
事务简介

标签： MySQL 是怎样运⾏的

事务的起源

对于⼤部分程序员来说，他们的任务就是把现实世界的业务场景映射
到数据库世界。⽐如银⾏为了存储⼈们的账户信息会建⽴⼀
个account表：

CREATE TABLE account (
 id INT NOT NULL AUTO_INCREMENT COMMENT '⾃增
id',
 name VARCHAR(100) COMMENT '客户名称',
 balance INT COMMENT '余额',
 PRIMARY KEY (id)
) Engine=InnoDB CHARSET=utf8;

狗哥和猫爷是⼀对好基友，他们都到银⾏开⼀个账户，他们在现实世
界中拥有的资产就会体现在数据库世界的account表中。⽐如现在
狗哥有11元，猫爷只有2元，那么现实中的这个情况映射到数据库的
account表就是这样：

+----+--------+---------+
| id | name | balance |
+----+--------+---------+
| 1 | 狗哥 | 11 |
| 2 | 猫爷 | 2 |
+----+--------+---------+

在某个特定的时刻，狗哥猫爷这些家伙在银⾏所拥有的资产是⼀个特
定的值，这些特定的值也可以被描述为账户在这个特定的时刻现实世
界的⼀个状态。随着时间的流逝，狗哥和猫爷可能陆续进⾏向账户中
存钱、取钱或者向别⼈转账等操作，这样他们账户中的余额就可能发
⽣变动，每⼀个操作都相当于现实世界中账户的⼀次状态转换。数据
库世界作为现实世界的⼀个映射，⾃然也要进⾏相应的变动。不变不
知道，⼀变吓⼀跳，现实世界中⼀些看似很简单的状态转换，映射到
数据库世界却不是那么容易的。⽐⽅说有⼀次猫爷在赌场赌博输了
钱，急忙打电话给狗哥要借10块钱，不然那些看场⼦的就会把⾃⼰
剁了。现实世界中的狗哥⾛向了ATM机，输⼊了猫爷的账号以及10
元的转账⾦额，然后按下确认，狗哥就拔卡⾛⼈了。对于数据库世界
来说，相当于执⾏了下边这两条语句：

UPDATE account SET balance = balance - 10 WHERE
id = 1;
UPDATE account SET balance = balance + 10 WHERE
id = 2;

但是这⾥头有个问题，上述两条语句只执⾏了⼀条时忽然服务器断电
了咋办？把狗哥的钱扣了，但是没给猫爷转过去，那猫爷还是逃脱不
了被砍死的噩运～ 即使对于单独的⼀条语句，我们前边唠叨Buffer
Pool时也说过，在对某个⻚⾯进⾏读写访问时，都会先把这个⻚⾯
加载到Buffer Pool中，之后如果修改了某个⻚⾯，也不会⽴即把
修改同步到磁盘，⽽只是把这个修改了的⻚⾯加到Buffer Pool的
flush链表中，在之后的某个时间点才会刷新到磁盘。如果在将修改
过的⻚刷新到磁盘之前系统崩溃了那岂不是猫爷还是要被砍死？或者
在刷新磁盘的过程中（只刷新部分数据到磁盘上）系统奔溃了猫爷也
会被砍死？

怎么才能保证让可怜的猫爷不被砍死呢？其实再仔细想想，我们只是
想让某些数据库操作符合现实世界中状态转换的规则⽽已，设计数据
库的⼤叔们仔细盘算了盘算，现实世界中状态转换的规则有好⼏条，
待我们慢慢道来。

