
Explain 详解（下）
标签： MySQL 是怎样运⾏的

执⾏计划输出中各列详解

本章紧接着上⼀节的内容，继续唠叨EXPLAIN语句输出的各个列的
意思。

Extra

顾名思义，Extra列是⽤来说明⼀些额外信息的，我们可以通过这些
额外信息来更准确的理解MySQL到底将如何执⾏给定的查询语
句。MySQL提供的额外信息有好⼏⼗个，我们就不⼀个⼀个介绍了
（都介绍了感觉我们的⽂章就跟⽂档差不多了～），所以我们只挑⼀
些平时常⻅的或者⽐较重要的额外信息介绍给⼤家哈。

No tables used

当查询语句的没有FROM⼦句时将会提示该额外信息，⽐如：

mysql> EXPLAIN SELECT 1;
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+----------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+----------------+
| 1 | SIMPLE | NULL | NULL |
NULL | NULL | NULL | NULL | NULL
| NULL | NULL | No tables used |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+----------------+
1 row in set, 1 warning (0.00 sec)

Impossible WHERE

查询语句的WHERE⼦句永远为FALSE时将会提示该额外信息，
⽐⽅说：

mysql> EXPLAIN SELECT * FROM s1 WHERE 1 != 1;
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+------------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+------------------+
| 1 | SIMPLE | NULL | NULL |
NULL | NULL | NULL | NULL | NULL
| NULL | NULL | Impossible WHERE |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+------------------+
1 row in set, 1 warning (0.01 sec)

No matching min/max row

当查询列表处有MIN或者MAX聚集函数，但是并没有符
合WHERE⼦句中的搜索条件的记录时，将会提示该额外信息，
⽐⽅说：

mysql> EXPLAIN SELECT MIN(key1) FROM s1 WHERE
key1 = 'abcdefg';
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-------------------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-------------------------+
| 1 | SIMPLE | NULL | NULL |
NULL | NULL | NULL | NULL | NULL
| NULL | NULL | No matching min/max row |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-------------------------+
1 row in set, 1 warning (0.00 sec)

Using index

当我们的查询列表以及搜索条件中只包含属于某个索引的列，
也就是在可以使⽤索引覆盖的情况下，在Extra列将会提示该
额外信息。⽐⽅说下边这个查询中只需要⽤到idx_key1⽽不
需要回表操作：

mysql> EXPLAIN SELECT key1 FROM s1 WHERE key1
= 'a';
+----+-------------+-------+------------+----
--+---------------+----------+---------+-----
--+------+----------+-------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra |
+----+-------------+-------+------------+----
--+---------------+----------+---------+-----
--+------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ref
| idx_key1 | idx_key1 | 303 | const
| 8 | 100.00 | Using index |
+----+-------------+-------+------------+----
--+---------------+----------+---------+-----
--+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

Using index condition

有些搜索条件中虽然出现了索引列，但却不能使⽤到索引，⽐
如下边这个查询：

SELECT * FROM s1 WHERE key1 > 'z' AND key1
LIKE '%a';

其中的key1 > 'z'可以使⽤到索引，但是key1 LIKE
'%a'却⽆法使⽤到索引，在以前版本的MySQL中，是按照下边
步骤来执⾏这个查询的：

先根据key1 > 'z'这个条件，从⼆级索引idx_key1中
获取到对应的⼆级索引记录。

根据上⼀步骤得到的⼆级索引记录中的主键值进⾏回表，
找到完整的⽤户记录再检测该记录是否符合key1 LIKE
'%a'这个条件，将符合条件的记录加⼊到最后的结果
集。

但是虽然key1 LIKE '%a'不能组成范围区间参与range访问
⽅法的执⾏，但这个条件毕竟只涉及到了key1列，所以设计
MySQL的⼤叔把上边的步骤改进了⼀下：

先根据key1 > 'z'这个条件，定位到⼆级索
引idx_key1中对应的⼆级索引记录。

对于指定的⼆级索引记录，先不着急回表，⽽是先检测⼀
下该记录是否满⾜key1 LIKE '%a'这个条件，如果这
个条件不满⾜，则该⼆级索引记录压根⼉就没必要回表。

