WHERE⼦句符合空值拒绝的条件后，外连接和内连接
可以相互转换。这种转换带来的好处就是查询优化器可以通过评估表
的不同连接顺序的成本，选出成本最低的那种连接顺序来执⾏查询。

⼦查询优化

我们的主题本来是唠叨MySQL查询优化器是如何处理⼦查询的，但是
我还是有⼀万个担⼼好多同学连⼦查询的语法都没掌握全，所以我们
就先唠叨唠叨什么是个⼦查询（当然不会⾯⾯俱到啦，只是说个⼤概
哈），然后再唠叨关于⼦查询优化的事⼉。

⼦查询语法

想必⼤家都是妈妈⽣下来的吧，连孙猴⼦都有妈妈——⽯头⼈。怀孕
妈妈肚⼦⾥的那个东东就是她的孩⼦，类似的，在⼀个查询语句⾥的
某个位置也可以有另⼀个查询语句，这个出现在某个查询语句的某个
位置中的查询就被称为⼦查询（我们也可以称它为宝宝查询哈哈），
那个充当“妈妈”⻆⾊的查询也被称之为外层查询。不像⼈们怀孕时宝
宝们都只在肚⼦⾥，⼦查询可以在⼀个外层查询的各种位置出现，⽐
如：

SELECT⼦句中

也就是我们平时说的查询列表中，⽐如这样：

mysql> SELECT (SELECT m1 FROM t1 LIMIT 1);
+-----------------------------+
| (SELECT m1 FROM t1 LIMIT 1) |
+-----------------------------+
| 1 |
+-----------------------------+
1 row in set (0.00 sec)

其中的(SELECT m1 FROM t1 LIMIT 1)就是我们唠叨的所
谓的⼦查询。

FROM⼦句中

⽐如：

SELECT m, n FROM (SELECT m2 + 1 AS m, n2 AS n
FROM t2 WHERE m2 > 2) AS t;
+------+------+
| m | n |
+------+------+
| 4 | c |
| 5 | d |
+------+------+
2 rows in set (0.00 sec)

这个例⼦中的⼦查询是：(SELECT m2 + 1 AS m, n2 AS
n FROM t2 WHERE m2 > 2)，很特别的地⽅是它出现在了
FROM⼦句中。FROM⼦句⾥边⼉不是存放我们要查询的表的名
称么，这⾥放进来⼀个⼦查询是个什么⻤？其实这⾥我们可以
把⼦查询的查询结果当作是⼀个表，⼦查询后边的AS t表明这
个⼦查询的结果就相当于⼀个名称为t的表，这个名叫t的表的
列就是⼦查询结果中的列，⽐如例⼦中表t就有两个列：m列和

n列。这个放在FROM⼦句中的⼦查询本质上相当于⼀个表，但
⼜和我们平常使⽤的表有点⼉不⼀样，设计MySQL的⼤叔把这
种由⼦查询结果集组成的表称之为派⽣表。

WHERE或ON⼦句中

把⼦查询放在外层查询的WHERE⼦句或者ON⼦句中可能是我们
最常⽤的⼀种使⽤⼦查询的⽅式了，⽐如这样：

mysql> SELECT * FROM t1 WHERE m1 IN (SELECT
m2 FROM t2);
+------+------+
| m1 | n1 |
+------+------+
| 2 | b |
| 3 | c |
+------+------+
2 rows in set (0.00 sec)

这个查询表明我们想要将(SELECT m2 FROM t2)这个⼦查询
的结果作为外层查询的IN语句参数，整个查询语句的意思就是
我们想找t1表中的某些记录，这些记录的m1列的值能在t2表
的m2列找到匹配的值。

ORDER BY⼦句中

虽然语法⽀持，但没啥⼦意义，不唠叨这种情况了。

GROUP BY⼦句中

同上～

按返回的结果集区分⼦查询

因为⼦查询本身也算是⼀个查询，所以可以按照它们返回的不同结果
集类型⽽把这些⼦查询分为不同的类型：

标量⼦查询

那些只返回⼀个单⼀值的⼦查询称之为标量⼦查询，⽐如这
样：

SELECT (SELECT m1 FROM t1 LIMIT 1);

或者这样：

SELECT * FROM t1 WHERE m1 = (SELECT MIN(m2)
FROM t2);

这两个查询语句中的⼦查询都返回⼀个单⼀的值，也就是⼀个
标量。这些标量⼦查询可以作为⼀个单⼀值或者表达式的⼀部
分出现在查询语句的各个地⽅。

⾏⼦查询

顾名思义，就是返回⼀条记录的⼦查询，不过这条记录需要包
含多个列（只包含⼀个列就成了标量⼦查询了）。⽐如这样：

SELECT * FROM t1 WHERE (m1, n1) = (SELECT m2,
n2 FROM t2 LIMIT 1);

其中的(SELECT m2, n2 FROM t2 LIMIT 1)就是⼀个⾏
⼦查询，整条语句的含义就是要从t1表中找⼀些记录，这些记
录的m1和m2列分别等于⼦查询结果中的m2和n2列。

列⼦查询

列⼦查询⾃然就是查询出⼀个列的数据喽，不过这个列的数据
需要包含多条记录（只包含⼀条记录就成了标量⼦查询了）。
⽐如这样：

SELECT * FROM t1 WHERE m1 IN (SELECT m2 FROM
t2);

其中的(SELECT m2 FROM t2)就是⼀个列⼦查询，表明查询
出t2表的m2列的值作为外层查询IN语句的参数。

表⼦查询

顾名思义，就是⼦查询的结果既包含很多条记录，⼜包含很多
个列，⽐如这样：

SELECT * FROM t1 WHERE (m1, n1) IN (SELECT
m2, n2 FROM t2);

其中的(SELECT m2, n2 FROM t2)就是⼀个表⼦查询，这
⾥需要和⾏⼦查询对⽐⼀下，⾏⼦查询中我们⽤了LIMIT 1来
保证⼦查询的结果只有⼀条记录，表⼦查询中不需要这个限
制。

按与外层查询关系来区分⼦查询

不相关⼦查询

如果⼦查询可以单独运⾏出结果，⽽不依赖于外层查询的值，
我们就可以把这个⼦查询称之为不相关⼦查询。我们前边介绍
的那些⼦查询全部都可以看作不相关⼦查询，所以也就不举例
⼦了哈。