原⼦性（Atomicity）

现实世界中转账操作是⼀个不可分割的操作，也就是说要么压根⼉就
没转，要么转账成功，不能存在中间的状态，也就是转了⼀半的这种
情况。设计数据库的⼤叔们把这种要么全做，要么全不做的规则称之
为原⼦性。但是在现实世界中的⼀个不可分割的操作却可能对应着数
据库世界若⼲条不同的操作，数据库中的⼀条操作也可能被分解成若
⼲个步骤（⽐如先修改缓存⻚，之后再刷新到磁盘等），最要命的是
在任何⼀个可能的时间都可能发⽣意想不到的错误（可能是数据库本
身的错误，或者是操作系统错误，甚⾄是直接断电之类的）⽽使操作
执⾏不下去，所以猫爷可能会被砍死。为了保证在数据库世界中某些
操作的原⼦性，设计数据库的⼤叔需要费⼀些⼼机来保证如果在执⾏
操作的过程中发⽣了错误，把已经做了的操作恢复成没执⾏之前的样
⼦，这也是我们后边章节要仔细唠叨的内容。

隔离性（Isolation）

现实世界中的两次状态转换应该是互不影响的，⽐如说狗哥向猫爷同
时进⾏的两次⾦额为5元的转账（假设可以在两个ATM机上同时操
作）。那么最后狗哥的账户⾥肯定会少10元，猫爷的账户⾥肯定多
了10元。但是到对应的数据库世界中，事情⼜变的复杂了⼀些。为
了简化问题，我们粗略的假设狗哥向猫爷转账5元的过程是由下边⼏
个步骤组成的：

步骤⼀：读取狗哥账户的余额到变量A中，这⼀步骤简写
为read(A)。

步骤⼆：将狗哥账户的余额减去转账⾦额，这⼀步骤简写为A
= A - 5。

步骤三：将狗哥账户修改过的余额写到磁盘⾥，这⼀步骤简写
为write(A)。

步骤四：读取猫爷账户的余额到变量B，这⼀步骤简写
为read(B)。

步骤五：将猫爷账户的余额加上转账⾦额，这⼀步骤简写为B
= B + 5。

步骤六：将猫爷账户修改过的余额写到磁盘⾥，这⼀步骤简写
为write(B)。

我们将狗哥向猫爷同时进⾏的两次转账操作分别称为T1和T2，在现
实世界中T1和T2是应该没有关系的，可以先执⾏完T1，再执⾏T2，
或者先执⾏完T2，再执⾏T1，对应的数据库操作就像这样：

但是很不幸，真实的数据库中T1和T2的操作可能交替执⾏，⽐如这
样：

如果按照上图中的执⾏顺序来进⾏两次转账的话，最终狗哥的账户⾥
还剩6元钱，相当于只扣了5元钱，但是猫爷的账户⾥却成了12元
钱，相当于多了10元钱，这银⾏岂不是要亏死了？

所以对于现实世界中状态转换对应的某些数据库操作来说，不仅要保
证这些操作以原⼦性的⽅式执⾏完成，⽽且要保证其它的状态转换不
会影响到本次状态转换，这个规则被称之为隔离性。这时设计数据库
的⼤叔们就需要采取⼀些措施来让访问相同数据（上例中的A账户和
B账户）的不同状态转换（上例中的T1和T2）对应的数据库操作的执
⾏顺序有⼀定规律，这也是我们后边章节要仔细唠叨的内容。

⼀致性（Consistency）

我们⽣活的这个世界存在着形形⾊⾊的约束，⽐如身份证号不能重
复，性别只能是男或者⼥，⾼考的分数只能在0～750之间，⼈⺠币
⾯值最⼤只能是100（现在是2019年），红绿灯只有3种颜⾊，房价
不能为负的，学⽣要听⽼师话，吧啦吧啦有点⼉扯远了～ 只有符合
这些约束的数据才是有效的，⽐如有个⼩孩⼉跟你说他⾼考考了

1000分，你⼀听就知道他胡扯呢。数据库世界只是现实世界的⼀个
映射，现实世界中存在的约束当然也要在数据库世界中有所体现。如
果数据库中的数据全部符合现实世界中的约束（all defined
rules），我们说这些数据就是⼀致的，或者说符合⼀致性的。

