
InnoDB 的 Buffer Pool
标签： MySQL 是怎样运⾏的

缓存的重要性

通过前边的唠叨我们知道，对于使⽤InnoDB作为存储引擎的表来
说，不管是⽤于存储⽤户数据的索引（包括聚簇索引和⼆级索引），
还是各种系统数据，都是以⻚的形式存放在表空间中的，⽽所谓的表
空间只不过是InnoDB对⽂件系统上⼀个或⼏个实际⽂件的抽象，也
就是说我们的数据说到底还是存储在磁盘上的。但是各位也都知道，
磁盘的速度慢的跟乌⻳⼀样，怎么能配得上“快如⻛，疾如电”的CPU
呢？所以InnoDB存储引擎在处理客户端的请求时，当需要访问某个
⻚的数据时，就会把完整的⻚的数据全部加载到内存中，也就是说即
使我们只需要访问⼀个⻚的⼀条记录，那也需要先把整个⻚的数据加
载到内存中。将整个⻚加载到内存中后就可以进⾏读写访问了，在进
⾏完读写访问之后并不着急把该⻚对应的内存空间释放掉，⽽是将其
缓存起来，这样将来有请求再次访问该⻚⾯时，就可以省去磁盘IO
的开销了。

InnoDB的Buffer Pool

啥是个Buffer Pool

设计InnoDB的⼤叔为了缓存磁盘中的⻚，在MySQL服务器启动的时
候就向操作系统申请了⼀⽚连续的内存，他们给这⽚内存起了个名，
叫做Buffer Pool（中⽂名是缓冲池）。那它有多⼤呢？这个其实
看我们机器的配置，如果你是⼟豪，你有512G内存，你分配个⼏百
G作为Buffer Pool也可以啊，当然你要是没那么有钱，设置⼩点

也⾏呀～ 默认情况下Buffer Pool只有128M⼤⼩。当然如果你嫌
弃这个128M太⼤或者太⼩，可以在启动服务器的时候配
置innodb_buffer_pool_size参数的值，它表示Buffer Pool
的⼤⼩，就像这样：

[server]
innodb_buffer_pool_size = 268435456

其中，268435456的单位是字节，也就是我指定Buffer Pool的⼤
⼩为256M。需要注意的是，Buffer Pool也不能太⼩，最⼩值
为5M(当⼩于该值时会⾃动设置成5M)。

Buffer Pool内部组成

Buffer Pool中默认的缓存⻚⼤⼩和在磁盘上默认的⻚⼤⼩是⼀样
的，都是16KB。为了更好的管理这些在Buffer Pool中的缓存⻚，
设计InnoDB的⼤叔为每⼀个缓存⻚都创建了⼀些所谓的控制信息，
这些控制信息包括该⻚所属的表空间编号、⻚号、缓存⻚在Buffer
Pool中的地址、链表节点信息、⼀些锁信息以及LSN信息（锁和LSN
我们之后会具体唠叨，现在可以先忽略），当然还有⼀些别的控制信
息，我们这就不全唠叨⼀遍了，挑重要的说嘛～

每个缓存⻚对应的控制信息占⽤的内存⼤⼩是相同的，我们就把每个
⻚对应的控制信息占⽤的⼀块内存称为⼀个控制块吧，控制块和缓存
⻚是⼀⼀对应的，它们都被存放到 Buffer Pool 中，其中控制块被存
放到 Buffer Pool 的前边，缓存⻚被存放到 Buffer Pool 后边，所以
整个Buffer Pool对应的内存空间看起来就是这样的：

咦？控制块和缓存⻚之间的那个碎⽚是个什么玩意⼉？你想想啊，每
⼀个控制块都对应⼀个缓存⻚，那在分配⾜够多的控制块和缓存⻚
后，可能剩余的那点⼉空间不够⼀对控制块和缓存⻚的⼤⼩，⾃然就
⽤不到喽，这个⽤不到的那点⼉内存空间就被称为碎⽚了。当然，如
果你把Buffer Pool的⼤⼩设置的刚刚好的话，也可能不会产⽣碎
⽚～

⼩贴⼠：

每个控制块⼤约占⽤缓存⻚⼤⼩的5%，在MySQL5.7.21这个版本
中，每个控制块占⽤的⼤⼩是808字节。⽽我们设置的
innodb_buffer_pool_size并不包含这部分控制块占⽤的内存空
间⼤⼩，也就是说InnoDB在为Buffer Pool向操作系统申请连续
的内存空间时，这⽚连续的内存空间⼀般会⽐
innodb_buffer_pool_size的值⼤5%左右。

free链表的管理

当我们最初启动MySQL服务器的时候，需要完成对Buffer Pool的
初始化过程，就是先向操作系统申请Buffer Pool的内存空间，然
后把它划分成若⼲对控制块和缓存⻚。但是此时并没有真实的磁盘⻚
被缓存到Buffer Pool中（因为还没有⽤到），之后随着程序的运
⾏，会不断的有磁盘上的⻚被缓存到Buffer Pool中。那么问题来
了，从磁盘上读取⼀个⻚到Buffer Pool中的时候该放到哪个缓存
⻚的位置呢？或者说怎么区分Buffer Pool中哪些缓存⻚是空闲