对于满⾜key1 LIKE '%a'这个条件的⼆级索引记录执
⾏回表操作。

我们说回表操作其实是⼀个随机IO，⽐较耗时，所以上述修改
虽然只改进了⼀点点，但是可以省去好多回表操作的成本。设
计MySQL的⼤叔们把他们的这个改进称之为索引条件下推（英
⽂名：Index Condition Pushdown）。

如果在查询语句的执⾏过程中将要使⽤索引条件下推这个特
性，在Extra列中将会显示Using index condition，⽐
如这样：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 >
'z' AND key1 LIKE '%b';
 +----+-------------+-------+------------+--
-----+---------------+----------+---------+--
----+------+----------+----------------------
-+
 | id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra
|
 +----+-------------+-------+------------+--
-----+---------------+----------+---------+--
----+------+----------+----------------------
-+
 | 1 | SIMPLE | s1 | NULL |
range | idx_key1 | idx_key1 | 303 |
NULL | 266 | 100.00 | Using index
condition |
 +----+-------------+-------+------------+--
-----+---------------+----------+---------+--
----+------+----------+----------------------
-+
 1 row in set, 1 warning (0.01 sec)

Using where

当我们使⽤全表扫描来执⾏对某个表的查询，并且该语句的
WHERE⼦句中有针对该表的搜索条件时，在Extra列中会提示
上述额外信息。⽐如下边这个查询：

mysql> EXPLAIN SELECT * FROM s1 WHERE
common_field = 'a';
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ALL
| NULL | NULL | NULL | NULL |
9688 | 10.00 | Using where |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-------------+
1 row in set, 1 warning (0.01 sec)

当使⽤索引访问来执⾏对某个表的查询，并且该语句的WHERE
⼦句中有除了该索引包含的列之外的其他搜索条件时，
在Extra列中也会提示上述额外信息。⽐如下边这个查询虽然
使⽤idx_key1索引执⾏查询，但是搜索条件中除了包含key1
的搜索条件key1 = 'a'，还有包含common_field的搜索条
件，所以Extra列会显示Using where的提示：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 =
'a' AND common_field = 'a';
+----+-------------+-------+------------+----
--+---------------+----------+---------+-----
--+------+----------+-------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra |
+----+-------------+-------+------------+----
--+---------------+----------+---------+-----
--+------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ref
| idx_key1 | idx_key1 | 303 | const
| 8 | 10.00 | Using where |
+----+-------------+-------+------------+----
--+---------------+----------+---------+-----
--+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

Using join buffer (Block Nested Loop)

在连接查询执⾏过程过，当被驱动表不能有效的利⽤索引加快
访问速度，MySQL⼀般会为其分配⼀块名叫join buffer的
内存块来加快查询速度，也就是我们所讲的基于块的嵌套循环
算法，⽐如下边这个查询语句：

mysql> EXPLAIN SELECT * FROM s1 INNER JOIN s2
ON s1.common_field = s2.common_field;
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------------------
-----------------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra
|
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------------------
-----------------------+
| 1 | SIMPLE | s1 | NULL | ALL
| NULL | NULL | NULL | NULL |
9688 | 100.00 | NULL
|
| 1 | SIMPLE | s2 | NULL | ALL
| NULL | NULL | NULL | NULL |
9954 | 10.00 | Using where; Using join
buffer (Block Nested Loop) |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------------------
-----------------------+
2 rows in set, 1 warning (0.03 sec)

可以在对s2表的执⾏计划的Extra列显示了两个提示：

Using join buffer (Block Nested Loop)：这
是因为对表s2的访问不能有效利⽤索引，只好退⽽求其
次，使⽤join buffer来减少对s2表的访问次数，从⽽

提⾼性能。

Using where：可以看到查询语句中有⼀
个s1.common_field = s2.common_field条件，因
为s1是驱动表，s2是被驱动表，所以在访问s2表
时，s1.common_field的值已经确定下来了，所以实际
上查询s2表的条件就是s2.common_field = ⼀个常
数，所以提示了Using where额外信息。