相关⼦查询

如果⼦查询的执⾏需要依赖于外层查询的值，我们就可以把这
个⼦查询称之为不相关⼦查询。⽐如：

SELECT * FROM t1 WHERE m1 IN (SELECT m2 FROM
t2 WHERE n1 = n2);

例⼦中的⼦查询是(SELECT m2 FROM t2 WHERE n1 =
n2)，可是这个查询中有⼀个搜索条件是n1 = n2，别忘了n1
是表t1的列，也就是外层查询的列，也就是说⼦查询的执⾏需
要依赖于外层查询的值，所以这个⼦查询就是⼀个相关⼦查
询。

⼦查询在布尔表达式中的使⽤

你说写下边这样的⼦查询有啥意义：

SELECT (SELECT m1 FROM t1 LIMIT 1);

貌似没啥意义～ 我们平时⽤⼦查询最多的地⽅就是把它作为布尔表
达式的⼀部分来作为搜索条件⽤在WHERE⼦句或者ON⼦句⾥。所以
我们这⾥来总结⼀下⼦查询在布尔表达式中的使⽤场景。

使⽤=、>、<、>=、<=、<>、!=、<=>作为布尔表达式的操作
符

这些操作符具体是啥意思就不⽤我多介绍了吧，如果你不知道
的话，那我真的很佩服你是靠着啥勇⽓⼀⼝⽓看到这⾥的～ 为
了⽅便，我们就把这些操作符称为comparison_operator
吧，所以⼦查询组成的布尔表达式就⻓这样：

操作数 comparison_operator (⼦查询)

这⾥的操作数可以是某个列名，或者是⼀个常量，或者是⼀个
更复杂的表达式，甚⾄可以是另⼀个⼦查询。但是需要注意的
是，这⾥的⼦查询只能是标量⼦查询或者⾏⼦查询，也就是⼦
查询的结果只能返回⼀个单⼀的值或者只能是⼀条记录。⽐如
这样（标量⼦查询）：

SELECT * FROM t1 WHERE m1 < (SELECT MIN(m2)
FROM t2);

或者这样（⾏⼦查询）：

SELECT * FROM t1 WHERE (m1, n1) = (SELECT m2,
n2 FROM t2 LIMIT 1);

[NOT] IN/ANY/SOME/ALL⼦查询

对于列⼦查询和表⼦查询来说，它们的结果集中包含很多条记
录，这些记录相当于是⼀个集合，所以就不能单纯的和另外⼀
个操作数使⽤comparison_operator来组成布尔表达式
了，MySQL通过下⾯的语法来⽀持某个操作数和⼀个集合组成
⼀个布尔表达式：

IN或者NOT IN

具体的语法形式如下：

操作数 [NOT] IN (⼦查询)

这个布尔表达式的意思是⽤来判断某个操作数在不在由⼦
查询结果集组成的集合中，⽐如下边的查询的意思是找出
t1表中的某些记录，这些记录存在于⼦查询的结果集
中：

SELECT * FROM t1 WHERE (m1, n2) IN
(SELECT m2, n2 FROM t2);

ANY/SOME（ANY和SOME是同义词）

具体的语法形式如下：

操作数 comparison_operator ANY/SOME(⼦查询)

这个布尔表达式的意思是只要⼦查询结果集中存在某个值
和给定的操作数做comparison_operator⽐较结果
为TRUE，那么整个表达式的结果就为TRUE，否则整个表

达式的结果就为FALSE。⽐⽅说下边这个查询：

SELECT * FROM t1 WHERE m1 > ANY(SELECT m2
FROM t2);

这个查询的意思就是对于t1表的某条记录的m1列的值来
说，如果⼦查询(SELECT m2 FROM t2)的结果集中存
在⼀个⼩于m1列的值，那么整个布尔表达式的值就
是TRUE，否则为FALSE，也就是说只要m1列的值⼤于⼦
查询结果集中最⼩的值，整个表达式的结果就是TRUE，
所以上边的查询本质上等价于这个查询：

SELECT * FROM t1 WHERE m1 > (SELECT
MIN(m2) FROM t2);

另外，=ANY相当于判断⼦查询结果集中是否存在某个值
和给定的操作数相等，它的含义和IN是相同的。

ALL

具体的语法形式如下：

操作数 comparison_operator ALL(⼦查询)

这个布尔表达式的意思是⼦查询结果集中所有的值和给定
的操作数做comparison_operator⽐较结果为TRUE，
那么整个表达式的结果就为TRUE，否则整个表达式的结
果就为FALSE。⽐⽅说下边这个查询：

SELECT * FROM t1 WHERE m1 > ALL(SELECT m2
FROM t2);

这个查询的意思就是对于t1表的某条记录的m1列的值来
说，如果⼦查询(SELECT m2 FROM t2)的结果集中的
所有值都⼩于m1列的值，那么整个布尔表达式的值就

是TRUE，否则为FALSE，也就是说只要m1列的值⼤于⼦
查询结果集中最⼤的值，整个表达式的结果就是TRUE，
所以上边的查询本质上等价于这个查询：

SELECT * FROM t1 WHERE m1 > (SELECT
MAX(m2) FROM t2);

⼩贴⼠：

觉得ANY和ALL有点晕的同学多看两遍哈～

EXISTS⼦查询

有的时候我们仅仅需要判断⼦查询的结果集中是否有记录，⽽
不在乎它的记录具体是个啥，可以使⽤把EXISTS或者NOT
EXISTS放在⼦查询语句前边，就像这样：

[NOT] EXISTS (⼦查询)

我们举⼀个例⼦啊：

SELECT * FROM t1 WHERE EXISTS (SELECT 1 FROM
t2);

对于⼦查询(SELECT 1 FROM t2)来说，我们并不关⼼这个
⼦查询最后到底查询出的结果是什么，所以查询列表⾥填*、
某个列名，或者其他啥东⻄都⽆所谓，我们真正关⼼的是⼦查
询的结果集中是否存在记录。也就是说只要(SELECT 1 FROM
t2)这个查询中有记录，那么整个EXISTS表达式的结果就
为TRUE。