的，哪些已经被使⽤了呢？我们最好在某个地⽅记录⼀下Buffer
Pool中哪些缓存⻚是可⽤的，这个时候缓存⻚对应的控制块就派上
⼤⽤场了，我们可以把所有空闲的缓存⻚对应的控制块作为⼀个节点
放到⼀个链表中，这个链表也可以被称作free链表（或者说空闲链
表）。刚刚完成初始化的Buffer Pool中所有的缓存⻚都是空闲
的，所以每⼀个缓存⻚对应的控制块都会被加⼊到free链表中，假
设该Buffer Pool中可容纳的缓存⻚数量为n，那增加了free链表
的效果图就是这样的：

从图中可以看出，我们为了管理好这个free链表，特意为这个链表
定义了⼀个基节点，⾥边⼉包含着链表的头节点地址，尾节点地址，
以及当前链表中节点的数量等信息。这⾥需要注意的是，链表的基节
点占⽤的内存空间并不包含在为Buffer Pool申请的⼀⼤⽚连续内
存空间之内，⽽是单独申请的⼀块内存空间。

⼩贴⼠：

链表基节点占⽤的内存空间并不⼤，在MySQL5.7.21这个版本⾥，
每个基节点只占⽤40字节⼤⼩。后边我们即将介绍许多不同的链
表，它们的基节点和free链表的基节点的内存分配⽅式是⼀样⼀样
的，都是单独申请的⼀块40字节⼤⼩的内存空间，并不包含在为
Buffer Pool申请的⼀⼤⽚连续内存空间之内。

有了这个free链表之后事⼉就好办了，每当需要从磁盘中加载⼀个
⻚到Buffer Pool中时，就从free链表中取⼀个空闲的缓存⻚，并
且把该缓存⻚对应的控制块的信息填上（就是该⻚所在的表空间、⻚
号之类的信息），然后把该缓存⻚对应的free链表节点从链表中移
除，表示该缓存⻚已经被使⽤了～

缓存⻚的哈希处理

我们前边说过，当我们需要访问某个⻚中的数据时，就会把该⻚从磁
盘加载到Buffer Pool中，如果该⻚已经在Buffer Pool中的话
直接使⽤就可以了。那么问题也就来了，我们怎么知道该⻚在不
在Buffer Pool中呢？难不成需要依次遍历Buffer Pool中各个
缓存⻚么？⼀个Buffer Pool中的缓存⻚这么多都遍历完岂不是要
累死？

再回头想想，我们其实是根据表空间号 + ⻚号来定位⼀个⻚的，也
就相当于表空间号 + ⻚号是⼀个key，缓存⻚就是对应的value，
怎么通过⼀个key来快速找着⼀个value呢？哈哈，那肯定是哈希表
喽～

⼩贴⼠：

啥？你别告诉我你不知道哈希表是个啥？我们这个⽂章不是讲哈希
表的，如果你不会那就去找本数据结构的书看看吧～ 啥？外头的书
看不懂？别急，等我～

所以我们可以⽤表空间号 + ⻚号作为key，缓存⻚作为value创建
⼀个哈希表，在需要访问某个⻚的数据时，先从哈希表中根据表空间
号 + ⻚号看看有没有对应的缓存⻚，如果有，直接使⽤该缓存⻚就
好，如果没有，那就从free链表中选⼀个空闲的缓存⻚，然后把磁
盘中对应的⻚加载到该缓存⻚的位置。

flush链表的管理

如果我们修改了Buffer Pool中某个缓存⻚的数据，那它就和磁盘
上的⻚不⼀致了，这样的缓存⻚也被称为脏⻚（英⽂名：dirty
page）。当然，最简单的做法就是每发⽣⼀次修改就⽴即同步到磁
盘上对应的⻚上，但是频繁的往磁盘中写数据会严重的影响程序的性
能（毕竟磁盘慢的像乌⻳⼀样）。所以每次修改缓存⻚后，我们并不
着急⽴即把修改同步到磁盘上，⽽是在未来的某个时间点进⾏同步，
⾄于这个同步的时间点我们后边会作说明说明的，现在先不⽤管哈～

但是如果不⽴即同步到磁盘的话，那之后再同步的时候我们怎么知
道Buffer Pool中哪些⻚是脏⻚，哪些⻚从来没被修改过呢？总不
能把所有的缓存⻚都同步到磁盘上吧，假如Buffer Pool被设置的
很⼤，⽐⽅说300G，那⼀次性同步这么多数据岂不是要慢死！所
以，我们不得不再创建⼀个存储脏⻚的链表，凡是修改过的缓存⻚对
应的控制块都会作为⼀个节点加⼊到⼀个链表中，因为这个链表节点
对应的缓存⻚都是需要被刷新到磁盘上的，所以也叫flush链表。链
表的构造和free链表差不多，假设某个时间点Buffer Pool中的脏
⻚数量为n，那么对应的flush链表就⻓这样：

LRU链表的管理

缓存不够的窘境

Buffer Pool对应的内存⼤⼩毕竟是有限的，如果需要缓存的⻚占
⽤的内存⼤⼩超过了Buffer Pool⼤⼩，也就是free链表中已经没
有多余的空闲缓存⻚的时候岂不是很尴尬，发⽣了这样的事⼉该咋
办？当然是把某些旧的缓存⻚从Buffer Pool中移除，然后再把新
的⻚放进来喽～ 那么问题来了，移除哪些缓存⻚呢？

