
Explain 详解（上）
标签： MySQL 是怎样运⾏的

⼀条查询语句在经过MySQL查询优化器的各种基于成本和规则的优化
会后⽣成⼀个所谓的执⾏计划，这个执⾏计划展示了接下来具体执⾏
查询的⽅式，⽐如多表连接的顺序是什么，对于每个表采⽤什么访问
⽅法来具体执⾏查询等等。设计MySQL的⼤叔贴⼼的为我们提供了
EXPLAIN语句来帮助我们查看某个查询语句的具体执⾏计划，本章
的内容就是为了帮助⼤家看懂EXPLAIN语句的各个输出项都是⼲嘛
使的，从⽽可以有针对性的提升我们查询语句的性能。

如果我们想看看某个查询的执⾏计划的话，可以在具体的查询语句前
边加⼀个EXPLAIN，就像这样：

mysql> EXPLAIN SELECT 1;
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+----------------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows |
filtered | Extra |
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+----------------+
| 1 | SIMPLE | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
NULL | No tables used |
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+----------------+
1 row in set, 1 warning (0.01 sec)

然后这输出的⼀⼤坨东⻄就是所谓的执⾏计划，我的任务就是带领⼤
家看懂这⼀⼤坨东⻄⾥边的每个列都是⼲啥⽤的，以及在这个执⾏计
划的辅助下，我们应该怎样改进⾃⼰的查询语句以使查询执⾏起来更
⾼效。其实除了以SELECT开头的查询语句，其余的
DELETE、INSERT、REPLACE以及UPDATE语句前边都可以加
上EXPLAIN这个词⼉，⽤来查看这些语句的执⾏计划，不过我们这
⾥对SELECT语句更感兴趣，所以后边只会以SELECT语句为例来描
述EXPLAIN语句的⽤法。为了让⼤家先有⼀个感性的认识，我们把
EXPLAIN语句输出的各个列的作⽤先⼤致罗列⼀下：

列名 描述

id 在⼀个⼤的查询语句中每个SELECT关键字都对应
⼀个唯⼀的id

select_type SELECT关键字对应的那个查询的类型
table 表名

partitions 匹配的分区信息

type 针对单表的访问⽅法

possible_keys可能⽤到的索引
key 实际上使⽤的索引

key_len 实际使⽤到的索引⻓度

ref 当使⽤索引列等值查询时，与索引列进⾏等值匹配
的对象信息

rows 预估的需要读取的记录条数

filtered 某个表经过搜索条件过滤后剩余记录条数的百分⽐

Extra ⼀些额外的信息

需要注意的是，⼤家如果看不懂上边输出列含义，那是正常的，千万
不要纠结～。我在这⾥把它们都列出来只是为了描述⼀个轮廓，让⼤
家有⼀个⼤致的印象，下边会细细道来，等会⼉说完了不信你不会～
为了故事的顺利发展，我们还是要请出我们前边已经⽤了n遍的
single_table表，为了防⽌⼤家忘了，再把它的结构描述⼀遍：

CREATE TABLE single_table (
 id INT NOT NULL AUTO_INCREMENT,
 key1 VARCHAR(100),
 key2 INT,
 key3 VARCHAR(100),
 key_part1 VARCHAR(100),
 key_part2 VARCHAR(100),
 key_part3 VARCHAR(100),
 common_field VARCHAR(100),
 PRIMARY KEY (id),
 KEY idx_key1 (key1),
 UNIQUE KEY idx_key2 (key2),
 KEY idx_key3 (key3),
 KEY idx_key_part(key_part1, key_part2,
key_part3)
) Engine=InnoDB CHARSET=utf8;

我们仍然假设有两个和single_table表构造⼀模⼀样的s1、s2
表，⽽且这两个表⾥边⼉有10000条记录，除id列外其余的列都插
⼊随机值。为了让⼤家有⽐较好的阅读体验，我们下边并不准备严格
按照EXPLAIN输出列的顺序来介绍这些列分别是⼲嘛的，⼤家注意
⼀下就好了。

执⾏计划输出中各列详解

table

不论我们的查询语句有多复杂，⾥边⼉包含了多少个表，到最后也是
需要对每个表进⾏单表访问的，所以设计MySQL的⼤叔规定EXPLAIN
语句输出的每条记录都对应着某个单表的访问⽅法，该条记录的
table列代表着该表的表名。所以我们看⼀条⽐较简单的查询语句：

mysql> EXPLAIN SELECT * FROM s1;
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+-------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows |
filtered | Extra |
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+-------+
| 1 | SIMPLE | s1 | NULL | ALL |
NULL | NULL | NULL | NULL | 9688 |
100.00 | NULL |
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+-------+
1 row in set, 1 warning (0.00 sec)

这个查询语句只涉及对s1表的单表查询，所以EXPLAIN输出中只有
⼀条记录，其中的table列的值是s1，表明这条记录是⽤来说明对
s1表的单表访问⽅法的。

下边我们看⼀下⼀个连接查询的执⾏计划：

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2;
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+---------------------------------------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows |
filtered | Extra
|
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+---------------------------------------+
| 1 | SIMPLE | s1 | NULL | ALL |
NULL | NULL | NULL | NULL | 9688 |
100.00 | NULL |
| 1 | SIMPLE | s2 | NULL | ALL |
NULL | NULL | NULL | NULL | 9954 |
100.00 | Using join buffer (Block Nested Loop) |
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+---------------------------------------+
2 rows in set, 1 warning (0.01 sec)

可以看到这个连接查询的执⾏计划中有两条记录，这两条记录的
table列分别是s1和s2，这两条记录⽤来分别说明对s1表和s2表的
访问⽅法是什么。

id

我们知道我们写的查询语句⼀般都以SELECT关键字开头，⽐较简单
的查询语句⾥只有⼀个SELECT关键字，⽐如下边这个查询语句：

SELECT * FROM s1 WHERE key1 = 'a';

稍微复杂⼀点的连接查询中也只有⼀个SELECT关键字，⽐如：

SELECT * FROM s1 INNER JOIN s2
 ON s1.key1 = s2.key1
 WHERE s1.common_field = 'a';

但是下边两种情况下在⼀条查询语句中会出现多个SELECT关键字：

查询中包含⼦查询的情况

⽐如下边这个查询语句中就包含2个SELECT关键字：

SELECT * FROM s1
 WHERE key1 IN (SELECT * FROM s2);

查询中包含UNION语句的情况

⽐如下边这个查询语句中也包含2个SELECT关键字：

SELECT * FROM s1 UNION SELECT * FROM s2;

