
otpimizer trace 表的神奇功效
标签： MySQL 是怎样运⾏的

对于MySQL 5.6以及之前的版本来说，查询优化器就像是⼀个⿊盒
⼦⼀样，你只能通过EXPLAIN语句查看到最后优化器决定使⽤的执
⾏计划，却⽆法知道它为什么做这个决策。这对于⼀部分喜欢刨根问
底的⼩伙伴来说简直是灾难：“我就觉得使⽤其他的执⾏⽅案⽐
EXPLAIN输出的这种⽅案强，凭什么优化器做的决定和我想的不⼀
样呢？”

在MySQL 5.6以及之后的版本中，设计MySQL的⼤叔贴⼼的为这部
分⼩伙伴提出了⼀个optimizer trace的功能，这个功能可以让我
们⽅便的查看优化器⽣成执⾏计划的整个过程，这个功能的开启与关
闭由系统变量optimizer_trace决定，我们看⼀下：

mysql> SHOW VARIABLES LIKE 'optimizer_trace';
+-----------------+--------------------------+
| Variable_name | Value |
+-----------------+--------------------------+
| optimizer_trace | enabled=off,one_line=off |
+-----------------+--------------------------+
1 row in set (0.02 sec)

可以看到enabled值为off，表明这个功能默认是关闭的。

⼩贴⼠：

one_line的值是控制输出格式的，如果为on那么所有输出都将在
⼀⾏中展示，不适合⼈阅读，所以我们就保持其默认值为off吧。

如果想打开这个功能，必须⾸先把enabled的值改为on，就像这
样：

mysql> SET optimizer_trace="enabled=on";
Query OK, 0 rows affected (0.00 sec)

然后我们就可以输⼊我们想要查看优化过程的查询语句，当该查询语
句执⾏完成后，就可以到information_schema数据库下的
OPTIMIZER_TRACE表中查看完整的优化过程。这
个OPTIMIZER_TRACE表有4个列，分别是：

QUERY：表示我们的查询语句。

TRACE：表示优化过程的JSON格式⽂本。

MISSING_BYTES_BEYOND_MAX_MEM_SIZE：由于优化过程
可能会输出很多，如果超过某个限制时，多余的⽂本将不会被
显示，这个字段展示了被忽略的⽂本字节数。

INSUFFICIENT_PRIVILEGES：表示是否没有权限查看优化
过程，默认值是0，只有某些特殊情况下才会是1，我们暂时不
关⼼这个字段的值。

完整的使⽤optimizer trace功能的步骤总结如下：

1. 打开optimizer trace功能 (默认情况下它是关闭的):
SET optimizer_trace="enabled=on";

2. 这⾥输⼊你⾃⼰的查询语句
SELECT ...;

3. 从OPTIMIZER_TRACE表中查看上⼀个查询的优化过程
SELECT * FROM information_schema.OPTIMIZER_TRACE;

4. 可能你还要观察其他语句执⾏的优化过程，重复上边的第2、
3步
...

5. 当你停⽌查看语句的优化过程时，把optimizer trace功
能关闭
SET optimizer_trace="enabled=off";

现在我们有⼀个搜索条件⽐较多的查询语句，它的执⾏计划如下：

mysql> EXPLAIN SELECT * FROM s1 WHERE
 -> key1 > 'z' AND
 -> key2 < 1000000 AND
 -> key3 IN ('a', 'b', 'c') AND
 -> common_field = 'abc';
+----+-------------+-------+------------+-------
+----------------------------+----------+--------
-+------+------+----------+----------------------
--------------+
| id | select_type | table | partitions | type |
possible_keys | key | key_len |
ref | rows | filtered | Extra
|
+----+-------------+-------+------------+-------
+----------------------------+----------+--------
-+------+------+----------+----------------------
--------------+
| 1 | SIMPLE | s1 | NULL | range |
idx_key2,idx_key1,idx_key3 | idx_key2 | 5 |
NULL | 12 | 0.42 | Using index condition;
Using where |
+----+-------------+-------+------------+-------
+----------------------------+----------+--------
-+------+------+----------+----------------------
--------------+
1 row in set, 1 warning (0.00 sec)

可以看到该查询可能使⽤到的索引有3个，那么为什么优化器最终选
择了idx_key2⽽不选择其他的索引或者直接全表扫描呢？这时候就
可以通过otpimzer trace功能来查看优化器的具体⼯作过程：

SET optimizer_trace="enabled=on";

SELECT * FROM s1 WHERE
 key1 > 'z' AND
 key2 < 1000000 AND
 key3 IN ('a', 'b', 'c') AND
 common_field = 'abc';

SELECT * FROM
information_schema.OPTIMIZER_TRACE\G

我们直接看⼀下通过查询OPTIMIZER_TRACE表得到的输出（我使
⽤#后跟随注释的形式为⼤家解释了优化过程中的⼀些⽐较重要的
点，⼤家重点关注⼀下）：

*************************** 1. row

分析的查询语句是什么
QUERY: SELECT * FROM s1 WHERE
 key1 > 'z' AND
 key2 < 1000000 AND
 key3 IN ('a', 'b', 'c') AND
 common_field = 'abc'