为了回答这个问题，我们还需要回到我们设⽴Buffer Pool的初
衷，我们就是想减少和磁盘的IO交互，最好每次在访问某个⻚的时
候它都已经被缓存到Buffer Pool中了。假设我们⼀共访问了n次
⻚，那么被访问的⻚已经在缓存中的次数除以n就是所谓的缓存命中
率，我们的期望就是让缓存命中率越⾼越好～ 从这个⻆度出发，回
想⼀下我们的微信聊天列表，排在前边的都是最近很频繁使⽤的，排
在后边的⾃然就是最近很少使⽤的，假如列表能容纳下的联系⼈有
限，你是会把最近很频繁使⽤的留下还是最近很少使⽤的留下呢？废
话，当然是留下最近很频繁使⽤的了～

简单的LRU链表

管理Buffer Pool的缓存⻚其实也是这个道理，当Buffer Pool
中不再有空闲的缓存⻚时，就需要淘汰掉部分最近很少使⽤的缓存
⻚。不过，我们怎么知道哪些缓存⻚最近频繁使⽤，哪些最近很少使
⽤呢？呵呵，神奇的链表再⼀次派上了⽤场，我们可以再创建⼀个链
表，由于这个链表是为了按照最近最少使⽤的原则去淘汰缓存⻚的，
所以这个链表可以被称为LRU链表（LRU的英⽂全称：Least
Recently Used）。当我们需要访问某个⻚时，可以这样处理LRU链
表：

如果该⻚不在Buffer Pool中，在把该⻚从磁盘加载
到Buffer Pool中的缓存⻚时，就把该缓存⻚对应的控制块
作为节点塞到链表的头部。

如果该⻚已经缓存在Buffer Pool中，则直接把该⻚对应的
控制块移动到LRU链表的头部。

也就是说：只要我们使⽤到某个缓存⻚，就把该缓存⻚调整到LRU链
表的头部，这样LRU链表尾部就是最近最少使⽤的缓存⻚喽～ 所以
当Buffer Pool中的空闲缓存⻚使⽤完时，到LRU链表的尾部找些
缓存⻚淘汰就OK啦，真简单，啧啧...

划分区域的LRU链表

⾼兴的太早了，上边的这个简单的LRU链表⽤了没多⻓时间就发现问
题了，因为存在这两种⽐较尴尬的情况：

情况⼀：InnoDB提供了⼀个看起来⽐较贴⼼的服务——预读
（英⽂名：read ahead）。所谓预读，就是InnoDB认为执
⾏当前的请求可能之后会读取某些⻚⾯，就预先把它们加载
到Buffer Pool中。根据触发⽅式的不同，预读⼜可以细分
为下边两种：

线性预读

设计InnoDB的⼤叔提供了⼀个系统变量
innodb_read_ahead_threshold，如果顺序访问了
某个区（extent）的⻚⾯超过这个系统变量的值，就会
触发⼀次异步读取下⼀个区中全部的⻚⾯到Buffer
Pool的请求，注意异步读取意味着从磁盘中加载这些被
预读的⻚⾯并不会影响到当前⼯作线程的正常执⾏。这
个innodb_read_ahead_threshold系统变量的值默
认是56，我们可以在服务器启动时通过启动参数或者服
务器运⾏过程中直接调整该系统变量的值，不过它是⼀个
全局变量，注意使⽤SET GLOBAL命令来修改哦。

⼩贴⼠：

InnoDB是怎么实现异步读取的呢？在Windows或者
Linux平台上，可能是直接调⽤操作系统内核提供的AIO
接⼝，在其它类Unix操作系统中，使⽤了⼀种模拟AIO
接⼝的⽅式来实现异步读取，其实就是让别的线程去读
取需要预读的⻚⾯。如果你读不懂上边这段话，那也就
没必要懂了，和我们主题其实没太多关系，你只需要知
道异步读取并不会影响到当前⼯作线程的正常执⾏就好
了。其实这个过程涉及到操作系统如何处理IO以及多线
程的问题，找本操作系统的书看看吧，什么？操作系统
的书写的都很难懂？没关系，等我～

随机预读

如果Buffer Pool中已经缓存了某个区的13个连续的⻚
⾯，不论这些⻚⾯是不是顺序读取的，都会触发⼀次异步
读取本区中所有其的⻚⾯到Buffer Pool的请求。设计
InnoDB的⼤叔同时提供了
innodb_random_read_ahead系统变量，它的默认值

为OFF，也就意味着InnoDB并不会默认开启随机预读的
功能，如果我们想开启该功能，可以通过修改启动参数或
者直接使⽤SET GLOBAL命令把该变量的值设置为ON。

预读本来是个好事⼉，如果预读到Buffer Pool中的⻚成功
的被使⽤到，那就可以极⼤的提⾼语句执⾏的效率。可是如果
⽤不到呢？这些预读的⻚都会放到LRU链表的头部，但是如果
此时Buffer Pool的容量不太⼤⽽且很多预读的⻚⾯都没有
⽤到的话，这就会导致处在LRU链表尾部的⼀些缓存⻚会很快
的被淘汰掉，也就是所谓的劣币驱逐良币，会⼤⼤降低缓存命
中率。

情况⼆：有的⼩伙伴可能会写⼀些需要扫描全表的查询语句
（⽐如没有建⽴合适的索引或者压根⼉没有WHERE⼦句的查
询）。

扫描全表意味着什么？意味着将访问到该表所在的所有⻚！假
设这个表中记录⾮常多的话，那该表会占⽤特别多的⻚，当需
要访问这些⻚时，会把它们统统都加载到Buffer Pool中，
这也就意味着吧唧⼀下，Buffer Pool中的所有⻚都被换了
⼀次⾎，其他查询语句在执⾏时⼜得执⾏⼀次从磁盘加载
到Buffer Pool的操作。⽽这种全表扫描的语句执⾏的频率
也不⾼，每次执⾏都要把Buffer Pool中的缓存⻚换⼀次
⾎，这严重的影响到其他查询对 Buffer Pool的使⽤，从⽽
⼤⼤降低了缓存命中率。