⼦查询语法注意事项

⼦查询必须⽤⼩括号扩起来。

不扩起来的⼦查询是⾮法的，⽐如这样：

mysql> SELECT SELECT m1 FROM t1;

ERROR 1064 (42000): You have an error in your
SQL syntax; check the manual that corresponds
to your MySQL server version for the right
syntax to use near 'SELECT m1 FROM t1' at
line 1

在SELECT⼦句中的⼦查询必须是标量⼦查询。

如果⼦查询结果集中有多个列或者多个⾏，都不允许放
在SELECT⼦句中，也就是查询列表中，⽐如这样就是⾮法
的：

mysql> SELECT (SELECT m1, n1 FROM t1);

ERROR 1241 (21000): Operand should contain 1
column(s)

在想要得到标量⼦查询或者⾏⼦查询，但⼜不能保证⼦查询的
结果集只有⼀条记录时，应该使⽤LIMIT 1语句来限制记录数
量。

对于[NOT] IN/ANY/SOME/ALL⼦查询来说，⼦查询中不允
许有LIMIT语句。

⽐如这样是⾮法的：

mysql> SELECT * FROM t1 WHERE m1 IN (SELECT *
FROM t2 LIMIT 2);

ERROR 1235 (42000): This version of MySQL
doesn't yet support 'LIMIT & IN/ALL/ANY/SOME
subquery'

为啥不合法？⼈家就这么规定的，不解释～ 可能以后的版本会
⽀持吧。正因为[NOT] IN/ANY/SOME/ALL⼦查询不⽀
持LIMIT语句，所以⼦查询中的这些语句也就是多余的了：

ORDER BY⼦句

⼦查询的结果其实就相当于⼀个集合，集合⾥的值排不排
序⼀点⼉都不重要，⽐如下边这个语句中的ORDER BY⼦
句简直就是画蛇添⾜：

SELECT * FROM t1 WHERE m1 IN (SELECT m2
FROM t2 ORDER BY m2);

DISTINCT语句

集合⾥的值去不去重也没啥意义，⽐如这样：

SELECT * FROM t1 WHERE m1 IN (SELECT
DISTINCT m2 FROM t2);

没有聚集函数以及HAVING⼦句的GROUP BY⼦句。

在没有聚集函数以及HAVING⼦句时，GROUP BY⼦句就
是个摆设，⽐如这样：

SELECT * FROM t1 WHERE m1 IN (SELECT m2
FROM t2 GROUP BY m2);

对于这些冗余的语句，查询优化器在⼀开始就把它们给⼲掉
了。

不允许在⼀条语句中增删改某个表的记录时同时还对该表进⾏
⼦查询。

⽐⽅说这样：

mysql> DELETE FROM t1 WHERE m1 < (SELECT
MAX(m1) FROM t1);

ERROR 1093 (HY000): You can't specify target
table 't1' for update in FROM clause

⼦查询在MySQL中是怎么执⾏的

好了，关于⼦查询的基础语法我们⽤最快的速度温习了⼀遍，如果想
了解更多语法细节，⼤家可以去查看⼀下MySQL的⽂档哈，现在我们
就假设各位都懂了啥是个⼦查询了喔，接下来就要唠叨具体某种类型
的⼦查询在MySQL中是怎么执⾏的了，想想就有点⼉⼩激动呢～ 当
然，为了故事的顺利发展，我们的例⼦也需要跟随形势⻦枪换炮，还
是要祭出我们⽤了n遍的single_table表：

CREATE TABLE single_table (
 id INT NOT NULL AUTO_INCREMENT,
 key1 VARCHAR(100),
 key2 INT,
 key3 VARCHAR(100),
 key_part1 VARCHAR(100),
 key_part2 VARCHAR(100),
 key_part3 VARCHAR(100),
 common_field VARCHAR(100),
 PRIMARY KEY (id),
 KEY idx_key1 (key1),
 UNIQUE KEY idx_key2 (key2),
 KEY idx_key3 (key3),
 KEY idx_key_part(key_part1, key_part2,
key_part3)
) Engine=InnoDB CHARSET=utf8;

为了⽅便，我们假设有两个表s1、s2与这个single_table表的构
造是相同的，⽽且这两个表⾥边⼉有10000条记录，除id列外其余
的列都插⼊随机值。下边正式开始我们的表演。

⼩⽩们眼中⼦查询的执⾏⽅式

在我还是⼀个单纯⽆知的少年时，觉得⼦查询的执⾏⽅式是这样的：

如果该⼦查询是不相关⼦查询，⽐如下边这个查询：

SELECT * FROM s1
 WHERE key1 IN (SELECT common_field FROM
s2);

我年少时觉得这个查询是的执⾏⽅式是这样的：

先单独执⾏(SELECT common_field FROM s2)这个
⼦查询。

然后在将上⼀步⼦查询得到的结果当作外层查询的参数再
执⾏外层查询SELECT * FROM s1 WHERE key1 IN
(...)。

如果该⼦查询是相关⼦查询，⽐如下边这个查询：

SELECT * FROM s1
 WHERE key1 IN (SELECT common_field FROM
s2 WHERE s1.key2 = s2.key2);

这个查询中的⼦查询中出现了s1.key2 = s2.key2这样的条
件，意味着该⼦查询的执⾏依赖着外层查询的值，所以我年少
时觉得这个查询的执⾏⽅式是这样的：

先从外层查询中获取⼀条记录，本例中也就是先从s1表
中获取⼀条记录。

然后从上⼀步骤中获取的那条记录中找出⼦查询中涉及到
的值，本例中就是从s1表中获取的那条记录中找出
s1.key2列的值，然后执⾏⼦查询。

最后根据⼦查询的查询结果来检测外层查询WHERE⼦句的
条件是否成⽴，如果成⽴，就把外层查询的那条记录加⼊
到结果集，否则就丢弃。

再次执⾏第⼀步，获取第⼆条外层查询中的记录，依次类
推～

告诉我不只是我⼀个⼈是这样认为的，这样认为的同学请举起你们的
双⼿～～～ 哇唔，还真不少～

其实设计MySQL的⼤叔想了⼀系列的办法来优化⼦查询的执⾏，⼤部
分情况下这些优化措施其实挺有效的，但是保不⻬有的时候⻢失前
蹄，下边我们详细唠叨各种不同类型的⼦查询具体是怎么执⾏的。