查询语句中每出现⼀个SELECT关键字，设计MySQL的⼤叔就会为它
分配⼀个唯⼀的id值。这个id值就是EXPLAIN语句的第⼀个列，⽐
如下边这个查询中只有⼀个SELECT关键字，所以EXPLAIN的结果中
也就只有⼀条id列为1的记录：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 = 'a';
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------+-----
-+----------+-------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows
| filtered | Extra |
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------+-----
-+----------+-------+
| 1 | SIMPLE | s1 | NULL | ref |
idx_key1 | idx_key1 | 303 | const | 8
| 100.00 | NULL |
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------+-----
-+----------+-------+
1 row in set, 1 warning (0.03 sec)

对于连接查询来说，⼀个SELECT关键字后边的FROM⼦句中可以跟随
多个表，所以在连接查询的执⾏计划中，每个表都会对应⼀条记录，
但是这些记录的id值都是相同的，⽐如：

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2;
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+---------------------------------------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows |
filtered | Extra
|
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+---------------------------------------+
| 1 | SIMPLE | s1 | NULL | ALL |
NULL | NULL | NULL | NULL | 9688 |
100.00 | NULL |
| 1 | SIMPLE | s2 | NULL | ALL |
NULL | NULL | NULL | NULL | 9954 |
100.00 | Using join buffer (Block Nested Loop) |
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+---------------------------------------+
2 rows in set, 1 warning (0.01 sec)

可以看到，上述连接查询中参与连接的s1和s2表分别对应⼀条记
录，但是这两条记录对应的id值都是1。这⾥需要⼤家记住的是，在
连接查询的执⾏计划中，每个表都会对应⼀条记录，这些记录的id列
的值是相同的，出现在前边的表表示驱动表，出现在后边的表表示被
驱动表。所以从上边的EXPLAIN输出中我们可以看出，查询优化器
准备让s1表作为驱动表，让s2表作为被驱动表来执⾏查询。

对于包含⼦查询的查询语句来说，就可能涉及多个SELECT关键字，
所以在包含⼦查询的查询语句的执⾏计划中，每个SELECT关键字都
会对应⼀个唯⼀的id值，⽐如这样：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN
(SELECT key1 FROM s2) OR key3 = 'a';
+----+-------------+-------+------------+-------
+---------------+----------+---------+------+----
--+----------+-------------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows
| filtered | Extra |
+----+-------------+-------+------------+-------
+---------------+----------+---------+------+----
--+----------+-------------+
| 1 | PRIMARY | s1 | NULL | ALL |
idx_key3 | NULL | NULL | NULL | 9688
| 100.00 | Using where |
| 2 | SUBQUERY | s2 | NULL | index |
idx_key1 | idx_key1 | 303 | NULL | 9954
| 100.00 | Using index |
+----+-------------+-------+------------+-------
+---------------+----------+---------+------+----
--+----------+-------------+
2 rows in set, 1 warning (0.02 sec)

从输出结果中我们可以看到，s1表在外层查询中，外层查询有⼀个
独⽴的SELECT关键字，所以第⼀条记录的id值就是1，s2表在⼦查
询中，⼦查询有⼀个独⽴的SELECT关键字，所以第⼆条记录的id值
就是2。

但是这⾥⼤家需要特别注意，查询优化器可能对涉及⼦查询的查询语
句进⾏重写，从⽽转换为连接查询。所以如果我们想知道查询优化器
对某个包含⼦查询的语句是否进⾏了重写，直接查看执⾏计划就好
了，⽐如说：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN
(SELECT key3 FROM s2 WHERE common_field = 'a');
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------------
------+------+----------+------------------------
------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref
| rows | filtered | Extra
|
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------------
------+------+----------+------------------------
------+
| 1 | SIMPLE | s2 | NULL | ALL |
idx_key3 | NULL | NULL | NULL
| 9954 | 10.00 | Using where; Start temporary
|
| 1 | SIMPLE | s1 | NULL | ref |
idx_key1 | idx_key1 | 303 |
xiaohaizi.s2.key3 | 1 | 100.00 | End
temporary |
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------------
------+------+----------+------------------------
------+
2 rows in set, 1 warning (0.00 sec)

可以看到，虽然我们的查询语句是⼀个⼦查询，但是执⾏计划中s1
和s2表对应的记录的id值全部是1，这就表明了查询优化器将⼦查询
转换为了连接查询。

对于包含UNION⼦句的查询语句来说，每个SELECT关键字对应⼀
个id值也是没错的，不过还是有点⼉特别的东⻄，⽐⽅说下边这个
查询：

mysql> EXPLAIN SELECT * FROM s1 UNION SELECT *
FROM s2;
+----+--------------+------------+------------+--
----+---------------+------+---------+------+----
--+----------+-----------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref |
rows | filtered | Extra |
+----+--------------+------------+------------+--
----+---------------+------+---------+------+----
--+----------+-----------------+
| 1 | PRIMARY | s1 | NULL |
ALL | NULL | NULL | NULL | NULL |
9688 | 100.00 | NULL |
| 2 | UNION | s2 | NULL |
ALL | NULL | NULL | NULL | NULL |
9954 | 100.00 | NULL |
| NULL | UNION RESULT | <union1,2> | NULL |
ALL | NULL | NULL | NULL | NULL |
NULL | NULL | Using temporary |
+----+--------------+------------+------------+--
----+---------------+------+---------+------+----
--+----------+-----------------+
3 rows in set, 1 warning (0.00 sec)

这个语句的执⾏计划的第三条记录是个什么⻤？为⽑id值是NULL，
⽽且table列⻓的也怪怪的？⼤家别忘了UNION⼦句是⼲嘛⽤的，它
会把多个查询的结果集合并起来并对结果集中的记录进⾏去重，怎么
去重呢？MySQL使⽤的是内部的临时表。正如上边的查询计划中所

示，UNION⼦句是为了把id为1的查询和id为2的查询的结果集合并
起来并去重，所以在内部创建了⼀个名为<union1, 2>的临时表
（就是执⾏计划第三条记录的table列的名称），id为NULL表明这
个临时表是为了合并两个查询的结果集⽽创建的。