总结⼀下上边说的可能降低Buffer Pool的两种情况：

加载到Buffer Pool中的⻚不⼀定被⽤到。

如果⾮常多的使⽤频率偏低的⻚被同时加载到Buffer Pool
时，可能会把那些使⽤频率⾮常⾼的⻚从Buffer Pool中淘
汰掉。

因为有这两种情况的存在，所以设计InnoDB的⼤叔把这个LRU链表

按照⼀定⽐例分成两截，分别是：

⼀部分存储使⽤频率⾮常⾼的缓存⻚，所以这⼀部分链表也叫
做热数据，或者称young区域。

另⼀部分存储使⽤频率不是很⾼的缓存⻚，所以这⼀部分链表
也叫做冷数据，或者称old区域。

为了⽅便⼤家理解，我们把示意图做了简化，各位领会精神就好：

⼤家要特别注意⼀个事⼉：我们是按照某个⽐例将LRU链表分成两半
的，不是某些节点固定是young区域的，某些节点固定是old区域
的，随着程序的运⾏，某个节点所属的区域也可能发⽣变化。那这个
划分成两截的⽐例怎么确定呢？对于InnoDB存储引擎来说，我们可
以通过查看系统变量innodb_old_blocks_pct的值来确定old区
域在LRU链表中所占的⽐例，⽐⽅说这样：

mysql> SHOW VARIABLES LIKE
'innodb_old_blocks_pct';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| innodb_old_blocks_pct | 37 |
+-----------------------+-------+
1 row in set (0.01 sec)

从结果可以看出来，默认情况下，old区域在LRU链表中所占的⽐例
是37%，也就是说old区域⼤约占LRU链表的3/8。这个⽐例我们是
可以设置的，我们可以在启动时修改innodb_old_blocks_pct参
数来控制old区域在LRU链表中所占的⽐例，⽐⽅说这样修改配置⽂
件：

[server]
innodb_old_blocks_pct = 40

这样我们在启动服务器后，old区域占LRU链表的⽐例就是40%。当
然，如果在服务器运⾏期间，我们也可以修改这个系统变量的值，不
过需要注意的是，这个系统变量属于全局变量，⼀经修改，会对所有
客户端⽣效，所以我们只能这样修改：

SET GLOBAL innodb_old_blocks_pct = 40;

有了这个被划分成young和old区域的LRU链表之后，设计InnoDB
的⼤叔就可以针对我们上边提到的两种可能降低缓存命中率的情况进
⾏优化了：

针对预读的⻚⾯可能不进⾏后续访情况的优化

设计InnoDB的⼤叔规定，当磁盘上的某个⻚⾯在初次加载到
Buffer Pool中的某个缓存⻚时，该缓存⻚对应的控制块会被放
到old区域的头部。这样针对预读到Buffer Pool却不进⾏后

续访问的⻚⾯就会被逐渐从old区域逐出，⽽不会影响young
区域中被使⽤⽐较频繁的缓存⻚。

针对全表扫描时，短时间内访问⼤量使⽤频率⾮常低的⻚⾯情
况的优化

在进⾏全表扫描时，虽然⾸次被加载到Buffer Pool的⻚被
放到了old区域的头部，但是后续会被⻢上访问到，每次进⾏
访问的时候⼜会把该⻚放到young区域的头部，这样仍然会把
那些使⽤频率⽐较⾼的⻚⾯给顶下去。有同学会想：可不可以
在第⼀次访问该⻚⾯时不将其从old区域移动到young区域的
头部，后续访问时再将其移动到young区域的头部。回答是：
⾏不通！因为设计InnoDB的⼤叔规定每次去⻚⾯中读取⼀条
记录时，都算是访问⼀次⻚⾯，⽽⼀个⻚⾯中可能会包含很多
条记录，也就是说读取完某个⻚⾯的记录就相当于访问了这个
⻚⾯好多次。

咋办？全表扫描有⼀个特点，那就是它的执⾏频率⾮常低，谁
也不会没事⼉⽼在那写全表扫描的语句玩，⽽且在执⾏全表扫
描的过程中，即使某个⻚⾯中有很多条记录，也就是去多次访
问这个⻚⾯所花费的时间也是⾮常少的。所以我们只需要规
定，在对某个处在old区域的缓存⻚进⾏第⼀次访问时就在它
对应的控制块中记录下来这个访问时间，如果后续的访问时间
与第⼀次访问的时间在某个时间间隔内，那么该⻚⾯就不会被
从old区域移动到young区域的头部，否则将它移动到young区
域的头部。上述的这个间隔时间是由系统变量
innodb_old_blocks_time控制的，你看：

mysql> SHOW VARIABLES LIKE
'innodb_old_blocks_time';
+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| innodb_old_blocks_time | 1000 |
+------------------------+-------+
1 row in set (0.01 sec)

这个innodb_old_blocks_time的默认值是1000，它的单位是毫
秒，也就意味着对于从磁盘上被加载到LRU链表的old区域的某个⻚
来说，如果第⼀次和最后⼀次访问该⻚⾯的时间间隔⼩于1s（很明
显在⼀次全表扫描的过程中，多次访问⼀个⻚⾯中的时间不会超过
1s），那么该⻚是不会被加⼊到young区域的～ 当然，像
innodb_old_blocks_pct⼀样，我们也可以在服务器启动或运⾏
时设置innodb_old_blocks_time的值，这⾥就不赘述了，你⾃
⼰试试吧～ 这⾥需要注意的是，如果我们把
innodb_old_blocks_time的值设置为0，那么每次我们访问⼀个
⻚⾯时就会把该⻚⾯放到young区域的头部。