⼩贴⼠：

我们下边即将唠叨的关于MySQL优化⼦查询的执⾏⽅式的事⼉都是
基于MySQL5.7这个版本的，以后版本可能有更新的优化策略！

标量⼦查询、⾏⼦查询的执⾏⽅式

我们经常在下边两个场景中使⽤到标量⼦查询或者⾏⼦查询：

SELECT⼦句中，我们前边说过的在查询列表中的⼦查询必须
是标量⼦查询。

⼦查询使⽤=、>、<、>=、<=、<>、!=、<=>等操作符和某个
操作数组成⼀个布尔表达式，这样的⼦查询必须是标量⼦查询
或者⾏⼦查询。

对于上述两种场景中的不相关标量⼦查询或者⾏⼦查询来说，它们的
执⾏⽅式是简单的，⽐⽅说下边这个查询语句：

SELECT * FROM s1
 WHERE key1 = (SELECT common_field FROM s2
WHERE key3 = 'a' LIMIT 1);

它的执⾏⽅式和年少的我想的⼀样：

先单独执⾏(SELECT common_field FROM s2 WHERE
key3 = 'a' LIMIT 1)这个⼦查询。

然后在将上⼀步⼦查询得到的结果当作外层查询的参数再执⾏
外层查询SELECT * FROM s1 WHERE key1 = ...。

也就是说，对于包含不相关的标量⼦查询或者⾏⼦查询的查询语句来
说，MySQL会分别独⽴的执⾏外层查询和⼦查询，就当作两个单表
查询就好了。

对于相关的标量⼦查询或者⾏⼦查询来说，⽐如下边这个查询：

SELECT * FROM s1 WHERE
 key1 = (SELECT common_field FROM s2 WHERE
s1.key3 = s2.key3 LIMIT 1);

事情也和年少的我想的⼀样，它的执⾏⽅式就是这样的：

先从外层查询中获取⼀条记录，本例中也就是先从s1表中获取
⼀条记录。

然后从上⼀步骤中获取的那条记录中找出⼦查询中涉及到的
值，本例中就是从s1表中获取的那条记录中找出s1.key3列的
值，然后执⾏⼦查询。

最后根据⼦查询的查询结果来检测外层查询WHERE⼦句的条件
是否成⽴，如果成⽴，就把外层查询的那条记录加⼊到结果
集，否则就丢弃。

再次执⾏第⼀步，获取第⼆条外层查询中的记录，依次类推～

也就是说对于⼀开始唠叨的两种使⽤标量⼦查询以及⾏⼦查询的场景
中，MySQL优化器的执⾏⽅式并没有什么新鲜的。

IN⼦查询优化

物化表的提出

对于不相关的IN⼦查询，⽐如这样：

SELECT * FROM s1
 WHERE key1 IN (SELECT common_field FROM s2
WHERE key3 = 'a');

我们最开始的感觉就是这种不相关的IN⼦查询和不相关的标量⼦查
询或者⾏⼦查询是⼀样⼀样的，都是把外层查询和⼦查询当作两个独
⽴的单表查询来对待，可是很遗憾的是设计MySQL的⼤叔为了优
化IN⼦查询倾注了太多⼼⾎（毕竟IN⼦查询是我们⽇常⽣活中最常
⽤的⼦查询类型），所以整个执⾏过程并不像我们想象的那么简单
(>_<)。

其实说句⽼实话，对于不相关的IN⼦查询来说，如果⼦查询的结果
集中的记录条数很少，那么把⼦查询和外层查询分别看成两个单独的
单表查询效率还是蛮⾼的，但是如果单独执⾏⼦查询后的结果集太多
的话，就会导致这些问题：

结果集太多，可能内存中都放不下～

对于外层查询来说，如果⼦查询的结果集太多，那就意味着IN
⼦句中的参数特别多，这就导致：

⽆法有效的使⽤索引，只能对外层查询进⾏全表扫描。

在对外层查询执⾏全表扫描时，由于IN⼦句中的参数太
多，这会导致检测⼀条记录是否符合和IN⼦句中的参数
匹配花费的时间太⻓。

⽐如说IN⼦句中的参数只有两个：

SELECT * FROM tbl_name WHERE column IN
(a, b);

这样相当于需要对tbl_name表中的每条记录判断⼀下它
的column列是否符合column = a OR column = b。
在IN⼦句中的参数⽐较少时这并不是什么问题，如果IN

⼦句中的参数⽐较多时，⽐如这样：

SELECT * FROM tbl_name WHERE column IN
(a, b, c ..., ...);

那么这样每条记录需要判断⼀下它的column列是否符
合column = a OR column = b OR column = c
OR ...，这样性能耗费可就多了。

于是乎设计MySQL的⼤叔想了⼀个招：不直接将不相关⼦查询的结果
集当作外层查询的参数，⽽是将该结果集写⼊⼀个临时表⾥。写⼊临
时表的过程是这样的：

该临时表的列就是⼦查询结果集中的列。

写⼊临时表的记录会被去重。

我们说IN语句是判断某个操作数在不在某个集合中，集合中的
值重不重复对整个IN语句的结果并没有啥⼦关系，所以我们在
将结果集写⼊临时表时对记录进⾏去重可以让临时表变得更
⼩，更省地⽅～

⼩贴⼠：

临时表如何对记录进⾏去重？这不是⼩意思嘛，临时表也是个
表，只要为表中记录的所有列建⽴主键或者唯⼀索引就好了嘛
～

⼀般情况下⼦查询结果集不会⼤的离谱，所以会为它建⽴基于
内存的使⽤Memory存储引擎的临时表，⽽且会为该表建⽴哈
希索引。

⼩贴⼠：

IN语句的本质就是判断某个操作数在不在某个集合⾥，如果集
合中的数据建⽴了哈希索引，那么这个匹配的过程就是超级快
的。

有同学不知道哈希索引是什么？我这⾥就不展开了，⾃⼰上⽹
找找吧，不会了再来问我～

如果⼦查询的结果集⾮常⼤，超过了系统变量
tmp_table_size或者max_heap_table_size，临时表会
转⽽使⽤基于磁盘的存储引擎来保存结果集中的记录，索引类
型也对应转变为B+树索引。