如何保证数据库中数据的⼀致性（就是符合所有现实世界的约束）
呢？这其实靠两⽅⾯的努⼒：

数据库本身能为我们保证⼀部分⼀致性需求（就是数据库⾃身
可以保证⼀部分现实世界的约束永远有效）。

我们知道MySQL数据库可以为表建⽴主键、唯⼀索引、外键、
声明某个列为NOT NULL来拒绝NULL值的插⼊。⽐如说当我们
对某个列建⽴唯⼀索引时，如果插⼊某条记录时该列的值重复
了，那么MySQL就会报错并且拒绝插⼊。除了这些我们已经⾮
常熟悉的保证⼀致性的功能，MySQL还⽀持CHECK语法来⾃定
义约束，⽐如这样：

CREATE TABLE account (
 id INT NOT NULL AUTO_INCREMENT COMMENT '⾃
增id',
 name VARCHAR(100) COMMENT '客户名称',
 balance INT COMMENT '余额',
 PRIMARY KEY (id),
 CHECK (balance >= 0)
);

上述例⼦中的CHECK语句本意是想规定balance列不能存储⼩
于0的数字，对应的现实世界的意思就是银⾏账户余额不能⼩
于0。但是很遗憾，MySQL仅仅⽀持CHECK语法，但实际上并
没有⼀点卵⽤，也就是说即使我们使⽤上述带有CHECK⼦句的
建表语句来创建account表，那么在后续插⼊或更新记录
时，MySQL并不会去检查CHECK⼦句中的约束是否成⽴。

⼩贴⼠：

其它的⼀些数据库，⽐如SQL Server或者Oracle⽀持的
CHECK语法是有实实在在的作⽤的，每次进⾏插⼊或更新记录
之前都会检查⼀下数据是否符合CHECK⼦句中指定的约束条件
是否成⽴，如果不成⽴的话就会拒绝插⼊或更新。

虽然CHECK⼦句对⼀致性检查没什么卵⽤，但是我们还是可以
通过定义触发器的⽅式来⾃定义⼀些约束条件以保证数据库中
数据的⼀致性。

⼩贴⼠：

触发器是MySQL基础内容中的知识，本书是⼀本MySQL进阶的
书籍，如果你不了解触发器，那恐怕要找本基础内容的书籍来
看看了。

更多的⼀致性需求需要靠写业务代码的程序员⾃⼰保证。

为建⽴现实世界和数据库世界的对应关系，理论上应该把现实
世界中的所有约束都反应到数据库世界中，但是很不幸，在更
改数据库数据时进⾏⼀致性检查是⼀个耗费性能的⼯作，⽐⽅
说我们为account表建⽴了⼀个触发器，每当插⼊或者更新记
录时都会校验⼀下balance列的值是不是⼤于0，这就会影响
到插⼊或更新的速度。仅仅是校验⼀⾏记录符不符合⼀致性需
求倒也不是什么⼤问题，有的⼀致性需求简直变态，⽐⽅说银
⾏会建⽴⼀张代表账单的表，⾥边⼉记录了每个账户的每笔交
易，每⼀笔交易完成后，都需要保证整个系统的余额等于所有
账户的收⼊减去所有账户的⽀出。如果在数据库层⾯实现这个
⼀致性需求的话，每次发⽣交易时，都需要将所有的收⼊加起
来减去所有的⽀出，再将所有的账户余额加起来，看看两个值
相不相等。这不是搞笑呢么，如果账单表⾥有⼏亿条记录，光

是这个校验的过程可能就要跑好⼏个⼩时，也就是说你在煎饼
摊买个煎饼，使⽤银⾏卡付款之后要等好⼏个⼩时才能提示付
款成功，这样的性能代价是完全承受不起的。

现实⽣活中复杂的⼀致性需求⽐⽐皆是，⽽由于性能问题把⼀
致性需求交给数据库去解决这是不现实的，所以这个锅就甩给
了业务端程序员。⽐⽅说我们的account表，我们也可以不建
⽴触发器，只要编写业务的程序员在⾃⼰的业务代码⾥判断⼀
下，当某个操作会将balance列的值更新为⼩于0的值时，就
不执⾏该操作就好了嘛！