综上所述，正是因为将LRU链表划分为young和old区域这两个部
分，⼜添加了innodb_old_blocks_time这个系统变量，才使得
预读机制和全表扫描造成的缓存命中率降低的问题得到了遏制，因为
⽤不到的预读⻚⾯以及全表扫描的⻚⾯都只会被放到old区域，⽽不
影响young区域中的缓存⻚。

更进⼀步优化LRU链表

LRU链表这就说完了么？没有，早着呢～ 对于young区域的缓存⻚
来说，我们每次访问⼀个缓存⻚就要把它移动到LRU链表的头部，这
样开销是不是太⼤啦，毕竟在young区域的缓存⻚都是热点数据，也
就是可能被经常访问的，这样频繁的对LRU链表进⾏节点移动操作是
不是不太好啊？是的，为了解决这个问题其实我们还可以提出⼀些优

化策略，⽐如只有被访问的缓存⻚位于young区域的1/4的后边，才
会被移动到LRU链表头部，这样就可以降低调整LRU链表的频率，从
⽽提升性能（也就是说如果某个缓存⻚对应的节点在young区域的
1/4中，再次访问该缓存⻚时也不会将其移动到LRU链表头部）。

⼩贴⼠：

我们之前介绍随机预读的时候曾说，如果Buffer Pool中有某个区
的13个连续⻚⾯就会触发随机预读，这其实是不严谨的（不幸的是
MySQL⽂档就是这么说的[摊⼿]），其实还要求这13个⻚⾯是⾮常
热的⻚⾯，所谓的⾮常热，指的是这些⻚⾯在整个young区域的
头1/4处。

还有没有什么别的针对LRU链表的优化措施呢？当然有啊，你要是好
好学，写篇论⽂，写本书都不是问题，可是这毕竟是⼀个介绍MySQL
基础知识的⽂章，再说多了篇幅就受不了了，也影响⼤家的阅读体
验，所以适可⽽⽌，想了解更多的优化知识，⾃⼰去看源码或者更多
关于LRU链表的知识喽～ 但是不论怎么优化，千万别忘了我们的初
⼼：尽量⾼效的提⾼ Buffer Pool 的缓存命中率。

其他的⼀些链表

为了更好的管理Buffer Pool中的缓存⻚，除了我们上边提到的⼀
些措施，设计InnoDB的⼤叔们还引进了其他的⼀些链表，⽐如
unzip LRU链表⽤于管理解压⻚，zip clean链表⽤于管理没有被
解压的压缩⻚，zip free数组中每⼀个元素都代表⼀个链表，它们
组成所谓的伙伴系统来为压缩⻚提供内存空间等等，反正是为了更好
的管理这个Buffer Pool引⼊了各种链表或其他数据结构，具体的
使⽤⽅式就不啰嗦了，⼤家有兴趣深究的再去找些更深的书或者直接
看源代码吧，也可以直接来找我哈～

⼩贴⼠：

我们压根⼉没有深⼊唠叨过InnoDB中的压缩⻚，对上边的这些链表
也只是为了完整性顺便提⼀下，如果你看不懂千万不要抑郁，因为
我压根⼉就没打算向⼤家介绍它们。

刷新脏⻚到磁盘

后台有专⻔的线程每隔⼀段时间负责把脏⻚刷新到磁盘，这样可以不
影响⽤户线程处理正常的请求。主要有两种刷新路径：

从LRU链表的冷数据中刷新⼀部分⻚⾯到磁盘。

后台线程会定时从LRU链表尾部开始扫描⼀些⻚⾯，扫描的⻚
⾯数量可以通过系统变量innodb_lru_scan_depth来指
定，如果从⾥边⼉发现脏⻚，会把它们刷新到磁盘。这种刷新
⻚⾯的⽅式被称之为BUF_FLUSH_LRU。

从flush链表中刷新⼀部分⻚⾯到磁盘。

后台线程也会定时从flush链表中刷新⼀部分⻚⾯到磁盘，刷
新的速率取决于当时系统是不是很繁忙。这种刷新⻚⾯的⽅式
被称之为BUF_FLUSH_LIST。

有时候后台线程刷新脏⻚的进度⽐较慢，导致⽤户线程在准备加载⼀
个磁盘⻚到Buffer Pool时没有可⽤的缓存⻚，这时就会尝试看看
LRU链表尾部有没有可以直接释放掉的未修改⻚⾯，如果没有的话会
不得不将LRU链表尾部的⼀个脏⻚同步刷新到磁盘（和磁盘交互是很
慢的，这会降低处理⽤户请求的速度）。这种刷新单个⻚⾯到磁盘中
的刷新⽅式被称之为BUF_FLUSH_SINGLE_PAGE。

当然，有时候系统特别繁忙时，也可能出现⽤户线程批量的从flush
链表中刷新脏⻚的情况，很显然在处理⽤户请求过程中去刷新脏⻚是
⼀种严重降低处理速度的⾏为（毕竟磁盘的速度满的要死），这属于