设计MySQL的⼤叔把这个将⼦查询结果集中的记录保存到临时表的过
程称之为物化（英⽂名：Materialize）。为了⽅便起⻅，我们就
把那个存储⼦查询结果集的临时表称之为物化表。正因为物化表中的
记录都建⽴了索引（基于内存的物化表有哈希索引，基于磁盘的有
B+树索引），通过索引执⾏IN语句判断某个操作数在不在⼦查询结
果集中变得⾮常快，从⽽提升了⼦查询语句的性能。

物化表转连接

事情到这就完了？我们还得重新审视⼀下最开始的那个查询语句：

SELECT * FROM s1
 WHERE key1 IN (SELECT common_field FROM s2
WHERE key3 = 'a');

当我们把⼦查询进⾏物化之后，假设⼦查询物化表的名称
为materialized_table，该物化表存储的⼦查询结果集的列
为m_val，那么这个查询其实可以从下边两种⻆度来看待：

从表s1的⻆度来看待，整个查询的意思其实是：对于s1表中的
每条记录来说，如果该记录的key1列的值在⼦查询对应的物化
表中，则该记录会被加⼊最终的结果集。画个图表示⼀下就是
这样：

从⼦查询物化表的⻆度来看待，整个查询的意思其实是：对于
⼦查询物化表的每个值来说，如果能在s1表中找到对应的
key1列的值与该值相等的记录，那么就把这些记录加⼊到最终
的结果集。画个图表示⼀下就是这样：

也就是说其实上边的查询就相当于表s1和⼦查询物化
表materialized_table进⾏内连接：

SELECT s1.* FROM s1 INNER JOIN materialized_table
ON key1 = m_val;

转化成内连接之后就有意思了，查询优化器可以评估不同连接顺序需
要的成本是多少，选取成本最低的那种查询⽅式执⾏查询。我们分析
⼀下上述查询中使⽤外层查询的表s1和物化
表materialized_table进⾏内连接的成本都是由哪⼏部分组成
的：

如果使⽤s1表作为驱动表的话，总查询成本由下边⼏个部分组
成：

物化⼦查询时需要的成本

扫描s1表时的成本

s1表中的记录数量 × 通过m_val = xxx对
materialized_table表进⾏单表访问的成本（我们前
边说过物化表中的记录是不重复的，并且为物化表中的列
建⽴了索引，所以这个步骤显然是⾮常快的）。

如果使⽤materialized_table表作为驱动表的话，总查询
成本由下边⼏个部分组成：

物化⼦查询时需要的成本

扫描物化表时的成本

物化表中的记录数量 × 通过key1 = xxx对s1表进⾏单
表访问的成本（⾮常庆幸key1列上建⽴了索引，所以这
个步骤是⾮常快的）。

MySQL查询优化器会通过运算来选择上述成本更低的⽅案来执⾏查
询。

将⼦查询转换为semi-join

虽然将⼦查询进⾏物化之后再执⾏查询都会有建⽴临时表的成本，但
是不管怎么说，我们⻅识到了将⼦查询转换为连接的强⼤作⽤，设计
MySQL的⼤叔继续开脑洞：能不能不进⾏物化操作直接把⼦查询转换
为连接呢？让我们重新审视⼀下上边的查询语句：

SELECT * FROM s1
 WHERE key1 IN (SELECT common_field FROM s2
WHERE key3 = 'a');

我们可以把这个查询理解成：对于s1表中的某条记录，如果我们能
在s2表（准确的说是执⾏完WHERE s2.key3 = 'a'之后的结果
集）中找到⼀条或多条记录，这些记录的common_field的值等于
s1表记录的key1列的值，那么该条s1表的记录就会被加⼊到最终的
结果集。这个过程其实和把s1和s2两个表连接起来的效果很像：

SELECT s1.* FROM s1 INNER JOIN s2
 ON s1.key1 = s2.common_field
 WHERE s2.key3 = 'a';

只不过我们不能保证对于s1表的某条记录来说，在s2表（准确的说
是执⾏完WHERE s2.key3 = 'a'之后的结果集）中有多少条记录
满⾜s1.key1 = s2.common_field这个条件，不过我们可以分三
种情况讨论：

情况⼀：对于s1表的某条记录来说，s2表中没有任何记录满⾜
s1.key1 = s2.common_field这个条件，那么该记录⾃然
也不会加⼊到最后的结果集。

情况⼆：对于s1表的某条记录来说，s2表中有且只有记录满⾜
s1.key1 = s2.common_field这个条件，那么该记录会被
加⼊最终的结果集。

情况三：对于s1表的某条记录来说，s2表中⾄少有2条记录满
⾜s1.key1 = s2.common_field这个条件，那么该记录会
被多次加⼊最终的结果集。

对于s1表的某条记录来说，由于我们只关⼼s2表中是否存在记录满
⾜s1.key1 = s2.common_field这个条件，⽽不关⼼具体有多少
条记录与之匹配，⼜因为有情况三的存在，我们上边所说的IN⼦查
询和两表连接之间并不完全等价。但是将⼦查询转换为连接⼜真的可
以充分发挥优化器的作⽤，所以设计MySQL的⼤叔在这⾥提出了⼀个
新概念 --- 半连接（英⽂名：semi-join）。将s1表和s2表进⾏
半连接的意思就是：对于s1表的某条记录来说，我们只关⼼在s2表
中是否存在与之匹配的记录是否存在，⽽不关⼼具体有多少条记录与
之匹配，最终的结果集中只保留s1表的记录。为了让⼤家有更直观
的感受，我们假设MySQL内部是这么改写上边的⼦查询的：

SELECT s1.* FROM s1 SEMI JOIN s2
 ON s1.key1 = s2.common_field
 WHERE key3 = 'a';

⼩贴⼠：

semi-join只是在MySQL内部采⽤的⼀种执⾏⼦查询的⽅式，
MySQL并没有提供⾯向⽤户的semi-join语法，所以我们不需要，
也不能尝试把上边这个语句放到⿊框框⾥运⾏，我只是想说明⼀下
上边的⼦查询在MySQL内部会被转换为类似上边语句的半连接～