Not exists

当我们使⽤左（外）连接时，如果WHERE⼦句中包含要求被驱
动表的某个列等于NULL值的搜索条件，⽽且那个列⼜是不允许
存储NULL值的，那么在该表的执⾏计划的Extra列就会提
示Not exists额外信息，⽐如这样：

mysql> EXPLAIN SELECT * FROM s1 LEFT JOIN s2
ON s1.key1 = s2.key1 WHERE s2.id IS NULL;
+----+-------------+-------+------------+----
--+---------------+----------+---------+-----
--------------+------+----------+------------
-------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra
|
+----+-------------+-------+------------+----
--+---------------+----------+---------+-----
--------------+------+----------+------------
-------------+
| 1 | SIMPLE | s1 | NULL | ALL
| NULL | NULL | NULL | NULL
| 9688 | 100.00 | NULL |
| 1 | SIMPLE | s2 | NULL | ref
| idx_key1 | idx_key1 | 303 |
xiaohaizi.s1.key1 | 1 | 10.00 | Using
where; Not exists |
+----+-------------+-------+------------+----
--+---------------+----------+---------+-----
--------------+------+----------+------------
-------------+
2 rows in set, 1 warning (0.00 sec)

上述查询中s1表是驱动表，s2表是被驱动表，s2.id列是不允
许存储NULL值的，⽽WHERE⼦句中⼜包含s2.id IS NULL的
搜索条件，这意味着必定是驱动表的记录在被驱动表中找不到
匹配ON⼦句条件的记录才会把该驱动表的记录加⼊到最终的结
果集，所以对于某条驱动表中的记录来说，如果能在被驱动表
中找到1条符合ON⼦句条件的记录，那么该驱动表的记录就不

会被加⼊到最终的结果集，也就是说我们没有必要到被驱动表
中找到全部符合ON⼦句条件的记录，这样可以稍微节省⼀点性
能。

```!
⼩贴⼠：

右（外）连接可以被转换为左（外）连接，所以就不提右（外）连
接的情况了。
```

Using intersect(...)、Using union(...)和Using
sort_union(...)

如果执⾏计划的Extra列出现了Using intersect(...)提
示，说明准备使⽤Intersect索引合并的⽅式执⾏查询，括号
中的...表示需要进⾏索引合并的索引名称；如果出现了
Using union(...)提示，说明准备使⽤Union索引合并的
⽅式执⾏查询；出现了Using sort_union(...)提示，说
明准备使⽤Sort-Union索引合并的⽅式执⾏查询。⽐如这个
查询的执⾏计划：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 =
'a' AND key3 = 'a';
+----+-------------+-------+------------+----
---------+-------------------+---------------
----+---------+------+------+----------+-----
--+
| id | select_type | table | partitions |
type | possible_keys | key
| key_len | ref | rows | filtered | Extra
|
+----+-------------+-------+------------+----
---------+-------------------+---------------
----+---------+------+------+----------+-----
--+
| 1 | SIMPLE | s1 | NULL |
index_merge | idx_key1,idx_key3 |
idx_key3,idx_key1 | 303,303 | NULL | 1 |
100.00 | Using intersect(idx_key3,idx_key1);
Using where |
+----+-------------+-------+------------+----
---------+-------------------+---------------
----+---------+------+------+----------+-----
--+
1 row in set, 1 warning (0.01 sec)

其中Extra列就显示了Using
intersect(idx_key3,idx_key1)，表明MySQL即将使
⽤idx_key3和idx_key1这两个索引进⾏Intersect索引合
并的⽅式执⾏查询。

⼩贴⼠：

剩下两种类型的索引合并的Extra列信息就不⼀⼀举例⼦了，
⾃⼰写个查询瞅瞅呗～

Zero limit

当我们的LIMIT⼦句的参数为0时，表示压根⼉不打算从表中
读出任何记录，将会提示该额外信息，⽐如这样：

mysql> EXPLAIN SELECT * FROM s1 LIMIT 0;
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+------------+
| 1 | SIMPLE | NULL | NULL |
NULL | NULL | NULL | NULL | NULL
| NULL | NULL | Zero limit |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+------------+
1 row in set, 1 warning (0.00 sec)

Using filesort

有⼀些情况下对结果集中的记录进⾏排序是可以使⽤到索引
的，⽐如下边这个查询：

mysql> EXPLAIN SELECT * FROM s1 ORDER BY key1
LIMIT 10;
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra |
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-------+
| 1 | SIMPLE | s1 | NULL |
index | NULL | idx_key1 | 303 |
NULL | 10 | 100.00 | NULL |
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-------+
1 row in set, 1 warning (0.03 sec)