优化的具体过程
TRACE: {
 "steps": [
 {
 "join_preparation": { # prepare阶段
 "select#": 1,
 "steps": [
 {
 "IN_uses_bisection": true

 },
 {
 "expanded_query": "/* select#1 */
select `s1`.`id` AS `id`,`s1`.`key1` AS
`key1`,`s1`.`key2` AS `key2`,`s1`.`key3` AS
`key3`,`s1`.`key_part1` AS
`key_part1`,`s1`.`key_part2` AS
`key_part2`,`s1`.`key_part3` AS
`key_part3`,`s1`.`common_field` AS `common_field`
from `s1` where ((`s1`.`key1` > 'z') and
(`s1`.`key2` < 1000000) and (`s1`.`key3` in
('a','b','c')) and (`s1`.`common_field` =
'abc'))"
 }
] /* steps */
 } /* join_preparation */
 },
 {
 "join_optimization": { # optimize阶段
 "select#": 1,
 "steps": [
 {
 "condition_processing": { # 处理搜索
条件
 "condition": "WHERE",
 # 原始搜索条件
 "original_condition": "
((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000)
and (`s1`.`key3` in ('a','b','c')) and
(`s1`.`common_field` = 'abc'))",
 "steps": [
 {
 # 等值传递转换

 "transformation":
"equality_propagation",
 "resulting_condition": "
((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000)
and (`s1`.`key3` in ('a','b','c')) and
(`s1`.`common_field` = 'abc'))"
 },
 {
 # 常量传递转换
 "transformation":
"constant_propagation",
 "resulting_condition": "
((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000)
and (`s1`.`key3` in ('a','b','c')) and
(`s1`.`common_field` = 'abc'))"
 },
 {
 # 去除没⽤的条件
 "transformation":
"trivial_condition_removal",
 "resulting_condition": "
((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000)
and (`s1`.`key3` in ('a','b','c')) and
(`s1`.`common_field` = 'abc'))"
 }
] /* steps */
 } /* condition_processing */
 },
 {
 # 替换虚拟⽣成列
 "substitute_generated_columns": {
 } /* substitute_generated_columns */
 },

 {
 # 表的依赖信息
 "table_dependencies": [
 {
 "table": "`s1`",
 "row_may_be_null": false,
 "map_bit": 0,
 "depends_on_map_bits": [
] /* depends_on_map_bits */
 }
] /* table_dependencies */
 },
 {
 "ref_optimizer_key_uses": [
] /* ref_optimizer_key_uses */
 },
 {

 # 预估不同单表访问⽅法的访问成本
 "rows_estimation": [
 {
 "table": "`s1`",
 "range_analysis": {
 "table_scan": { # 全表扫描的⾏数
以及成本
 "rows": 9688,
 "cost": 2036.7
 } /* table_scan */,

 # 分析可能使⽤的索引
 "potential_range_indexes": [
 {
 "index": "PRIMARY", # 主键

不可⽤
 "usable": false,
 "cause": "not_applicable"
 },
 {
 "index": "idx_key2", #
idx_key2可能被使⽤
 "usable": true,
 "key_parts": [
 "key2"
] /* key_parts */
 },
 {
 "index": "idx_key1", #
idx_key1可能被使⽤
 "usable": true,
 "key_parts": [
 "key1",
 "id"
] /* key_parts */
 },
 {
 "index": "idx_key3", #
idx_key3可能被使⽤
 "usable": true,
 "key_parts": [
 "key3",
 "id"
] /* key_parts */
 },
 {
 "index": "idx_key_part", #
idx_keypart不可⽤

 "usable": false,
 "cause": "not_applicable"
 }
] /* potential_range_indexes
*/,
 "setup_range_conditions": [
] /* setup_range_conditions */,
 "group_index_range": {
 "chosen": false,
 "cause":
"not_group_by_or_distinct"
 } /* group_index_range */,

 # 分析各种可能使⽤的索引的成本
 "analyzing_range_alternatives":
{
 "range_scan_alternatives": [
 {
 # 使⽤idx_key2的成本分析
 "index": "idx_key2",
 # 使⽤idx_key2的范围区间
 "ranges": [
 "NULL < key2 < 1000000"
] /* ranges */,

"index_dives_for_eq_ranges": true, # 是否使⽤
index dive
 "rowid_ordered": false,
使⽤该索引获取的记录是否按照主键排序
 "using_mrr": false, #
是否使⽤mrr
 "index_only": false, #
是否是索引覆盖访问

 "rows": 12, # 使⽤该索
引获取的记录条数
 "cost": 15.41, # 使⽤该索
引的成本
 "chosen": true # 是否选择
该索引
 },
 {
 # 使⽤idx_key1的成本分析
 "index": "idx_key1",
 # 使⽤idx_key1的范围区间
 "ranges": [
 "z < key1"
] /* ranges */,