概念是有了，怎么实现这种所谓的半连接呢？设计MySQL的⼤叔准备
了好⼏种办法。

Table pullout （⼦查询中的表上拉）

当⼦查询的查询列表处只有主键或者唯⼀索引列时，可以直接
把⼦查询中的表上拉到外层查询的FROM⼦句中，并把⼦查询中
的搜索条件合并到外层查询的搜索条件中，⽐如这个

SELECT * FROM s1
 WHERE key2 IN (SELECT key2 FROM s2 WHERE
key3 = 'a');

由于key2列是s2表的唯⼀⼆级索引列，所以我们可以直接把
s2表上拉到外层查询的FROM⼦句中，并且把⼦查询中的搜索
条件合并到外层查询的搜索条件中，上拉之后的查询就是这样
的：

SELECT s1.* FROM s1 INNER JOIN s2
 ON s1.key2 = s2.key2
 WHERE s2.key3 = 'a';

为啥当⼦查询的查询列表处只有主键或者唯⼀索引列时，就可
以直接将⼦查询转换为连接查询呢？哎呀，主键或者唯⼀索引
列中的数据本身就是不重复的嘛！所以对于同⼀条s1表中的记
录，你不可能找到两条以上的符合s1.key2 = s2.key2的记
录呀～

DuplicateWeedout execution strategy （重复值消除）

对于这个查询来说：

SELECT * FROM s1
 WHERE key1 IN (SELECT common_field FROM
s2 WHERE key3 = 'a');

转换为半连接查询后，s1表中的某条记录可能在s2表中有多条
匹配的记录，所以该条记录可能多次被添加到最后的结果集
中，为了消除重复，我们可以建⽴⼀个临时表，⽐⽅说这个临
时表⻓这样：

CREATE TABLE tmp (
 id PRIMARY KEY
);

这样在执⾏连接查询的过程中，每当某条s1表中的记录要加⼊
结果集时，就⾸先把这条记录的id值加⼊到这个临时表⾥，如
果添加成功，说明之前这条s1表中的记录并没有加⼊最终的结
果集，现在把该记录添加到最终的结果集；如果添加失败，说
明这条之前这条s1表中的记录已经加⼊过最终的结果集，这⾥
直接把它丢弃就好了，这种使⽤临时表消除semi-join结果集
中的重复值的⽅式称之为DuplicateWeedout。

LooseScan execution strategy （松散索引扫描）

⼤家看这个查询：

SELECT * FROM s1
 WHERE key3 IN (SELECT key1 FROM s2 WHERE
key1 > 'a' AND key1 < 'b');

在⼦查询中，对于s2表的访问可以使⽤到key1列的索引，⽽
恰好⼦查询的查询列表处就是key1列，这样在将该查询转换为
半连接查询后，如果将s2作为驱动表执⾏查询的话，那么执⾏
过程就是这样：

如图所示，在s2表的idx_key1索引中，值为'aa'的⼆级索引
记录⼀共有3条，那么只需要取第⼀条的值到s1表中查
找s1.key3 = 'aa'的记录，如果能在s1表中找到对应的记
录，那么就把对应的记录加⼊到结果集。依此类推，其他值相
同的⼆级索引记录，也只需要取第⼀条记录的值到s1表中找匹
配的记录，这种虽然是扫描索引，但只取值相同的记录的第⼀
条去做匹配操作的⽅式称之为松散索引扫描。

Semi-join Materialization execution strategy

我们之前介绍的先把外层查询的IN⼦句中的不相关⼦查询进⾏
物化，然后再进⾏外层查询的表和物化表的连接本质上也算是
⼀种semi-join，只不过由于物化表中没有重复的记录，所以
可以直接将⼦查询转为连接查询。

FirstMatch execution strategy （⾸次匹配）

FirstMatch是⼀种最原始的半连接执⾏⽅式，跟我们年少时
认为的相关⼦查询的执⾏⽅式是⼀样⼀样的，就是说先取⼀条
外层查询的中的记录，然后到⼦查询的表中寻找符合匹配条件
的记录，如果能找到⼀条，则将该外层查询的记录放⼊最终的
结果集并且停⽌查找更多匹配的记录，如果找不到则把该外层
查询的记录丢弃掉；然后再开始取下⼀条外层查询中的记录，
重复上边这个过程。

对于某些使⽤IN语句的相关⼦查询，⽐⽅这个查询：

SELECT * FROM s1
 WHERE key1 IN (SELECT common_field FROM s2
WHERE s1.key3 = s2.key3);

它也可以很⽅便的转为半连接，转换后的语句类似这样：

SELECT s1.* FROM s1 SEMI JOIN s2
 ON s1.key1 = s2.common_field AND s1.key3 =
s2.key3;

然后就可以使⽤我们上边介绍过的
DuplicateWeedout、LooseScan、FirstMatch等半连接执⾏策
略来执⾏查询，当然，如果⼦查询的查询列表处只有主键或者唯⼀⼆
级索引列，还可以直接使⽤table pullout的策略来执⾏查询，但
是需要⼤家注意的是，由于相关⼦查询并不是⼀个独⽴的查询，所以
不能转换为物化表来执⾏查询。

semi-join的适⽤条件

当然，并不是所有包含IN⼦查询的查询语句都可以转换为semi-
join，只有形如这样的查询才可以被转换为semi-join：

SELECT ... FROM outer_tables
 WHERE expr IN (SELECT ... FROM inner_tables
...) AND ...

或者这样的形式也可以：

SELECT ... FROM outer_tables
 WHERE (oe1, oe2, ...) IN (SELECT ie1, ie2,
... FROM inner_tables ...) AND ...