这个查询语句可以利⽤idx_key1索引直接取出key1列的10条
记录，然后再进⾏回表操作就好了。但是很多情况下排序操作
⽆法使⽤到索引，只能在内存中（记录较少的时候）或者磁盘
中（记录较多的时候）进⾏排序，设计MySQL的⼤叔把这种在
内存中或者磁盘上进⾏排序的⽅式统称为⽂件排序（英⽂
名：filesort）。如果某个查询需要使⽤⽂件排序的⽅式执
⾏查询，就会在执⾏计划的Extra列中显示Using filesort
提示，⽐如这样：

mysql> EXPLAIN SELECT * FROM s1 ORDER BY
common_field LIMIT 10;
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+----------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+----------------+
| 1 | SIMPLE | s1 | NULL | ALL
| NULL | NULL | NULL | NULL |
9688 | 100.00 | Using filesort |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+----------------+
1 row in set, 1 warning (0.00 sec)

需要注意的是，如果查询中需要使⽤filesort的⽅式进⾏排
序的记录⾮常多，那么这个过程是很耗费性能的，我们最好想
办法将使⽤⽂件排序的执⾏⽅式改为使⽤索引进⾏排序。

Using temporary

在许多查询的执⾏过程中，MySQL可能会借助临时表来完成⼀
些功能，⽐如去重、排序之类的，⽐如我们在执⾏许多包
含DISTINCT、GROUP BY、UNION等⼦句的查询过程中，如
果不能有效利⽤索引来完成查询，MySQL很有可能寻求通过建
⽴内部的临时表来执⾏查询。如果查询中使⽤到了内部的临时
表，在执⾏计划的Extra列将会显示Using temporary提
示，⽐⽅说这样：

mysql> EXPLAIN SELECT DISTINCT common_field
FROM s1;
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------+
| 1 | SIMPLE | s1 | NULL | ALL
| NULL | NULL | NULL | NULL |
9688 | 100.00 | Using temporary |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------+
1 row in set, 1 warning (0.00 sec)

再⽐如：

mysql> EXPLAIN SELECT common_field, COUNT(*)
AS amount FROM s1 GROUP BY common_field;
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------------------
----+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra
|
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------------------
----+
| 1 | SIMPLE | s1 | NULL | ALL
| NULL | NULL | NULL | NULL |
9688 | 100.00 | Using temporary; Using
filesort |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------------------
----+
1 row in set, 1 warning (0.00 sec)

不知道⼤家注意到没有，上述执⾏计划的Extra列不仅仅包
含Using temporary提示，还包含Using filesort提示，
可是我们的查询语句中明明没有写ORDER BY⼦句呀？这是因
为MySQL会在包含GROUP BY⼦句的查询中默认添加上ORDER
BY⼦句，也就是说上述查询其实和下边这个查询等价：

EXPLAIN SELECT common_field, COUNT(*) AS
amount FROM s1 GROUP BY common_field ORDER BY
common_field;

如果我们并不想为包含GROUP BY⼦句的查询进⾏排序，需要
我们显式的写上ORDER BY NULL，就像这样：

mysql> EXPLAIN SELECT common_field, COUNT(*)
AS amount FROM s1 GROUP BY common_field ORDER
BY NULL;
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------+
| 1 | SIMPLE | s1 | NULL | ALL
| NULL | NULL | NULL | NULL |
9688 | 100.00 | Using temporary |
+----+-------------+-------+------------+----
--+---------------+------+---------+------+--
----+----------+-----------------+
1 row in set, 1 warning (0.00 sec)

这回执⾏计划中就没有Using filesort的提示了，也就意味
着执⾏查询时可以省去对记录进⾏⽂件排序的成本了。

另外，执⾏计划中出现Using temporary并不是⼀个好的征
兆，因为建⽴与维护临时表要付出很⼤成本的，所以我们最好
能使⽤索引来替代掉使⽤临时表，⽐⽅说下边这个包含GROUP
BY⼦句的查询就不需要使⽤临时表：

mysql> EXPLAIN SELECT key1, COUNT(*) AS
amount FROM s1 GROUP BY key1;
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra |
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-------------+
| 1 | SIMPLE | s1 | NULL |
index | idx_key1 | idx_key1 | 303 |
NULL | 9688 | 100.00 | Using index |
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
--+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