跟UNION对⽐起来，UNION ALL就不需要为最终的结果集进⾏去
重，它只是单纯的把多个查询的结果集中的记录合并成⼀个并返回给
⽤户，所以也就不需要使⽤临时表。所以在包含UNION ALL⼦句的
查询的执⾏计划中，就没有那个id为NULL的记录，如下所示：

mysql> EXPLAIN SELECT * FROM s1 UNION ALL SELECT
* FROM s2;
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+-------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows |
filtered | Extra |
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+-------+
| 1 | PRIMARY | s1 | NULL | ALL |
NULL | NULL | NULL | NULL | 9688 |
100.00 | NULL |
| 2 | UNION | s2 | NULL | ALL |
NULL | NULL | NULL | NULL | 9954 |
100.00 | NULL |
+----+-------------+-------+------------+------+-
--------------+------+---------+------+------+---
-------+-------+
2 rows in set, 1 warning (0.01 sec)

select_type

通过上边的内容我们知道，⼀条⼤的查询语句⾥边可以包含若⼲
个SELECT关键字，每个SELECT关键字代表着⼀个⼩的查询语句，
⽽每个SELECT关键字的FROM⼦句中都可以包含若⼲张表（这些表⽤
来做连接查询），每⼀张表都对应着执⾏计划输出中的⼀条记录，对
于在同⼀个SELECT关键字中的表来说，它们的id值是相同的。

设计MySQL的⼤叔为每⼀个SELECT关键字代表的⼩查询都定义了⼀
个称之为select_type的属性，意思是我们只要知道了某个⼩查询
的select_type属性，就知道了这个⼩查询在整个⼤查询中扮演了
⼀个什么⻆⾊，⼝说⽆凭，我们还是先来⻅识⻅识这
个select_type都能取哪些值（为了精确起⻅，我们直接使⽤⽂档
中的英⽂做简要描述，随后会进⾏详细解释的）：

名称 描述

SIMPLE Simple SELECT (not using UNION or
subqueries)

PRIMARY Outermost SELECT
UNION Second or later SELECT statement in a UNION

UNION RESULTResult of a UNION
SUBQUERY First SELECT in subquery
DEPENDENT
SUBQUERY

First SELECT in subquery, dependent on outer
query

DEPENDENT
UNION

Second or later SELECT statement in a UNION,
dependent on outer query

DERIVED Derived table
MATERIALIZEDMaterialized subquery

UNCACHEABLE
SUBQUERY

A subquery for which the result cannot be
cached and must be re-evaluated for each
row of the outer query

UNCACHEABLE
UNION

The second or later select in a UNION that
belongs to an uncacheable subquery (see
UNCACHEABLE SUBQUERY)

英⽂描述太简单，不知道说了啥？来详细瞅瞅⾥边⼉的每个值都是⼲
啥吃的：

SIMPLE

查询语句中不包含UNION或者⼦查询的查询都算作是SIMPLE
类型，⽐⽅说下边这个单表查询的select_type的值就
是SIMPLE：

mysql> EXPLAIN SELECT * FROM s1;
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-------+
| 1 | SIMPLE | s1 | NULL | ALL
| NULL | NULL | NULL | NULL |
9688 | 100.00 | NULL |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-------+
1 row in set, 1 warning (0.00 sec)

当然，连接查询也算是SIMPLE类型，⽐如：

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN
s2;
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------------------
----------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra
|
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------------------
----------+
| 1 | SIMPLE | s1 | NULL | ALL
| NULL | NULL | NULL | NULL |
9688 | 100.00 | NULL
|
| 1 | SIMPLE | s2 | NULL | ALL
| NULL | NULL | NULL | NULL |
9954 | 100.00 | Using join buffer (Block
Nested Loop) |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------------------
----------+
2 rows in set, 1 warning (0.01 sec)

PRIMARY

对于包含UNION、UNION ALL或者⼦查询的⼤查询来说，它是
由⼏个⼩查询组成的，其中最左边的那个查询的
select_type值就是PRIMARY，⽐⽅说：

mysql> EXPLAIN SELECT * FROM s1 UNION SELECT
* FROM s2;
+----+--------------+------------+-----------
-+------+---------------+------+---------+---
---+------+----------+-----------------+
| id | select_type | table | partitions
| type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+--------------+------------+-----------
-+------+---------------+------+---------+---
---+------+----------+-----------------+
| 1 | PRIMARY | s1 | NULL
| ALL | NULL | NULL | NULL |
NULL | 9688 | 100.00 | NULL |
| 2 | UNION | s2 | NULL
| ALL | NULL | NULL | NULL |
NULL | 9954 | 100.00 | NULL |
| NULL | UNION RESULT | <union1,2> | NULL
| ALL | NULL | NULL | NULL |
NULL | NULL | NULL | Using temporary |
+----+--------------+------------+-----------
-+------+---------------+------+---------+---
---+------+----------+-----------------+
3 rows in set, 1 warning (0.00 sec)

从结果中可以看到，最左边的⼩查询SELECT * FROM s1对
应的是执⾏计划中的第⼀条记录，它的select_type值就
是PRIMARY。

UNION

对于包含UNION或者UNION ALL的⼤查询来说，它是由⼏个⼩
查询组成的，其中除了最左边的那个⼩查询以外，其余的⼩查
询的select_type值就是UNION，可以对⽐上⼀个例⼦的效
果，这就不多举例⼦了。

UNION RESULT

MySQL选择使⽤临时表来完成UNION查询的去重⼯作，针对该
临时表的查询的select_type就是UNION RESULT，例⼦上
边有，就不赘述了。

SUBQUERY

如果包含⼦查询的查询语句不能够转为对应的semi-join的形
式，并且该⼦查询是不相关⼦查询，并且查询优化器决定采⽤
将该⼦查询物化的⽅案来执⾏该⼦查询时，该⼦查询的第⼀
个SELECT关键字代表的那个查询的select_type就
是SUBQUERY，⽐如下边这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN
(SELECT key1 FROM s2) OR key3 = 'a';
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra |
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-------------+
| 1 | PRIMARY | s1 | NULL | ALL
| idx_key3 | NULL | NULL | NULL |
9688 | 100.00 | Using where |
| 2 | SUBQUERY | s2 | NULL |
index | idx_key1 | idx_key1 | 303 |
NULL | 9954 | 100.00 | Using index |
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-------------+
2 rows in set, 1 warning (0.00 sec)

可以看到，外层查询的select_type就是PRIMARY，⼦查询
的select_type就是SUBQUERY。需要⼤家注意的是，由于
select_type为SUBQUERY的⼦查询由于会被物化，所以只需要
执⾏⼀遍。

DEPENDENT SUBQUERY

如果包含⼦查询的查询语句不能够转为对应的semi-join的形
式，并且该⼦查询是相关⼦查询，则该⼦查询的第⼀
个SELECT关键字代表的那个查询的select_type就
是DEPENDENT SUBQUERY，⽐如下边这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN
(SELECT key1 FROM s2 WHERE s1.key2 = s2.key2)
OR key3 = 'a';
+----+--------------------+-------+----------
--+------+-------------------+----------+----
-----+-------------------+------+----------+-
------------+
| id | select_type | table |
partitions | type | possible_keys | key
| key_len | ref | rows |
filtered | Extra |
+----+--------------------+-------+----------
--+------+-------------------+----------+----
-----+-------------------+------+----------+-
------------+
| 1 | PRIMARY | s1 | NULL
| ALL | idx_key3 | NULL | NULL
| NULL | 9688 | 100.00 | Using
where |
| 2 | DEPENDENT SUBQUERY | s2 | NULL
| ref | idx_key2,idx_key1 | idx_key2 | 5
| xiaohaizi.s1.key2 | 1 | 10.00 | Using
where |
+----+--------------------+-------+----------
--+------+-------------------+----------+----
-----+-------------------+------+----------+-
------------+
2 rows in set, 2 warnings (0.00 sec)