⽤⽂字总结⼀下，只有符合下边这些条件的⼦查询才可以被转换
为semi-join：

该⼦查询必须是和IN语句组成的布尔表达式，并且在外层查询
的WHERE或者ON⼦句中出现。

外层查询也可以有其他的搜索条件，只不过和IN⼦查询的搜索
条件必须使⽤AND连接起来。

该⼦查询必须是⼀个单⼀的查询，不能是由若⼲查询由UNION
连接起来的形式。

该⼦查询不能包含GROUP BY或者HAVING语句或者聚集函数。

... 还有⼀些条件⽐较少⻅，就不唠叨啦～

不适⽤于semi-join的情况

对于⼀些不能将⼦查询转位semi-join的情况，典型的⽐如下边这
⼏种：

外层查询的WHERE条件中有其他搜索条件与IN⼦查询组成的布
尔表达式使⽤OR连接起来

SELECT * FROM s1
 WHERE key1 IN (SELECT common_field FROM
s2 WHERE key3 = 'a')
 OR key2 > 100;

使⽤NOT IN⽽不是IN的情况

SELECT * FROM s1
 WHERE key1 NOT IN (SELECT common_field
FROM s2 WHERE key3 = 'a')

在SELECT⼦句中的IN⼦查询的情况

SELECT key1 IN (SELECT common_field FROM s2
WHERE key3 = 'a') FROM s1 ;

⼦查询中包含GROUP BY、HAVING或者聚集函数的情况

SELECT * FROM s1
 WHERE key2 IN (SELECT COUNT(*) FROM s2
GROUP BY key1);

⼦查询中包含UNION的情况

SELECT * FROM s1 WHERE key1 IN (
 SELECT common_field FROM s2 WHERE key3 =
'a'
 UNION
 SELECT common_field FROM s2 WHERE key3 =
'b'
);

MySQL仍然留了两⼿绝活来优化不能转为semi-join查询的⼦查
询，那就是：

对于不相关⼦查询来说，可以尝试把它们物化之后再参与查询

⽐如我们上边提到的这个查询：

SELECT * FROM s1
 WHERE key1 NOT IN (SELECT common_field
FROM s2 WHERE key3 = 'a')

先将⼦查询物化，然后再判断key1是否在物化表的结果集中可
以加快查询执⾏的速度。

⼩贴⼠：

请注意这⾥将⼦查询物化之后不能转为和外层查询的表的连
接，只能是先扫描s1表，然后对s1表的某条记录来说，判断该
记录的key1值在不在物化表中。

不管⼦查询是相关的还是不相关的，都可以把IN⼦查询尝试专
为EXISTS⼦查询

其实对于任意⼀个IN⼦查询来说，都可以被转为EXISTS⼦查
询，通⽤的例⼦如下：

outer_expr IN (SELECT inner_expr FROM ...
WHERE subquery_where)

可以被转换为：

EXISTS (SELECT inner_expr FROM ... WHERE
subquery_where AND outer_expr=inner_expr)

当然这个过程中有⼀些特殊情况，⽐如在outer_expr或
者inner_expr值为NULL的情况下就⽐较特殊。因为有NULL
值作为操作数的表达式结果往往是NULL，⽐⽅说：

mysql> SELECT NULL IN (1, 2, 3);
+-------------------+
| NULL IN (1, 2, 3) |
+-------------------+
| NULL |
+-------------------+
1 row in set (0.00 sec)

mysql> SELECT 1 IN (1, 2, 3);
+----------------+
| 1 IN (1, 2, 3) |
+----------------+
| 1 |
+----------------+
1 row in set (0.00 sec)

mysql> SELECT NULL IN (NULL);
+----------------+
| NULL IN (NULL) |
+----------------+
| NULL |
+----------------+
1 row in set (0.00 sec)

⽽EXISTS⼦查询的结果肯定是TRUE或者FASLE：

mysql> SELECT EXISTS (SELECT 1 FROM s1 WHERE
NULL = 1);
+--+
| EXISTS (SELECT 1 FROM s1 WHERE NULL = 1) |
+--+
| 0 |
+--+
1 row in set (0.01 sec)

mysql> SELECT EXISTS (SELECT 1 FROM s1 WHERE
1 = NULL);
+--+
| EXISTS (SELECT 1 FROM s1 WHERE 1 = NULL) |
+--+
| 0 |
+--+
1 row in set (0.00 sec)

mysql> SELECT EXISTS (SELECT 1 FROM s1 WHERE
NULL = NULL);
+--
-+
| EXISTS (SELECT 1 FROM s1 WHERE NULL = NULL)
|
+--
-+
| 0
|
+--
-+
1 row in set (0.00 sec)

但是幸运的是，我们⼤部分使⽤IN⼦查询的场景是把它放
在WHERE或者ON⼦句中，⽽WHERE或者ON⼦句是不区分NULL
和FALSE的，⽐⽅说：

mysql> SELECT 1 FROM s1 WHERE NULL;
Empty set (0.00 sec)

mysql> SELECT 1 FROM s1 WHERE FALSE;
Empty set (0.00 sec)

所以只要我们的IN⼦查询是放在WHERE或者ON⼦句中的，那
么IN -> EXISTS的转换就是没问题的。说了这么多，为啥要
转换呢？这是因为不转换的话可能⽤不到索引，⽐⽅说下边这
个查询：

SELECT * FROM s1
 WHERE key1 IN (SELECT key3 FROM s2 where
s1.common_field = s2.common_field)
 OR key2 > 1000;

这个查询中的⼦查询是⼀个相关⼦查询，⽽且⼦查询执⾏的时
候不能使⽤到索引，但是将它转为EXISTS⼦查询后却可以使
⽤到索引：

SELECT * FROM s1
 WHERE EXISTS (SELECT 1 FROM s2 where
s1.common_field = s2.common_field AND s2.key3
= s1.key1)
 OR key2 > 1000;

转为EXISTS⼦查询时便可以使⽤到s2表的idx_key3索引
了。

需要注意的是，如果IN⼦查询不满⾜转换为semi-join的条
件，⼜不能转换为物化表或者转换为物化表的成本太⼤，那么
它就会被转换为EXISTS查询。

⼩贴⼠：

在MySQL5.5以及之前的版本没有引进semi-join和物化的⽅
式优化⼦查询时，优化器都会把IN⼦查询转换为EXISTS⼦查
询，好多同学就惊呼我明明写的是⼀个不相关⼦查询，为啥要
按照执⾏相关⼦查询的⽅式来执⾏呢？所以当时好多声⾳都是
建议⼤家把⼦查询转为连接，不过随着MySQL的发展，最近的
版本中引⼊了⾮常多的⼦查询优化策略，⼤家可以稍微放⼼的
使⽤⼦查询了，内部的转换⼯作优化器会为⼤家⾃动实现。