从Extra的Using index的提示⾥我们可以看出，上述查询
只需要扫描idx_key1索引就可以搞定了，不再需要临时表
了。

Start temporary, End temporary

我们前边唠叨⼦查询的时候说过，查询优化器会优先尝试将IN
⼦查询转换成semi-join，⽽semi-join⼜有好多种执⾏策
略，当执⾏策略为DuplicateWeedout时，也就是通过建⽴
临时表来实现为外层查询中的记录进⾏去重操作时，驱动表查
询执⾏计划的Extra列将显示Start temporary提示，被驱
动表查询执⾏计划的Extra列将显示End temporary提示，
就是这样：

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 IN
(SELECT key3 FROM s2 WHERE common_field =
'a');
+----+-------------+-------+------------+----
--+---------------+----------+---------+-----
--------------+------+----------+------------
------------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra
|
+----+-------------+-------+------------+----
--+---------------+----------+---------+-----
--------------+------+----------+------------
------------------+
| 1 | SIMPLE | s2 | NULL | ALL
| idx_key3 | NULL | NULL | NULL
| 9954 | 10.00 | Using where; Start
temporary |
| 1 | SIMPLE | s1 | NULL | ref
| idx_key1 | idx_key1 | 303 |
xiaohaizi.s2.key3 | 1 | 100.00 | End
temporary |
+----+-------------+-------+------------+----
--+---------------+----------+---------+-----
--------------+------+----------+------------
------------------+
2 rows in set, 1 warning (0.00 sec)

LooseScan

在将In⼦查询转为semi-join时，如果采⽤的是LooseScan
执⾏策略，则在驱动表执⾏计划的Extra列就是显
示LooseScan提示，⽐如这样：

mysql> EXPLAIN SELECT * FROM s1 WHERE key3 IN
(SELECT key1 FROM s2 WHERE key1 > 'z');
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
---------------+------+----------+-----------
--------------------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len |
ref | rows | filtered | Extra
|
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
---------------+------+----------+-----------
--------------------------+
| 1 | SIMPLE | s2 | NULL |
range | idx_key1 | idx_key1 | 303 |
NULL | 270 | 100.00 | Using
where; Using index; LooseScan |
| 1 | SIMPLE | s1 | NULL | ref
| idx_key3 | idx_key3 | 303 |
xiaohaizi.s2.key1 | 1 | 100.00 | NULL
|
+----+-------------+-------+------------+----
---+---------------+----------+---------+----
---------------+------+----------+-----------
--------------------------+
2 rows in set, 1 warning (0.01 sec)

FirstMatch(tbl_name)

在将In⼦查询转为semi-join时，如果采⽤的
是FirstMatch执⾏策略，则在被驱动表执⾏计划的Extra列
就是显示FirstMatch(tbl_name)提示，⽐如这样：

mysql> EXPLAIN SELECT * FROM s1 WHERE
common_field IN (SELECT key1 FROM s2 where
s1.key3 = s2.key3);
+----+-------------+-------+------------+----
--+-------------------+----------+---------+-
------------------+------+----------+--------
---------------------+
| id | select_type | table | partitions |
type | possible_keys | key | key_len
| ref | rows | filtered | Extra
|
+----+-------------+-------+------------+----
--+-------------------+----------+---------+-
------------------+------+----------+--------
---------------------+
| 1 | SIMPLE | s1 | NULL | ALL
| idx_key3 | NULL | NULL |
NULL | 9688 | 100.00 | Using
where |
| 1 | SIMPLE | s2 | NULL | ref
| idx_key1,idx_key3 | idx_key3 | 303 |
xiaohaizi.s1.key3 | 1 | 4.87 | Using
where; FirstMatch(s1) |
+----+-------------+-------+------------+----
--+-------------------+----------+---------+-
------------------+------+----------+--------
---------------------+
2 rows in set, 2 warnings (0.00 sec)