"index_dives_for_eq_ranges": true, # 同上
 "rowid_ordered": false,
同上
 "using_mrr": false, # 同
上
 "index_only": false, #
同上
 "rows": 266, # 同上
 "cost": 320.21, # 同上
 "chosen": false, # 同上
 "cause": "cost" # 因为成
本太⼤所以不选择该索引
 },
 {
 # 使⽤idx_key3的成本分析
 "index": "idx_key3",
 # 使⽤idx_key3的范围区间
 "ranges": [

 "a <= key3 <= a",
 "b <= key3 <= b",
 "c <= key3 <= c"
] /* ranges */,

"index_dives_for_eq_ranges": true, # 同上
 "rowid_ordered": false,
同上
 "using_mrr": false, # 同
上
 "index_only": false, #
同上
 "rows": 21, # 同上
 "cost": 28.21, # 同上
 "chosen": false, # 同上
 "cause": "cost" # 同上
 }
] /* range_scan_alternatives
*/,

 # 分析使⽤索引合并的成本

"analyzing_roworder_intersect": {
 "usable": false,
 "cause":
"too_few_roworder_scans"
 } /*
analyzing_roworder_intersect */
 } /*
analyzing_range_alternatives */,

 # 对于上述单表查询s1最优的访问⽅法
 "chosen_range_access_summary":

{
 "range_access_plan": {
 "type": "range_scan",
 "index": "idx_key2",
 "rows": 12,
 "ranges": [
 "NULL < key2 < 1000000"
] /* ranges */
 } /* range_access_plan */,
 "rows_for_plan": 12,
 "cost_for_plan": 15.41,
 "chosen": true
 } /*
chosen_range_access_summary */
 } /* range_analysis */
 }
] /* rows_estimation */
 },
 {

 # 分析各种可能的执⾏计划
 #（对多表查询这可能有很多种不同的⽅案，单表查
询的⽅案上边已经分析过了，直接选取idx_key2就好）
 "considered_execution_plans": [
 {
 "plan_prefix": [
] /* plan_prefix */,
 "table": "`s1`",
 "best_access_path": {
 "considered_access_paths": [
 {
 "rows_to_scan": 12,
 "access_type": "range",

 "range_details": {
 "used_index": "idx_key2"
 } /* range_details */,
 "resulting_rows": 12,
 "cost": 17.81,
 "chosen": true
 }
] /* considered_access_paths */
 } /* best_access_path */,
 "condition_filtering_pct": 100,
 "rows_for_plan": 12,
 "cost_for_plan": 17.81,
 "chosen": true
 }
] /* considered_execution_plans */
 },
 {
 # 尝试给查询添加⼀些其他的查询条件
 "attaching_conditions_to_tables": {
 "original_condition": "
((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000)
and (`s1`.`key3` in ('a','b','c')) and
(`s1`.`common_field` = 'abc'))",
 "attached_conditions_computation":
[
] /*
attached_conditions_computation */,
 "attached_conditions_summary": [
 {
 "table": "`s1`",
 "attached": "((`s1`.`key1` >
'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3`
in ('a','b','c')) and (`s1`.`common_field` =

'abc'))"
 }
] /* attached_conditions_summary */
 } /* attaching_conditions_to_tables
*/
 },
 {
 # 再稍稍的改进⼀下执⾏计划
 "refine_plan": [
 {
 "table": "`s1`",
 "pushed_index_condition": "
(`s1`.`key2` < 1000000)",
 "table_condition_attached": "
((`s1`.`key1` > 'z') and (`s1`.`key3` in
('a','b','c')) and (`s1`.`common_field` =
'abc'))"
 }
] /* refine_plan */
 }
] /* steps */
 } /* join_optimization */
 },
 {
 "join_execution": { # execute阶段
 "select#": 1,
 "steps": [
] /* steps */
 } /* join_execution */
 }
] /* steps */
}

因优化过程⽂本太多⽽丢弃的⽂本字节⼤⼩，值为0时表示并没有
丢弃
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0

权限字段
INSUFFICIENT_PRIVILEGES: 0

1 row in set (0.00 sec)

⼤家看到这个输出的第⼀感觉就是这⽂本也太多了点⼉吧，其实这只
是优化器执⾏过程中的⼀⼩部分，设计MySQL的⼤叔可能会在之后的
版本中添加更多的优化过程信息。不过杂乱之中其实还是蛮有规律
的，优化过程⼤致分为了三个阶段：

prepare阶段

optimize阶段

execute阶段

我们所说的基于成本的优化主要集中在optimize阶段，对于单表查
询来说，我们主要关注optimize阶段的"rows_estimation"这个
过程，这个过程深⼊分析了对单表查询的各种执⾏⽅案的成本；对于
多表连接查询来说，我们更多需要关
注"considered_execution_plans"这个过程，这个过程⾥会写
明各种不同的连接⽅式所对应的成本。反正优化器最终会选择成本最
低的那种⽅案来作为最终的执⾏计划，也就是我们使⽤EXPLAIN语
句所展现出的那种⽅案。

如果有⼩伙伴对使⽤EXPLAIN语句展示出的对某个查询的执⾏计划
很不理解，⼤家可以尝试使⽤optimizer trace功能来详细了解每
⼀种执⾏⽅案对应的成本，相信这个功能能让⼤家更深⼊的了解
MySQL查询优化器。