⼩结⼀下

如果IN⼦查询符合转换为semi-join的条件，查询优化器会
优先把该⼦查询为semi-join，然后再考虑下边5种执⾏半连
接的策略中哪个成本最低：

Table pullout
DuplicateWeedout
LooseScan
Materialization
FirstMatch

选择成本最低的那种执⾏策略来执⾏⼦查询。

如果IN⼦查询不符合转换为semi-join的条件，那么查询优
化器会从下边两种策略中找出⼀种成本更低的⽅式执⾏⼦查
询：

先将⼦查询物化之后再执⾏查询
执⾏IN to EXISTS转换。

ANY/ALL⼦查询优化

如果ANY/ALL⼦查询是不相关⼦查询的话，它们在很多场合都能转
换成我们熟悉的⽅式去执⾏，⽐⽅说：

原始表达式 转换为

< ANY (SELECT inner_expr ...) < (SELECT MAX(inner_expr) ...)
> ANY (SELECT inner_expr ...) > (SELECT MIN(inner_expr) ...)
< ALL (SELECT inner_expr ...) < (SELECT MIN(inner_expr) ...)
> ALL (SELECT inner_expr ...) > (SELECT MAX(inner_expr) ...)

[NOT] EXISTS⼦查询的执⾏

如果[NOT] EXISTS⼦查询是不相关⼦查询，可以先执⾏⼦查询，
得出该[NOT] EXISTS⼦查询的结果是TRUE还是FALSE，并重写原
先的查询语句，⽐如对这个查询来说：

SELECT * FROM s1
 WHERE EXISTS (SELECT 1 FROM s2 WHERE key1 =
'a')
 OR key2 > 100;

因为这个语句⾥的⼦查询是不相关⼦查询，所以优化器会⾸先执⾏该
⼦查询，假设该EXISTS⼦查询的结果为TRUE，那么接着优化器会重
写查询为：

SELECT * FROM s1
 WHERE TRUE OR key2 > 100;

进⼀步简化后就变成了：

SELECT * FROM s1
 WHERE TRUE;

对于不相关的[NOT] EXISTS⼦查询来说，⽐如这个查询：

SELECT * FROM s1
 WHERE EXISTS (SELECT 1 FROM s2 WHERE
s1.common_field = s2.common_field);

很不幸，这个查询只能按照我们年少时的那种执⾏相关⼦查询的⽅式
来执⾏。不过如果[NOT] EXISTS⼦查询中如果可以使⽤索引的
话，那查询速度也会加快不少，⽐如：

SELECT * FROM s1
 WHERE EXISTS (SELECT 1 FROM s2 WHERE
s1.common_field = s2.key1);

上边这个EXISTS⼦查询中可以使⽤idx_key1来加快查询速度。

对于派⽣表的优化

我们前边说过把⼦查询放在外层查询的FROM⼦句后，那么这个⼦查
询的结果相当于⼀个派⽣表，⽐如下边这个查询：

SELECT * FROM (
 SELECT id AS d_id, key3 AS d_key3 FROM
s2 WHERE key1 = 'a'
) AS derived_s1 WHERE d_key3 = 'a';

⼦查询(SELECT id AS d_id, key3 AS d_key3 FROM s2
WHERE key1 = 'a')的结果就相当于⼀个派⽣表，这个表的名称
是derived_s1，该表有两个列，分别是d_id和d_key3。

对于含有派⽣表的查询，MySQL提供了两种执⾏策略：

最容易想到的就是把派⽣表物化。

我们可以将派⽣表的结果集写到⼀个内部的临时表中，然后就
把这个物化表当作普通表⼀样参与查询。当然，在对派⽣表进
⾏物化时，设计MySQL的⼤叔使⽤了⼀种称为延迟物化的策
略，也就是在查询中真正使⽤到派⽣表时才回去尝试物化派⽣
表，⽽不是还没开始执⾏查询呢就把派⽣表物化掉。⽐⽅说对
于下边这个含有派⽣表的查询来说：

SELECT * FROM (
 SELECT * FROM s1 WHERE key1 = 'a'
) AS derived_s1 INNER JOIN s2
 ON derived_s1.key1 = s2.key1
 WHERE s2.key2 = 1;

如果采⽤物化派⽣表的⽅式来执⾏这个查询的话，那么执⾏时
⾸先会到s1表中找出满⾜s1.key2 = 1的记录，如果压根⼉
找不到，说明参与连接的s1表记录就是空的，所以整个查询的
结果集就是空的，所以也就没有必要去物化查询中的派⽣表
了。

将派⽣表和外层的表合并，也就是将查询重写为没有派⽣表的
形式

我们来看这个贼简单的包含派⽣表的查询：

SELECT * FROM (SELECT * FROM s1 WHERE key1 =
'a') AS derived_s1;

这个查询本质上就是想查看s1表中满⾜key1 = 'a'条件的的
全部记录，所以和下边这个语句是等价的：

SELECT * FROM s1 WHERE key1 = 'a';

对于⼀些稍微复杂的包含派⽣表的语句，⽐如我们上边提到的
那个：

SELECT * FROM (
 SELECT * FROM s1 WHERE key1 = 'a'
) AS derived_s1 INNER JOIN s2
 ON derived_s1.key1 = s2.key1
 WHERE s2.key2 = 1;

我们可以将派⽣表与外层查询的表合并，然后将派⽣表中的搜
索条件放到外层查询的搜索条件中，就像这样：

SELECT * FROM s1 INNER JOIN s2
 ON s1.key1 = s2.key1
 WHERE s2.key2 = 1;

这样通过将外层查询和派⽣表合并的⽅式成功的消除了派⽣
表，也就意味着我们没必要再付出创建和访问临时表的成本
了。可是并不是所有带有派⽣表的查询都能被成功的和外层查
询合并，当派⽣表中有这些语句就不可以和外层查询合并：

聚集函数，⽐如MAX()、MIN()、SUM()啥的

DISTINCT

GROUP BY

HAVING

LIMIT

UNION 或者 UNION ALL

派⽣表对应的⼦查询的SELECT⼦句中含有另⼀个⼦查询

... 还有些不常⽤的情况就不多说了哈～

所以MySQL在执⾏带有派⽣表的时候，优先尝试把派⽣表和外层查询
合并掉，如果不⾏的话，再把派⽣表物化掉执⾏查询。