Json格式的执⾏计划

我们上边介绍的EXPLAIN语句输出中缺少了⼀个衡量执⾏计划好坏
的重要属性 —— 成本。不过设计MySQL的⼤叔贴⼼的为我们提供了
⼀种查看某个执⾏计划花费的成本的⽅式：

在EXPLAIN单词和真正的查询语句中间加上FORMAT=JSON。

这样我们就可以得到⼀个json格式的执⾏计划，⾥边⼉包含该计划
花费的成本，⽐如这样：

mysql> EXPLAIN FORMAT=JSON SELECT * FROM s1 INNER
JOIN s2 ON s1.key1 = s2.key2 WHERE
s1.common_field = 'a'\G
*************************** 1. row

EXPLAIN: {
 "query_block": {
 "select_id": 1, # 整个查询语句只有1个SELECT关
键字，该关键字对应的id号为1
 "cost_info": {
 "query_cost": "3197.16" # 整个查询的执⾏成本
预计为3197.16
 },
 "nested_loop": [# ⼏个表之间采⽤嵌套循环连接算
法执⾏

 # 以下是参与嵌套循环连接算法的各个表的信息
 {
 "table": {
 "table_name": "s1", # s1表是驱动表
 "access_type": "ALL", # 访问⽅法为

ALL，意味着使⽤全表扫描访问
 "possible_keys": [# 可能使⽤的索引
 "idx_key1"
],
 "rows_examined_per_scan": 9688, # 查询
⼀次s1表⼤致需要扫描9688条记录
 "rows_produced_per_join": 968, # 驱动
表s1的扇出是968
 "filtered": "10.00", # condition
filtering代表的百分⽐
 "cost_info": {
 "read_cost": "1840.84", # 稍后解释
 "eval_cost": "193.76", # 稍后解释
 "prefix_cost": "2034.60", # 单次查询
s1表总共的成本
 "data_read_per_join": "1M" # 读取的数
据量
 },
 "used_columns": [# 执⾏查询中涉及到的
列
 "id",
 "key1",
 "key2",
 "key3",
 "key_part1",
 "key_part2",
 "key_part3",
 "common_field"
],

 # 对s1表访问时针对单表查询的条件
 "attached_condition": "
((`xiaohaizi`.`s1`.`common_field` = 'a') and

(`xiaohaizi`.`s1`.`key1` is not null))"
 }
 },
 {
 "table": {
 "table_name": "s2", # s2表是被驱动表
 "access_type": "ref", # 访问⽅法为
ref，意味着使⽤索引等值匹配的⽅式访问
 "possible_keys": [# 可能使⽤的索引
 "idx_key2"
],
 "key": "idx_key2", # 实际使⽤的索引
 "used_key_parts": [# 使⽤到的索引列
 "key2"
],
 "key_length": "5", # key_len
 "ref": [# 与key2列进⾏等值匹配的对象
 "xiaohaizi.s1.key1"
],
 "rows_examined_per_scan": 1, # 查询⼀次
s2表⼤致需要扫描1条记录
 "rows_produced_per_join": 968, # 被驱
动表s2的扇出是968（由于后边没有多余的表进⾏连接，所以这个
值也没啥⽤）
 "filtered": "100.00", # condition
filtering代表的百分⽐

 # s2表使⽤索引进⾏查询的搜索条件
 "index_condition": "
(`xiaohaizi`.`s1`.`key1` =
`xiaohaizi`.`s2`.`key2`)",
 "cost_info": {
 "read_cost": "968.80", # 稍后解释

 "eval_cost": "193.76", # 稍后解释
 "prefix_cost": "3197.16", # 单次查询
s1、多次查询s2表总共的成本
 "data_read_per_join": "1M" # 读取的数
据量
 },
 "used_columns": [# 执⾏查询中涉及到的
列
 "id",
 "key1",
 "key2",
 "key3",
 "key_part1",
 "key_part2",
 "key_part3",
 "common_field"
]
 }
 }
]
 }
}
1 row in set, 2 warnings (0.00 sec)

我们使⽤#后边跟随注释的形式为⼤家解释了EXPLAIN
FORMAT=JSON语句的输出内容，但是⼤家可能有疑
问"cost_info"⾥边的成本看着怪怪的，它们是怎么计算出来的？
先看s1表的"cost_info"部分：