需要⼤家注意的是，select_type为DEPENDENT SUBQUERY的
查询可能会被执⾏多次。

DEPENDENT UNION

在包含UNION或者UNION ALL的⼤查询中，如果各个⼩查询都
依赖于外层查询的话，那除了最左边的那个⼩查询之外，其余
的⼩查询的select_type的值就是DEPENDENT UNION。说
的有些绕哈，⽐⽅说下边这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN
(SELECT key1 FROM s2 WHERE key1 = 'a' UNION
SELECT key1 FROM s1 WHERE key1 = 'b');
+----+--------------------+------------+-----
-------+------+---------------+----------+---
------+-------+------+----------+------------
--------------+
| id | select_type | table |
partitions | type | possible_keys | key
| key_len | ref | rows | filtered | Extra
|
+----+--------------------+------------+-----
-------+------+---------------+----------+---
------+-------+------+----------+------------
--------------+
| 1 | PRIMARY | s1 | NULL
| ALL | NULL | NULL | NULL |
NULL | 9688 | 100.00 | Using where
|
| 2 | DEPENDENT SUBQUERY | s2 | NULL
| ref | idx_key1 | idx_key1 | 303 |
const | 12 | 100.00 | Using where; Using
index |
| 3 | DEPENDENT UNION | s1 | NULL
| ref | idx_key1 | idx_key1 | 303 |
const | 8 | 100.00 | Using where; Using
index |
| NULL | UNION RESULT | <union2,3> |

NULL | ALL | NULL | NULL
| NULL | NULL | NULL | NULL | Using
temporary |
+----+--------------------+------------+-----
-------+------+---------------+----------+---
------+-------+------+----------+------------
--------------+
4 rows in set, 1 warning (0.03 sec)

这个查询⽐较复杂啊，⼤查询⾥包含了⼀个⼦查询，⼦查询⾥
⼜是由UNION连起来的两个⼩查询。从执⾏计划中可以看出
来，SELECT key1 FROM s2 WHERE key1 = 'a'这个⼩
查询由于是⼦查询中第⼀个查询，所以它的select_type
是DEPENDENT SUBQUERY，⽽SELECT key1 FROM s1
WHERE key1 = 'b'这个查询的select_type就
是DEPENDENT UNION。

DERIVED

对于采⽤物化的⽅式执⾏的包含派⽣表的查询，该派⽣表对应
的⼦查询的select_type就是DERIVED，⽐⽅说下边这个查
询：

mysql> EXPLAIN SELECT * FROM (SELECT key1,
count(*) as c FROM s1 GROUP BY key1) AS
derived_s1 where c > 1;
+----+-------------+------------+------------
+-------+---------------+----------+---------
+------+------+----------+-------------+
| id | select_type | table | partitions
| type | possible_keys | key | key_len
| ref | rows | filtered | Extra |
+----+-------------+------------+------------
+-------+---------------+----------+---------
+------+------+----------+-------------+
| 1 | PRIMARY | <derived2> | NULL
| ALL | NULL | NULL | NULL
| NULL | 9688 | 33.33 | Using where |
| 2 | DERIVED | s1 | NULL
| index | idx_key1 | idx_key1 | 303
| NULL | 9688 | 100.00 | Using index |
+----+-------------+------------+------------
+-------+---------------+----------+---------
+------+------+----------+-------------+
2 rows in set, 1 warning (0.00 sec)

从执⾏计划中可以看出，id为2的记录就代表⼦查询的执⾏⽅
式，它的select_type是DERIVED，说明该⼦查询是以物化
的⽅式执⾏的。id为1的记录代表外层查询，⼤家注意看它的
table列显示的是<derived2>，表示该查询是针对将派⽣表
物化之后的表进⾏查询的。

⼩贴⼠：

如果派⽣表可以通过和外层查询合并的⽅式执⾏的话，执⾏计
划⼜是另⼀番景象，⼤家可以试试哈～

MATERIALIZED

当查询优化器在执⾏包含⼦查询的语句时，选择将⼦查询物化
之后与外层查询进⾏连接查询时，该⼦查询对应的
select_type属性就是MATERIALIZED，⽐如下边这个查
询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN
(SELECT key1 FROM s2);
+----+--------------+-------------+----------
--+--------+---------------+------------+----
-----+-------------------+------+----------+-
------------+
| id | select_type | table |
partitions | type | possible_keys | key
| key_len | ref | rows |
filtered | Extra |
+----+--------------+-------------+----------
--+--------+---------------+------------+----
-----+-------------------+------+----------+-
------------+
| 1 | SIMPLE | s1 | NULL
| ALL | idx_key1 | NULL | NULL
| NULL | 9688 | 100.00 | Using
where |
| 1 | SIMPLE | <subquery2> | NULL
| eq_ref | <auto_key> | <auto_key> | 303
| xiaohaizi.s1.key1 | 1 | 100.00 | NULL
|
| 2 | MATERIALIZED | s2 | NULL
| index | idx_key1 | idx_key1 | 303
| NULL | 9954 | 100.00 | Using
index |
+----+--------------+-------------+----------
--+--------+---------------+------------+----
-----+-------------------+------+----------+-
------------+
3 rows in set, 1 warning (0.01 sec)

执⾏计划的第三条记录的id值为2，说明该条记录对应的是⼀
个单表查询，从它的select_type值为MATERIALIZED可以
看出，查询优化器是要把⼦查询先转换成物化表。然后看执⾏
计划的前两条记录的id值都为1，说明这两条记录对应的表进
⾏连接查询，需要注意的是第⼆条记录的table列的值
是<subquery2>，说明该表其实就是id为2对应的⼦查询执⾏
之后产⽣的物化表，然后将s1和该物化表进⾏连接查询。