⼀种迫不得已的情况，不过这得放在后边唠叨redo⽇志的
checkpoint时说了。

多个Buffer Pool实例

我们上边说过，Buffer Pool本质是InnoDB向操作系统申请的⼀
块连续的内存空间，在多线程环境下，访问Buffer Pool中的各种
链表都需要加锁处理啥的，在Buffer Pool特别⼤⽽且多线程并发
访问特别⾼的情况下，单⼀的Buffer Pool可能会影响请求的处理
速度。所以在Buffer Pool特别⼤的时候，我们可以把它们拆分成
若⼲个⼩的Buffer Pool，每个Buffer Pool都称为⼀个实例，
它们都是独⽴的，独⽴的去申请内存空间，独⽴的管理各种链表，独
⽴的吧啦吧啦，所以在多线程并发访问时并不会相互影响，从⽽提⾼
并发处理能⼒。我们可以在服务器启动的时候通过设
置innodb_buffer_pool_instances的值来修改Buffer Pool
实例的个数，⽐⽅说这样：

[server]
innodb_buffer_pool_instances = 2

这样就表明我们要创建2个Buffer Pool实例，示意图就是这样：

⼩贴⼠：

为了简便，我只把各个链表的基节点画出来了，⼤家应该⼼⾥清楚
这些链表的节点其实就是每个缓存⻚对应的控制块！

那每个Buffer Pool实例实际占多少内存空间呢？其实使⽤这个公
式算出来的：

innodb_buffer_pool_size/innodb_buffer_pool_instan
ces

也就是总共的⼤⼩除以实例的个数，结果就是每个Buffer Pool实
例占⽤的⼤⼩。

不过也不是说Buffer Pool实例创建的越多越好，分别管理各
个Buffer Pool也是需要性能开销的，设计InnoDB的⼤叔们规
定：当innodb_buffer_pool_size的值⼩于1G的时候设置多个实例
是⽆效的，InnoDB会默认把innodb_buffer_pool_instances 的值
修改为1。⽽我们⿎励在Buffer Pool⼤⼩或等于1G的时候设置多
个Buffer Pool实例。

innodb_buffer_pool_chunk_size

在MySQL 5.7.5之前，Buffer Pool的⼤⼩只能在服务器启动时
通过配置innodb_buffer_pool_size启动参数来调整⼤⼩，在服
务器运⾏过程中是不允许调整该值的。不过设计MySQL的⼤叔
在5.7.5以及之后的版本中⽀持了在服务器运⾏过程中调整Buffer
Pool⼤⼩的功能，但是有⼀个问题，就是每次当我们要重新调
整Buffer Pool⼤⼩时，都需要重新向操作系统申请⼀块连续的内
存空间，然后将旧的Buffer Pool中的内容复制到这⼀块新空间，
这是极其耗时的。所以设计MySQL的⼤叔们决定不再⼀次性为某
个Buffer Pool实例向操作系统申请⼀⼤⽚连续的内存空间，⽽是
以⼀个所谓的chunk为单位向操作系统申请空间。也就是说⼀

个Buffer Pool实例其实是由若⼲个chunk组成的，⼀个chunk就
代表⼀⽚连续的内存空间，⾥边⼉包含了若⼲缓存⻚与其对应的控制
块，画个图表示就是这样：

上图代表的Buffer Pool就是由2个实例组成的，每个实例中⼜包
含2个chunk。

正是因为发明了这个chunk的概念，我们在服务器运⾏期间调
整Buffer Pool的⼤⼩时就是以chunk为单位增加或者删除内存空
间，⽽不需要重新向操作系统申请⼀⽚⼤的内存，然后进⾏缓存⻚的
复制。这个所谓的chunk的⼤⼩是我们在启动操作MySQL服务器时通
过innodb_buffer_pool_chunk_size启动参数指定的，它的默
认值是134217728，也就是128M。不过需要注意的是，
innodb_buffer_pool_chunk_size的值只能在服务器启动时指定，
在服务器运⾏过程中是不可以修改的。

⼩贴⼠：

为什么不允许在服务器运⾏过程中修改
innodb_buffer_pool_chunk_size的值？还不是因为
innodb_buffer_pool_chunk_size的值代表InnoDB向操作系
统申请的⼀⽚连续的内存空间的⼤⼩，如果你在服务器运⾏过程中
修改了该值，就意味着要重新向操作系统申请连续的内存空间并且
将原先的缓存⻚和它们对应的控制块复制到这个新的内存空间中，
这是⼗分耗时的操作！

另外，这个innodb_buffer_pool_chunk_size的值并不包含缓
存⻚对应的控制块的内存空间⼤⼩，所以实际上InnoDB向操作系统
申请连续内存空间时，每个chunk的⼤⼩要⽐
innodb_buffer_pool_chunk_size的值⼤⼀些，约5%。

配置Buffer Pool时的注意事项

innodb_buffer_pool_size必须
是innodb_buffer_pool_chunk_size ×
innodb_buffer_pool_instances的倍数（这主要是想保
证每⼀个Buffer Pool实例中包含的chunk数量相同）。

假设我们指定的innodb_buffer_pool_chunk_size的值
是128M，innodb_buffer_pool_instances的值是16，那
么这两个值的乘积就是2G，也就是说
innodb_buffer_pool_size的值必须是2G或者2G的整数
倍。⽐⽅说我们在启动MySQL服务器是这样指定启动参数的：

mysqld --innodb-buffer-pool-size=8G --innodb-
buffer-pool-instances=16

默认的innodb_buffer_pool_chunk_size值是128M，指
定的innodb_buffer_pool_instances的值是16，所以
innodb_buffer_pool_size的值必须是2G或者2G的整数
倍，上边例⼦中指定的innodb_buffer_pool_size的值
是8G，符合规定，所以在服务器启动完成之后我们查看⼀下该
变量的值就是我们指定的8G（8589934592字节）：

mysql> show variables like
'innodb_buffer_pool_size';
+-------------------------+------------+
| Variable_name | Value |
+-------------------------+------------+
| innodb_buffer_pool_size | 8589934592 |
+-------------------------+------------+
1 row in set (0.00 sec)