"cost_info": {
 "read_cost": "1840.84",
 "eval_cost": "193.76",
 "prefix_cost": "2034.60",
 "data_read_per_join": "1M"
}

read_cost是由下边这两部分组成的：

IO成本
检测rows × (1 - filter)条记录的CPU成本

⼩贴⼠：

rows和filter都是我们前边介绍执⾏计划的输出列，在JSON
格式的执⾏计划中，rows相当于
rows_examined_per_scan，filtered名称不变。

eval_cost是这样计算的：

检测 rows × filter条记录的成本。

prefix_cost就是单独查询s1表的成本，也就是：

read_cost + eval_cost

data_read_per_join表示在此次查询中需要读取的数据
量，我们就不多唠叨这个了。

⼩贴⼠：

⼤家其实没必要关注MySQL为啥使⽤这么古怪的⽅式计算出
read_cost和eval_cost，关注prefix_cost是查询s1表的成本
就好了。

对于s2表的"cost_info"部分是这样的：

"cost_info": {
 "read_cost": "968.80",
 "eval_cost": "193.76",
 "prefix_cost": "3197.16",
 "data_read_per_join": "1M"
}

由于s2表是被驱动表，所以可能被读取多次，这⾥的read_cost和
eval_cost是访问多次s2表后累加起来的值，⼤家主要关注⾥边⼉
的prefix_cost的值代表的是整个连接查询预计的成本，也就是单
次查询s1表和多次查询s2表后的成本的和，也就是：

968.80 + 193.76 + 2034.60 = 3197.16

Extented EXPLAIN

最后，设计MySQL的⼤叔还为我们留了个彩蛋，在我们使
⽤EXPLAIN语句查看了某个查询的执⾏计划后，紧接着还可以使
⽤SHOW WARNINGS语句查看与这个查询的执⾏计划有关的⼀些扩展
信息，⽐如这样：

mysql> EXPLAIN SELECT s1.key1, s2.key1 FROM s1
LEFT JOIN s2 ON s1.key1 = s2.key1 WHERE
s2.common_field IS NOT NULL;
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------------
------+------+----------+-------------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+-------+------------+------+-

--------------+----------+---------+-------------
------+------+----------+-------------+
| 1 | SIMPLE | s2 | NULL | ALL |
idx_key1 | NULL | NULL | NULL
| 9954 | 90.00 | Using where |
| 1 | SIMPLE | s1 | NULL | ref |
idx_key1 | idx_key1 | 303 |
xiaohaizi.s2.key1 | 1 | 100.00 | Using index
|
+----+-------------+-------+------------+------+-
--------------+----------+---------+-------------
------+------+----------+-------------+
2 rows in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row

 Level: Note
 Code: 1003
Message: /* select#1 */ select
`xiaohaizi`.`s1`.`key1` AS
`key1`,`xiaohaizi`.`s2`.`key1` AS `key1` from
`xiaohaizi`.`s1` join `xiaohaizi`.`s2` where
((`xiaohaizi`.`s1`.`key1` =
`xiaohaizi`.`s2`.`key1`) and
(`xiaohaizi`.`s2`.`common_field` is not null))
1 row in set (0.00 sec)

⼤家可以看到SHOW WARNINGS展示出来的信息有三个字段，分别
是Level、Code、Message。我们最常⻅的就是Code为1003的信
息，当Code值为1003时，Message字段展示的信息类似于查询优化
器将我们的查询语句重写后的语句。⽐如我们上边的查询本来是⼀个
左（外）连接查询，但是有⼀个s2.common_field IS NOT

NULL的条件，着就会导致查询优化器把左（外）连接查询优化为内
连接查询，从SHOW WARNINGS的Message字段也可以看出来，原本
的LEFT JOIN已经变成了JOIN。

但是⼤家⼀定要注意，我们说Message字段展示的信息类似于查询
优化器将我们的查询语句重写后的语句，并不是等价于，也就是说
Message字段展示的信息并不是标准的查询语句，在很多情况下并
不能直接拿到⿊框框中运⾏，它只能作为帮助我们理解查MySQL将如
何执⾏查询语句的⼀个参考依据⽽已。