UNCACHEABLE SUBQUERY

不常⽤，就不多唠叨了。

UNCACHEABLE UNION

不常⽤，就不多唠叨了。

partitions

由于我们压根⼉就没唠叨过分区是个啥，所以这个输出列我们也就不
说了哈，⼀般情况下我们的查询语句的执⾏计划的partitions列的
值都是NULL。

type

我们前边说过执⾏计划的⼀条记录就代表着MySQL对某个表的执⾏查
询时的访问⽅法，其中的type列就表明了这个访问⽅法是个啥，⽐
⽅说下边这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 = 'a';
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------+-----
-+----------+-------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows
| filtered | Extra |
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------+-----
-+----------+-------+
| 1 | SIMPLE | s1 | NULL | ref |
idx_key1 | idx_key1 | 303 | const | 8
| 100.00 | NULL |
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------+-----
-+----------+-------+
1 row in set, 1 warning (0.04 sec)

可以看到type列的值是ref，表明MySQL即将使⽤ref访问⽅法来执
⾏对s1表的查询。但是我们之前只唠叨过对使⽤InnoDB存储引擎的
表进⾏单表访问的⼀些访问⽅法，完整的访问⽅法如
下：system，const，eq_ref，ref，fulltext，ref_or_null
当然我们还要详细唠叨⼀下哈：

system

当表中只有⼀条记录并且该表使⽤的存储引擎的统计数据是精
确的，⽐如MyISAM、Memory，那么对该表的访问⽅法就
是system。⽐⽅说我们新建⼀个MyISAM表，并为其插⼊⼀条
记录：

mysql> CREATE TABLE t(i int) Engine=MyISAM;
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t VALUES(1);
Query OK, 1 row affected (0.01 sec)

然后我们看⼀下查询这个表的执⾏计划：

mysql> EXPLAIN SELECT * FROM t;
+----+-------------+-------+------------+----
----+---------------+------+---------+------
+------+----------+-------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+----
----+---------------+------+---------+------
+------+----------+-------+
| 1 | SIMPLE | t | NULL |
system | NULL | NULL | NULL |
NULL | 1 | 100.00 | NULL |
+----+-------------+-------+------------+----
----+---------------+------+---------+------
+------+----------+-------+
1 row in set, 1 warning (0.00 sec)

可以看到type列的值就是system了。

⼩贴⼠：

你可以把表改成使⽤InnoDB存储引擎，试试看执⾏计划的
type列是什么。

const

这个我们前边唠叨过，就是当我们根据主键或者唯⼀⼆级索引
列与常数进⾏等值匹配时，对单表的访问⽅法就是const，⽐
如：

mysql> EXPLAIN SELECT * FROM s1 WHERE id = 5;
+----+-------------+-------+------------+----
---+---------------+---------+---------+-----
--+------+----------+-------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra |
+----+-------------+-------+------------+----
---+---------------+---------+---------+-----
--+------+----------+-------+
| 1 | SIMPLE | s1 | NULL |
const | PRIMARY | PRIMARY | 4 |
const | 1 | 100.00 | NULL |
+----+-------------+-------+------------+----
---+---------------+---------+---------+-----
--+------+----------+-------+
1 row in set, 1 warning (0.01 sec)

eq_ref

在连接查询时，如果被驱动表是通过主键或者唯⼀⼆级索引列
等值匹配的⽅式进⾏访问的（如果该主键或者唯⼀⼆级索引是
联合索引的话，所有的索引列都必须进⾏等值⽐较），则对该
被驱动表的访问⽅法就是eq_ref，⽐⽅说：

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2
ON s1.id = s2.id;
+----+-------------+-------+------------+----
----+---------------+---------+---------+----
-------------+------+----------+-------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra |
+----+-------------+-------+------------+----
----+---------------+---------+---------+----
-------------+------+----------+-------+
| 1 | SIMPLE | s1 | NULL | ALL
| PRIMARY | NULL | NULL | NULL
| 9688 | 100.00 | NULL |
| 1 | SIMPLE | s2 | NULL |
eq_ref | PRIMARY | PRIMARY | 4 |
xiaohaizi.s1.id | 1 | 100.00 | NULL |
+----+-------------+-------+------------+----
----+---------------+---------+---------+----
-------------+------+----------+-------+
2 rows in set, 1 warning (0.01 sec)

从执⾏计划的结果中可以看出，MySQL打算将s1作为驱动
表，s2作为被驱动表，重点关注s2的访问⽅法是eq_ref，表
明在访问s2表的时候可以通过主键的等值匹配来进⾏访问。

ref

当通过普通的⼆级索引列与常量进⾏等值匹配时来查询某个
表，那么对该表的访问⽅法就可能是ref，最开始举过例⼦
了，就不重复举例了。

fulltext

全⽂索引，我们没有细讲过，跳过～

ref_or_null

当对普通⼆级索引进⾏等值匹配查询，该索引列的值也可以
是NULL值时，那么对该表的访问⽅法就可能
是ref_or_null，⽐如说：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 =
'a' OR key1 IS NULL;
+----+-------------+-------+------------+----
---------+---------------+----------+--------
-+-------+------+----------+-----------------
------+
| id | select_type | table | partitions |
type | possible_keys | key |
key_len | ref | rows | filtered | Extra
|
+----+-------------+-------+------------+----
---------+---------------+----------+--------
-+-------+------+----------+-----------------
------+
| 1 | SIMPLE | s1 | NULL |
ref_or_null | idx_key1 | idx_key1 | 303
| const | 9 | 100.00 | Using index
condition |
+----+-------------+-------+------------+----
---------+---------------+----------+--------
-+-------+------+----------+-----------------
------+
1 row in set, 1 warning (0.01 sec)

index_merge

⼀般情况下对于某个表的查询只能使⽤到⼀个索引，但我们唠
叨单表访问⽅法时特意强调了在某些场景下可以使
⽤Intersection、Union、Sort-Union这三种索引合并的
⽅式来执⾏查询，忘掉的回去补⼀下哈，我们看⼀下执⾏计划
中是怎么体现MySQL使⽤索引合并的⽅式来对某个表执⾏查询
的：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 =
'a' OR key3 = 'a';
+----+-------------+-------+------------+----
---------+-------------------+---------------
----+---------+------+------+----------+-----
--+
| id | select_type | table | partitions |
type | possible_keys | key
| key_len | ref | rows | filtered | Extra
|
+----+-------------+-------+------------+----
---------+-------------------+---------------
----+---------+------+------+----------+-----
--+
| 1 | SIMPLE | s1 | NULL |
index_merge | idx_key1,idx_key3 |
idx_key1,idx_key3 | 303,303 | NULL | 14 |
100.00 | Using union(idx_key1,idx_key3);
Using where |
+----+-------------+-------+------------+----
---------+-------------------+---------------
----+---------+------+------+----------+-----
--+
1 row in set, 1 warning (0.01 sec)