如果我们指定的innodb_buffer_pool_size⼤于2G并且不
是2G的整数倍，那么服务器会⾃动的把
innodb_buffer_pool_size的值调整为2G的整数倍，⽐⽅
说我们在启动服务器时指定的innodb_buffer_pool_size
的值是9G：

mysqld --innodb-buffer-pool-size=9G --innodb-
buffer-pool-instances=16

那么服务器会⾃动把innodb_buffer_pool_size的值调整
为10G（10737418240字节），不信你看：

mysql> show variables like
'innodb_buffer_pool_size';
+-------------------------+-------------+
| Variable_name | Value |
+-------------------------+-------------+
| innodb_buffer_pool_size | 10737418240 |
+-------------------------+-------------+
1 row in set (0.01 sec)

如果在服务器启动时，innodb_buffer_pool_chunk_size
× innodb_buffer_pool_instances的值已经⼤于
innodb_buffer_pool_size的值，那
么innodb_buffer_pool_chunk_size的值会被服务器⾃动
设置
为innodb_buffer_pool_size/innodb_buffer_pool_instances
的值。

⽐⽅说我们在启动服务器时指定的
innodb_buffer_pool_size的值
为2G，innodb_buffer_pool_instances的值为
16，innodb_buffer_pool_chunk_size的值为256M：

mysqld --innodb-buffer-pool-size=2G --innodb-
buffer-pool-instances=16 --innodb-buffer-
pool-chunk-size=256M

由于256M × 16 = 4G，⽽4G > 2G，所以
innodb_buffer_pool_chunk_size值会被服务器改写
为innodb_buffer_pool_size/innodb_buffer_pool_instances
的值，也就是：2G/16 = 128M（134217728字节），不信
你看：

mysql> show variables like
'innodb_buffer_pool_size';
+-------------------------+------------+
| Variable_name | Value |
+-------------------------+------------+
| innodb_buffer_pool_size | 2147483648 |
+-------------------------+------------+
1 row in set (0.01 sec)

mysql> show variables like
'innodb_buffer_pool_chunk_size';
+-------------------------------+-----------+
| Variable_name | Value |
+-------------------------------+-----------+
| innodb_buffer_pool_chunk_size | 134217728 |
+-------------------------------+-----------+
1 row in set (0.00 sec)

Buffer Pool中存储的其它信息

Buffer Pool的缓存⻚除了⽤来缓存磁盘上的⻚⾯以外，还可以存
储锁信息、⾃适应哈希索引等信息，这些内容等我们之后遇到了再详
细讨论哈～

查看Buffer Pool的状态信息

设计MySQL的⼤叔贴⼼的给我们提供了SHOW ENGINE INNODB
STATUS语句来查看关于InnoDB存储引擎运⾏过程中的⼀些状态信
息，其中就包括Buffer Pool的⼀些信息，我们看⼀下（为了突出
重点，我们只把输出中关于Buffer Pool的部分提取了出来）：

mysql> SHOW ENGINE INNODB STATUS\G

(...省略前边的许多状态)

BUFFER POOL AND MEMORY

Total memory allocated 13218349056;
Dictionary memory allocated 4014231
Buffer pool size 786432
Free buffers 8174
Database pages 710576
Old database pages 262143
Modified db pages 124941
Pending reads 0
Pending writes: LRU 0, flush list 0, single page
0
Pages made young 6195930012, not young
78247510485
108.18 youngs/s, 226.15 non-youngs/s
Pages read 2748866728, created 29217873, written
4845680877
160.77 reads/s, 3.80 creates/s, 190.16 writes/s
Buffer pool hit rate 956 / 1000, young-making
rate 30 / 1000 not 605 / 1000
Pages read ahead 0.00/s, evicted without access
0.00/s, Random read ahead 0.00/s
LRU len: 710576, unzip_LRU len: 118
I/O sum[134264]:cur[144], unzip sum[16]:cur[0]

(...省略后边的许多状态)

mysql>

我们来详细看⼀下这⾥边的每个值都代表什么意思：

Total memory allocated：代表Buffer Pool向操作系
统申请的连续内存空间⼤⼩，包括全部控制块、缓存⻚、以及
碎⽚的⼤⼩。

Dictionary memory allocated：为数据字典信息分配的
内存空间⼤⼩，注意这个内存空间和Buffer Pool没啥关
系，不包括在Total memory allocated中。

Buffer pool size：代表该Buffer Pool可以容纳多少缓
存⻚，注意，单位是⻚！

Free buffers：代表当前Buffer Pool还有多少空闲缓存
⻚，也就是free链表中还有多少个节点。

Database pages：代表LRU链表中的⻚的数量，包含young
和old两个区域的节点数量。

Old database pages：代表LRU链表old区域的节点数量。

Modified db pages：代表脏⻚数量，也就是flush链表中
节点的数量。

Pending reads：正在等待从磁盘上加载到Buffer Pool中
的⻚⾯数量。

当准备从磁盘中加载某个⻚⾯时，会先为这个⻚⾯在Buffer
Pool中分配⼀个缓存⻚以及它对应的控制块，然后把这个控制
块添加到LRU的old区域的头部，但是这个时候真正的磁盘⻚
并没有被加载进来，Pending reads的值会跟着加1。