我们前边唠叨的原⼦性和隔离性都会对⼀致性产⽣影响，⽐如我们现
实世界中转账操作完成后，有⼀个⼀致性需求就是参与转账的账户的
总的余额是不变的。如果数据库不遵循原⼦性要求，也就是转了⼀半
就不转了，也就是说给狗哥扣了钱⽽没给猫爷转过去，那最后就是不
符合⼀致性需求的；类似的，如果数据库不遵循隔离性要求，就像我
们前边唠叨隔离性时举的例⼦中所说的，最终狗哥账户中扣的钱和猫
爷账户中涨的钱可能就不⼀样了，也就是说不符合⼀致性需求了。所
以说，数据库某些操作的原⼦性和隔离性都是保证⼀致性的⼀种⼿
段，在操作执⾏完成后保证符合所有既定的约束则是⼀种结果。那满
⾜原⼦性和隔离性的操作⼀定就满⾜⼀致性么？那倒也不⼀定，⽐如
说狗哥要转账20元给猫爷，虽然在满⾜原⼦性和隔离性，但转账完
成了之后狗哥的账户的余额就成负的了，这显然是不满⾜⼀致性的。
那不满⾜原⼦性和隔离性的操作就⼀定不满⾜⼀致性么？这也不⼀
定，只要最后的结果符合所有现实世界中的约束，那么就是符合⼀致
性的。

持久性（Durability）

当现实世界的⼀个状态转换完成后，这个转换的结果将永久的保留，
这个规则被设计数据库的⼤叔们称为持久性。⽐⽅说狗哥向猫爷转
账，当ATM机提示转账成功了，就意味着这次账户的状态转换完成

了，狗哥就可以拔卡⾛⼈了。如果当狗哥⾛掉之后，银⾏⼜把这次转
账操作给撤销掉，恢复到没转账之前的样⼦，那猫爷不就惨了，⼜得
被砍死了，所以这个持久性是⾮常重要的。

当把现实世界的状态转换映射到数据库世界时，持久性意味着该转换
对应的数据库操作所修改的数据都应该在磁盘上保留下来，不论之后
发⽣了什么事故，本次转换造成的影响都不应该被丢失掉（要不然猫
爷还是会被砍死）。

事务的概念

为了⽅便⼤家记住我们上边唠叨的现实世界状态转换过程中需要遵守
的4个特性，我们把原⼦性（Atomicity）、隔离性
（Isolation）、⼀致性（Consistency）和持久性
（Durability）这四个词对应的英⽂单词⾸字⺟提取出来就
是A、I、C、D，稍微变换⼀下顺序可以组成⼀个完整的英⽂单
词：ACID。想必⼤家都是学过初⾼中英语的，ACID是英⽂酸的意
思，以后我们提到ACID这个词⼉，⼤家就应该想到原⼦性、⼀致
性、隔离性、持久性这⼏个规则。另外，设计数据库的⼤叔为了⽅便
起⻅，把需要保证原⼦性、隔离性、⼀致性和持久性的⼀个或多个数
据库操作称之为⼀个事务（英⽂名是：transaction）。

我们现在知道事务是⼀个抽象的概念，它其实对应着⼀个或多个数据
库操作，设计数据库的⼤叔根据这些操作所执⾏的不同阶段把事务⼤
致上划分成了这么⼏个状态：

活动的（active）

事务对应的数据库操作正在执⾏过程中时，我们就说该事务处
在活动的状态。

部分提交的（partially committed）

当事务中的最后⼀个操作执⾏完成，但由于操作都在内存中执
⾏，所造成的影响并没有刷新到磁盘时，我们就说该事务处在
部分提交的状态。

失败的（failed）

当事务处在活动的或者部分提交的状态时，可能遇到了某些错
误（数据库⾃身的错误、操作系统错误或者直接断电等）⽽⽆
法继续执⾏，或者⼈为的停⽌当前事务的执⾏，我们就说该事
务处在失败的状态。