从执⾏计划的type列的值是index_merge就可以看
出，MySQL打算使⽤索引合并的⽅式来执⾏对s1表的查询。

unique_subquery

类似于两表连接中被驱动表的eq_ref访问⽅
法，unique_subquery是针对在⼀些包含IN⼦查询的查询语
句中，如果查询优化器决定将IN⼦查询转换为EXISTS⼦查
询，⽽且⼦查询可以使⽤到主键进⾏等值匹配的话，那么该⼦
查询执⾏计划的type列的值就是unique_subquery，⽐如下
边的这个查询语句：

mysql> EXPLAIN SELECT * FROM s1 WHERE key2 IN
(SELECT id FROM s2 where s1.key1 = s2.key1)
OR key3 = 'a';
+----+--------------------+-------+----------
--+-----------------+------------------+-----
----+---------+------+------+----------+-----
--------+
| id | select_type | table |
partitions | type | possible_keys
| key | key_len | ref | rows | filtered
| Extra |
+----+--------------------+-------+----------
--+-----------------+------------------+-----
----+---------+------+------+----------+-----
--------+
| 1 | PRIMARY | s1 | NULL
| ALL | idx_key3 | NULL
| NULL | NULL | 9688 | 100.00 | Using
where |
| 2 | DEPENDENT SUBQUERY | s2 | NULL
| unique_subquery | PRIMARY,idx_key1 |
PRIMARY | 4 | func | 1 | 10.00 |
Using where |
+----+--------------------+-------+----------
--+-----------------+------------------+-----
----+---------+------+------+----------+-----
--------+
2 rows in set, 2 warnings (0.00 sec)

可以看到执⾏计划的第⼆条记录的type值就
是unique_subquery，说明在执⾏⼦查询时会使⽤到id列的
索引。

index_subquery

index_subquery与unique_subquery类似，只不过访问⼦
查询中的表时使⽤的是普通的索引，⽐如这样：

mysql> EXPLAIN SELECT * FROM s1 WHERE
common_field IN (SELECT key3 FROM s2 where
s1.key1 = s2.key1) OR key3 = 'a';
+----+--------------------+-------+----------
--+----------------+-------------------+-----
-----+---------+------+------+----------+----
---------+
| id | select_type | table |
partitions | type | possible_keys
| key | key_len | ref | rows | filtered
| Extra |
+----+--------------------+-------+----------
--+----------------+-------------------+-----
-----+---------+------+------+----------+----
---------+
| 1 | PRIMARY | s1 | NULL
| ALL | idx_key3 | NULL
| NULL | NULL | 9688 | 100.00 | Using
where |
| 2 | DEPENDENT SUBQUERY | s2 | NULL
| index_subquery | idx_key1,idx_key3 |
idx_key3 | 303 | func | 1 | 10.00 |
Using where |
+----+--------------------+-------+----------
--+----------------+-------------------+-----
-----+---------+------+------+----------+----
---------+
2 rows in set, 2 warnings (0.01 sec)

range

如果使⽤索引获取某些范围区间的记录，那么就可能使⽤
到range访问⽅法，⽐如下边的这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN
('a', 'b', 'c');
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-----------------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra
|
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-----------------------+
| 1 | SIMPLE | s1 | NULL |
range | idx_key1 | idx_key1 | 303 |
NULL | 27 | 100.00 | Using index
condition |
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-----------------------+
1 row in set, 1 warning (0.01 sec)

或者：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 >
'a' AND key1 < 'b';
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-----------------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra
|
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-----------------------+
| 1 | SIMPLE | s1 | NULL |
range | idx_key1 | idx_key1 | 303 |
NULL | 294 | 100.00 | Using index
condition |
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

index

当我们可以使⽤索引覆盖，但需要扫描全部的索引记录时，该
表的访问⽅法就是index，⽐如这样：

mysql> EXPLAIN SELECT key_part2 FROM s1 WHERE
key_part3 = 'a';
+----+-------------+-------+------------+----
---+---------------+--------------+---------
+------+------+----------+-------------------
-------+
| id | select_type | table | partitions |
type | possible_keys | key |
key_len | ref | rows | filtered | Extra
|
+----+-------------+-------+------------+----
---+---------------+--------------+---------
+------+------+----------+-------------------
-------+
| 1 | SIMPLE | s1 | NULL |
index | NULL | idx_key_part | 909
| NULL | 9688 | 10.00 | Using where; Using
index |
+----+-------------+-------+------------+----
---+---------------+--------------+---------
+------+------+----------+-------------------
-------+
1 row in set, 1 warning (0.00 sec)

上述查询中的搜索列表中只有key_part2⼀个列，⽽且搜索条
件中也只有key_part3⼀个列，这两个列⼜恰好包含
在idx_key_part这个索引中，可是搜索条件key_part3不
能直接使⽤该索引进⾏ref或者range⽅式的访问，只能扫描
整个idx_key_part索引的记录，所以查询计划的type列的
值就是index。

⼩贴⼠：

再⼀次强调，对于使⽤InnoDB存储引擎的表来说，⼆级索引
的记录只包含索引列和主键列的值，⽽聚簇索引中包含⽤户定
义的全部列以及⼀些隐藏列，所以扫描⼆级索引的代价⽐直接
全表扫描，也就是扫描聚簇索引的代价更低⼀些。

ALL

最熟悉的全表扫描，就不多唠叨了，直接看例⼦：

mysql> EXPLAIN SELECT * FROM s1;
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-------+
| 1 | SIMPLE | s1 | NULL | ALL
| NULL | NULL | NULL | NULL |
9688 | 100.00 | NULL |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-------+
1 row in set, 1 warning (0.00 sec)

⼀般来说，这些访问⽅法按照我们介绍它们的顺序性能依次变差。其
中除了All这个访问⽅法外，其余的访问⽅法都能⽤到索引，除了
index_merge访问⽅法外，其余的访问⽅法都最多只能⽤到⼀个索
引。

possible_keys和key

在EXPLAIN语句输出的执⾏计划中，possible_keys列表示在某个
查询语句中，对某个表执⾏单表查询时可能⽤到的索引有哪些，key
列表示实际⽤到的索引有哪些，⽐⽅说下边这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 > 'z'
AND key3 = 'a';
+----+-------------+-------+------------+------+-
------------------+----------+---------+-------+-
-----+----------+-------------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref |
rows | filtered | Extra |
+----+-------------+-------+------------+------+-
------------------+----------+---------+-------+-
-----+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ref |
idx_key1,idx_key3 | idx_key3 | 303 | const |
6 | 2.75 | Using where |
+----+-------------+-------+------------+------+-
------------------+----------+---------+-------+-
-----+----------+-------------+
1 row in set, 1 warning (0.01 sec)