Pending writes LRU：即将从LRU链表中刷新到磁盘中的
⻚⾯数量。

Pending writes flush list：即将从flush链表中刷新
到磁盘中的⻚⾯数量。

Pending writes single page：即将以单个⻚⾯的形式
刷新到磁盘中的⻚⾯数量。

Pages made young：代表LRU链表中曾经从old区域移动
到young区域头部的节点数量。

这⾥需要注意，⼀个节点每次只有从old区域移动到young区
域头部时才会将Pages made young的值加1，也就是说如果
该节点本来就在young区域，由于它符合在young区域1/4后
边的要求，下⼀次访问这个⻚⾯时也会将它移动到young区域
头部，但这个过程并不会导致Pages made young的值加1。

Page made not young：在
将innodb_old_blocks_time设置的值⼤于0时，⾸次访问
或者后续访问某个处在old区域的节点时由于不符合时间间隔
的限制⽽不能将其移动到young区域头部时，Page made
not young的值会加1。

这⾥需要注意，对于处在young区域的节点，如果由于它
在young区域的1/4处⽽导致它没有被移动到young区域头
部，这样的访问并不会将Page made not young的值加1。

youngs/s：代表每秒从old区域被移动到young区域头部的
节点数量。

non-youngs/s：代表每秒由于不满⾜时间限制⽽不能从old
区域移动到young区域头部的节点数量。

Pages read、created、written：代表读取，创建，写⼊
了多少⻚。后边跟着读取、创建、写⼊的速率。

Buffer pool hit rate：表示在过去某段时间，平均访问
1000次⻚⾯，有多少次该⻚⾯已经被缓存到Buffer Pool
了。

young-making rate：表示在过去某段时间，平均访问
1000次⻚⾯，有多少次访问使⻚⾯移动到young区域的头部
了。

需要⼤家注意的⼀点是，这⾥统计的将⻚⾯移动到young区域
的头部次数不仅仅包含从old区域移动到young区域头部的次
数，还包括从young区域移动到young区域头部的次数（访问
某个young区域的节点，只要该节点在young区域的1/4处往
后，就会把它移动到young区域的头部）。

not (young-making rate)：表示在过去某段时间，平均
访问1000次⻚⾯，有多少次访问没有使⻚⾯移动到young区域
的头部。

需要⼤家注意的⼀点是，这⾥统计的没有将⻚⾯移动到young
区域的头部次数不仅仅包含因为设置了
innodb_old_blocks_time系统变量⽽导致访问了old区域
中的节点但没把它们移动到young区域的次数，还包含因为该
节点在young区域的前1/4处⽽没有被移动到young区域头部
的次数。

LRU len：代表LRU链表中节点的数量。

unzip_LRU：代表unzip_LRU链表中节点的数量（由于我们
没有具体唠叨过这个链表，现在可以忽略它的值）。

I/O sum：最近50s读取磁盘⻚的总数。

I/O cur：现在正在读取的磁盘⻚数量。

I/O unzip sum：最近50s解压的⻚⾯数量。

I/O unzip cur：正在解压的⻚⾯数量。

总结

1. 磁盘太慢，⽤内存作为缓存很有必要。

2. Buffer Pool本质上是InnoDB向操作系统申请的⼀段连续的
内存空间，可以通过innodb_buffer_pool_size来调整它
的⼤⼩。

3. Buffer Pool向操作系统申请的连续内存由控制块和缓存⻚
组成，每个控制块和缓存⻚都是⼀⼀对应的，在填充⾜够多的
控制块和缓存⻚的组合后，Buffer Pool剩余的空间可能产
⽣不够填充⼀组控制块和缓存⻚，这部分空间不能被使⽤，也
被称为碎⽚。

4. InnoDB使⽤了许多链表来管理Buffer Pool。

5. free链表中每⼀个节点都代表⼀个空闲的缓存⻚，在将磁盘中
的⻚加载到Buffer Pool时，会从free链表中寻找空闲的缓
存⻚。

6. 为了快速定位某个⻚是否被加载到Buffer Pool，使⽤表空
间号 + ⻚号作为key，缓存⻚作为value，建⽴哈希表。

7. 在Buffer Pool中被修改的⻚称为脏⻚，脏⻚并不是⽴即刷
新，⽽是被加⼊到flush链表中，待之后的某个时刻同步到磁
盘上。

8. LRU链表分为young和old两个区域，可以通过
innodb_old_blocks_pct来调节old区域所占的⽐例。⾸次
从磁盘上加载到Buffer Pool的⻚会被放到old区域的头部，

在innodb_old_blocks_time间隔时间内访问该⻚不会把它
移动到young区域头部。在Buffer Pool没有可⽤的空闲缓
存⻚时，会⾸先淘汰掉old区域的⼀些⻚。

9. 我们可以通过指定innodb_buffer_pool_instances来控
制Buffer Pool实例的个数，每个Buffer Pool实例中都有
各⾃独⽴的链表，互不⼲扰。

10. ⾃MySQL 5.7.5版本之后，可以在服务器运⾏过程中调
整Buffer Pool⼤⼩。每个Buffer Pool实例由若⼲
个chunk组成，每个chunk的⼤⼩可以在服务器启动时通过启
动参数调整。

11. 可以⽤下边的命令查看Buffer Pool的状态信息：

SHOW ENGINE INNODB STATUS\G