中⽌的（aborted）

如果事务执⾏了半截⽽变为失败的状态，⽐如我们前边唠叨的
狗哥向猫爷转账的事务，当狗哥账户的钱被扣除，但是猫爷账
户的钱没有增加时遇到了错误，从⽽当前事务处在了失败的状
态，那么就需要把已经修改的狗哥账户余额调整为未转账之前
的⾦额，换句话说，就是要撤销失败事务对当前数据库造成的
影响。书⾯⼀点的话，我们把这个撤销的过程称之为回滚。当
回滚操作执⾏完毕时，也就是数据库恢复到了执⾏事务之前的
状态，我们就说该事务处在了中⽌的状态。

提交的（committed）

当⼀个处在部分提交的状态的事务将修改过的数据都同步到磁
盘上之后，我们就可以说该事务处在了提交的状态。

随着事务对应的数据库操作执⾏到不同阶段，事务的状态也在不断变
化，⼀个基本的状态转换图如下所示：

从图中⼤家也可以看出了，只有当事务处于提交的或者中⽌的状态
时，⼀个事务的⽣命周期才算是结束了。对于已经提交的事务来说，
该事务对数据库所做的修改将永久⽣效，对于处于中⽌状态的事务，
该事务对数据库所做的所有修改都会被回滚到没执⾏该事务之前的状
态。

⼩贴⼠：

此贴⼠处纯属扯犊⼦，与正⽂没啥关系，纯属吐槽。⼤家知道我们
的计算机术语基本上全是从英⽂翻译成中⽂的，事务的英⽂
是transaction，英⽂直译就是交易，买卖的意思，交易就是买的
⼈付钱，卖的⼈交货，不能付了钱不交货，交了货不付钱把，所以
交易本身就是⼀种不可分割的操作。不知道是哪位⼤神把
transaction翻译成了事务（我想估计是他们也想不出什么更好的
词⼉，只能随便找⼀个了），事务这个词⼉完全没有交易、买卖的
意思，所以⼤家理解起来也会⽐较困难，外国⼈理解transaction
可能更好理解⼀点吧～

MySQL中事务的语法

我们说事务的本质其实只是⼀系列数据库操作，只不过这些数据库操
作符合ACID特性⽽已，那么MySQL中如何将某些操作放到⼀个事务
⾥去执⾏的呢？我们下边就来重点唠叨唠叨。

开启事务

我们可以使⽤下边两种语句之⼀来开启⼀个事务：

BEGIN [WORK];

BEGIN语句代表开启⼀个事务，后边的单词WORK可有可⽆。开
启事务后，就可以继续写若⼲条语句，这些语句都属于刚刚开
启的这个事务。

mysql> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql> 加⼊事务的语句...

START TRANSACTION;

START TRANSACTION语句和BEGIN语句有着相同的功效，都
标志着开启⼀个事务，⽐如这样：

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> 加⼊事务的语句...

不过⽐BEGIN语句⽜逼⼀点⼉的是，可以在START
TRANSACTION语句后边跟随⼏个修饰符，就是它们⼏个：

READ ONLY：标识当前事务是⼀个只读事务，也就是属
于该事务的数据库操作只能读取数据，⽽不能修改数据。

READ WRITE：标识当前事务是⼀个读写事务，也就是属
于该事务的数据库操作既可以读取数据，也可以修改数
据。

WITH CONSISTENT SNAPSHOT：启动⼀致性读（先不
⽤关⼼啥是个⼀致性读，后边的章节才会唠叨）。

⽐如我们想开启⼀个只读事务的话，直接把READ ONLY这个修
饰符加在START TRANSACTION语句后边就好，⽐如这样：

START TRANSACTION READ ONLY;

如果我们想在START TRANSACTION后边跟随多个修饰符的
话，可以使⽤逗号将修饰符分开，⽐如开启⼀个只读事务和⼀
致性读，就可以这样写：

START TRANSACTION READ ONLY, WITH CONSISTENT
SNAPSHOT;