上述执⾏计划的possible_keys列的值是idx_key1,idx_key3，
表示该查询可能使⽤到idx_key1,idx_key3两个索引，然后key列
的值是idx_key3，表示经过查询优化器计算使⽤不同索引的成本
后，最后决定使⽤idx_key3来执⾏查询⽐较划算。

不过有⼀点⽐较特别，就是在使⽤index访问⽅法来查询某个表
时，possible_keys列是空的，⽽key列展示的是实际使⽤到的索
引，⽐如这样：

mysql> EXPLAIN SELECT key_part2 FROM s1 WHERE
key_part3 = 'a';
+----+-------------+-------+------------+-------
+---------------+--------------+---------+------
+------+----------+--------------------------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref |
rows | filtered | Extra |
+----+-------------+-------+------------+-------
+---------------+--------------+---------+------
+------+----------+--------------------------+
| 1 | SIMPLE | s1 | NULL | index |
NULL | idx_key_part | 909 | NULL |
9688 | 10.00 | Using where; Using index |
+----+-------------+-------+------------+-------
+---------------+--------------+---------+------
+------+----------+--------------------------+
1 row in set, 1 warning (0.00 sec)

另外需要注意的⼀点是，possible_keys列中的值并不是越多越好，
可能使⽤的索引越多，查询优化器计算查询成本时就得花费更⻓时
间，所以如果可以的话，尽量删除那些⽤不到的索引。

key_len

key_len列表示当优化器决定使⽤某个索引执⾏查询时，该索引记
录的最⼤⻓度，它是由这三个部分构成的：

对于使⽤固定⻓度类型的索引列来说，它实际占⽤的存储空间
的最⼤⻓度就是该固定值，对于指定字符集的变⻓类型的索引
列来说，⽐如某个索引列的类型是VARCHAR(100)，使⽤的字
符集是utf8，那么该列实际占⽤的最⼤存储空间就是100 ×
3 = 300个字节。

如果该索引列可以存储NULL值，则key_len⽐不可以存储
NULL值时多1个字节。

对于变⻓字段来说，都会有2个字节的空间来存储该变⻓列的
实际⻓度。

⽐如下边这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE id = 5;
+----+-------------+-------+------------+-------
+---------------+---------+---------+-------+----
--+----------+-------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows
| filtered | Extra |
+----+-------------+-------+------------+-------
+---------------+---------+---------+-------+----
--+----------+-------+
| 1 | SIMPLE | s1 | NULL | const |
PRIMARY | PRIMARY | 4 | const | 1
| 100.00 | NULL |
+----+-------------+-------+------------+-------
+---------------+---------+---------+-------+----
--+----------+-------+
1 row in set, 1 warning (0.01 sec)

由于id列的类型是INT，并且不可以存储NULL值，所以在使⽤该列
的索引时key_len⼤⼩就是4。当索引列可以存储NULL值时，⽐
如：

mysql> EXPLAIN SELECT * FROM s1 WHERE key2 = 5;
+----+-------------+-------+------------+-------
+---------------+----------+---------+-------+---
---+----------+-------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows
| filtered | Extra |
+----+-------------+-------+------------+-------
+---------------+----------+---------+-------+---
---+----------+-------+
| 1 | SIMPLE | s1 | NULL | const |
idx_key2 | idx_key2 | 5 | const | 1
| 100.00 | NULL |
+----+-------------+-------+------------+-------
+---------------+----------+---------+-------+---
---+----------+-------+
1 row in set, 1 warning (0.00 sec)

可以看到key_len列就变成了5，⽐使⽤id列的索引时多了1。

对于可变⻓度的索引列来说，⽐如下边这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 = 'a';
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------+-----
-+----------+-------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows
| filtered | Extra |
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------+-----
-+----------+-------+
| 1 | SIMPLE | s1 | NULL | ref |
idx_key1 | idx_key1 | 303 | const | 8
| 100.00 | NULL |
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------+-----
-+----------+-------+
1 row in set, 1 warning (0.00 sec)

由于key1列的类型是VARCHAR(100)，所以该列实际最多占⽤的存
储空间就是300字节，⼜因为该列允许存储NULL值，所以key_len
需要加1，⼜因为该列是可变⻓度列，所以key_len需要加2，所以
最后ken_len的值就是303。

有的同学可能有疑问：你在前边唠叨InnoDB⾏格式的时候不是说，
存储变⻓字段的实际⻓度不是可能占⽤1个字节或者2个字节么？为
什么现在不管三七⼆⼗⼀都⽤了2个字节？这⾥需要强调的⼀点是，
执⾏计划的⽣成是在MySQL server层中的功能，并不是针对具体
某个存储引擎的功能，设计MySQL的⼤叔在执⾏计划中输出
key_len列主要是为了让我们区分某个使⽤联合索引的查询具体⽤
了⼏个索引列，⽽不是为了准确的说明针对某个具体存储引擎存储变
⻓字段的实际⻓度占⽤的空间到底是占⽤1个字节还是2个字节。⽐
⽅说下边这个使⽤到联合索引idx_key_part的查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key_part1 =
'a';
+----+-------------+-------+------------+------+-
--------------+--------------+---------+-------+-
-----+----------+-------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref |
rows | filtered | Extra |
+----+-------------+-------+------------+------+-
--------------+--------------+---------+-------+-
-----+----------+-------+
| 1 | SIMPLE | s1 | NULL | ref |
idx_key_part | idx_key_part | 303 | const |
12 | 100.00 | NULL |
+----+-------------+-------+------------+------+-
--------------+--------------+---------+-------+-
-----+----------+-------+
1 row in set, 1 warning (0.00 sec)

我们可以从执⾏计划的key_len列中看到值是303，这意味着MySQL
在执⾏上述查询中只能⽤到idx_key_part索引的⼀个索引列，⽽
下边这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key_part1 =
'a' AND key_part2 = 'b';
+----+-------------+-------+------------+------+-
--------------+--------------+---------+---------
----+------+----------+-------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+------+-
--------------+--------------+---------+---------
----+------+----------+-------+
| 1 | SIMPLE | s1 | NULL | ref |
idx_key_part | idx_key_part | 606 |
const,const | 1 | 100.00 | NULL |
+----+-------------+-------+------------+------+-
--------------+--------------+---------+---------
----+------+----------+-------+
1 row in set, 1 warning (0.01 sec)

这个查询的执⾏计划的ken_len列的值是606，说明执⾏这个查询的
时候可以⽤到联合索引idx_key_part的两个索引列。

ref

当使⽤索引列等值匹配的条件去执⾏查询时，也就是在访问⽅法
是const、eq_ref、ref、ref_or_null、unique_subquery、index_subquery
其中之⼀时，ref列展示的就是与索引列作等值匹配的东东是个啥，
⽐如只是⼀个常数或者是某个列。⼤家看下边这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 = 'a';
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------+-----
-+----------+-------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows
| filtered | Extra |
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------+-----
-+----------+-------+
| 1 | SIMPLE | s1 | NULL | ref |
idx_key1 | idx_key1 | 303 | const | 8
| 100.00 | NULL |
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------+-----
-+----------+-------+
1 row in set, 1 warning (0.01 sec)

可以看到ref列的值是const，表明在使⽤idx_key1索引执⾏查询
时，与key1列作等值匹配的对象是⼀个常数，当然有时候更复杂⼀
点：

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2 ON
s1.id = s2.id;
+----+-------------+-------+------------+--------
+---------------+---------+---------+------------
-----+------+----------+-------+
| id | select_type | table | partitions | type
| possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+--------
+---------------+---------+---------+------------
-----+------+----------+-------+
| 1 | SIMPLE | s1 | NULL | ALL
| PRIMARY | NULL | NULL | NULL
| 9688 | 100.00 | NULL |
| 1 | SIMPLE | s2 | NULL | eq_ref
| PRIMARY | PRIMARY | 4 |
xiaohaizi.s1.id | 1 | 100.00 | NULL |
+----+-------------+-------+------------+--------
+---------------+---------+---------+------------
-----+------+----------+-------+
2 rows in set, 1 warning (0.00 sec)

可以看到对被驱动表s2的访问⽅法是eq_ref，⽽对应的ref列的值
是xiaohaizi.s1.id，这说明在对被驱动表进⾏访问时会⽤
到PRIMARY索引，也就是聚簇索引与⼀个列进⾏等值匹配的条件，
于s2表的id作等值匹配的对象就是xiaohaizi.s1.id列（注意这
⾥把数据库名也写出来了）。

有的时候与索引列进⾏等值匹配的对象是⼀个函数，⽐⽅说下边这个
查询：

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2 ON
s2.key1 = UPPER(s1.key1);
+----+-------------+-------+------------+------+-
--------------+----------+---------+------+------
+----------+-----------------------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows
| filtered | Extra |
+----+-------------+-------+------------+------+-
--------------+----------+---------+------+------
+----------+-----------------------+
| 1 | SIMPLE | s1 | NULL | ALL |
NULL | NULL | NULL | NULL | 9688
| 100.00 | NULL |
| 1 | SIMPLE | s2 | NULL | ref |
idx_key1 | idx_key1 | 303 | func | 1
| 100.00 | Using index condition |
+----+-------------+-------+------------+------+-
--------------+----------+---------+------+------
+----------+-----------------------+
2 rows in set, 1 warning (0.00 sec)

我们看执⾏计划的第⼆条记录，可以看到对s2表采⽤ref访问⽅法执
⾏查询，然后在查询计划的ref列⾥输出的是func，说明与s2表的
key1列进⾏等值匹配的对象是⼀个函数。

rows

如果查询优化器决定使⽤全表扫描的⽅式对某个表执⾏查询时，执⾏
计划的rows列就代表预计需要扫描的⾏数，如果使⽤索引来执⾏查
询时，执⾏计划的rows列就代表预计扫描的索引记录⾏数。⽐如下
边这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 > 'z';
+----+-------------+-------+------------+-------
+---------------+----------+---------+------+----
--+----------+-----------------------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows
| filtered | Extra |
+----+-------------+-------+------------+-------
+---------------+----------+---------+------+----
--+----------+-----------------------+
| 1 | SIMPLE | s1 | NULL | range |
idx_key1 | idx_key1 | 303 | NULL | 266
| 100.00 | Using index condition |
+----+-------------+-------+------------+-------
+---------------+----------+---------+------+----
--+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)

我们看到执⾏计划的rows列的值是266，这意味着查询优化器在经
过分析使⽤idx_key1进⾏查询的成本之后，觉得满⾜key1 >
'z'这个条件的记录只有266条。

filtered

之前在分析连接查询的成本时提出过⼀个condition filtering
的概念，就是MySQL在计算驱动表扇出时采⽤的⼀个策略：

如果使⽤的是全表扫描的⽅式执⾏的单表查询，那么计算驱动
表扇出时需要估计出满⾜搜索条件的记录到底有多少条。

如果使⽤的是索引执⾏的单表扫描，那么计算驱动表扇出的时
候需要估计出满⾜除使⽤到对应索引的搜索条件外的其他搜索
条件的记录有多少条。

⽐⽅说下边这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 > 'z'
AND common_field = 'a';
+----+-------------+-------+------------+-------
+---------------+----------+---------+------+----
--+----------+-----------------------------------
-+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref | rows
| filtered | Extra |
+----+-------------+-------+------------+-------
+---------------+----------+---------+------+----
--+----------+-----------------------------------
-+
| 1 | SIMPLE | s1 | NULL | range |
idx_key1 | idx_key1 | 303 | NULL | 266
| 10.00 | Using index condition; Using where |
+----+-------------+-------+------------+-------
+---------------+----------+---------+------+----
--+----------+-----------------------------------
-+
1 row in set, 1 warning (0.00 sec)

从执⾏计划的key列中可以看出来，该查询使⽤idx_key1索引来执
⾏查询，从rows列可以看出满⾜key1 > 'z'的记录有266条。执
⾏计划的filtered列就代表查询优化器预测在这266条记录中，有
多少条记录满⾜其余的搜索条件，也就是common_field = 'a'这
个条件的百分⽐。此处filtered列的值是10.00，说明查询优化器
预测在266条记录中有10.00%的记录满⾜common_field =
'a'这个条件。

对于单表查询来说，这个filtered列的值没什么意义，我们更关注
在连接查询中驱动表对应的执⾏计划记录的filtered值，⽐⽅说下
边这个查询：

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2 ON
s1.key1 = s2.key1 WHERE s1.common_field = 'a';
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------------
------+------+----------+-------------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------------
------+------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ALL |
idx_key1 | NULL | NULL | NULL
| 9688 | 10.00 | Using where |
| 1 | SIMPLE | s2 | NULL | ref |
idx_key1 | idx_key1 | 303 |
xiaohaizi.s1.key1 | 1 | 100.00 | NULL
|
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------------
------+------+----------+-------------+
2 rows in set, 1 warning (0.00 sec)

从执⾏计划中可以看出来，查询优化器打算把s1当作驱动表，s2当
作被驱动表。我们可以看到驱动表s1表的执⾏计划的rows列
为9688， filtered列为10.00，这意味着驱动表s1的扇出值就
是9688 × 10.00% = 968.8，这说明还要对被驱动表执⾏⼤约
968次查询。