或者开启⼀个读写事务和⼀致性读，就可以这样写：

START TRANSACTION READ WRITE, WITH CONSISTENT
SNAPSHOT

不过这⾥需要⼤家注意的⼀点是，READ ONLY和READ WRITE
是⽤来设置所谓的事务访问模式的，就是以只读还是读写的⽅
式来访问数据库中的数据，⼀个事务的访问模式不能同时既设
置为只读的也设置为读写的，所以我们不能同时把READ ONLY
和READ WRITE放到START TRANSACTION语句后边。另外，
如果我们不显式指定事务的访问模式，那么该事务的访问模式
就是读写模式。

提交事务

开启事务之后就可以继续写需要放到该事务中的语句了，当最后⼀条
语句写完了之后，我们就可以提交该事务了，提交的语句也很简单：

COMMIT [WORK]

COMMIT语句就代表提交⼀个事务，后边的WORK可有可⽆。⽐如我们
上边说狗哥给猫爷转10元钱其实对应MySQL中的两条语句，我们就
可以把这两条语句放到⼀个事务中，完整的过程就是这样：

mysql> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql> UPDATE account SET balance = balance - 10
WHERE id = 1;
Query OK, 1 row affected (0.02 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> UPDATE account SET balance = balance + 10
WHERE id = 2;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)

⼿动中⽌事务

如果我们写了⼏条语句之后发现上边的某条语句写错了，我们可以⼿
动的使⽤下边这个语句来将数据库恢复到事务执⾏之前的样⼦：

ROLLBACK [WORK]

ROLLBACK语句就代表中⽌并回滚⼀个事务，后边的WORK可有可⽆
类似的。⽐如我们在写狗哥给猫爷转账10元钱对应的MySQL语句
时，先给狗哥扣了10元，然后⼀时⼤意只给猫爷账户上增加了1元，
此时就可以使⽤ROLLBACK语句进⾏回滚，完整的过程就是这样：

mysql> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql> UPDATE account SET balance = balance - 10
WHERE id = 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> UPDATE account SET balance = balance + 1
WHERE id = 2;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)

这⾥需要强调⼀下，ROLLBACK语句是我们程序员⼿动的去回滚事务
时才去使⽤的，如果事务在执⾏过程中遇到了某些错误⽽⽆法继续执
⾏的话，事务⾃身会⾃动的回滚。

⼩贴⼠：

我们这⾥所说的开启、提交、中⽌事务的语法只是针对使⽤⿊框框
时通过mysql客户端程序与服务器进⾏交互时控制事务的语法，如
果⼤家使⽤的是别的客户端程序，⽐如JDBC之类的，那需要参考相
应的⽂档来看看如何控制事务。

⽀持事务的存储引擎

MySQL中并不是所有存储引擎都⽀持事务的功能，⽬前只有InnoDB
和NDB存储引擎⽀持（NDB存储引擎不是我们的重点），如果某个事
务中包含了修改使⽤不⽀持事务的存储引擎的表，那么对该使⽤不⽀
持事务的存储引擎的表所做的修改将⽆法进⾏回滚。⽐⽅说我们有两
个表，tbl1使⽤⽀持事务的存储引擎InnoDB，tbl2使⽤不⽀持事
务的存储引擎MyISAM，它们的建表语句如下所示：

CREATE TABLE tbl1 (
 i int
) engine=InnoDB;

CREATE TABLE tbl2 (
 i int
) ENGINE=MyISAM;

我们看看先开启⼀个事务，写⼀条插⼊语句后再回滚该事务，tbl1
和tbl2的表现有什么不同：

mysql> SELECT * FROM tbl1;
Empty set (0.00 sec)

mysql> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO tbl1 VALUES(1);
Query OK, 1 row affected (0.00 sec)

mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM tbl1;
Empty set (0.00 sec)

可以看到，对于使⽤⽀持事务的存储引擎的tbl1表来说，我们在插

⼊⼀条记录再回滚后，tbl1就恢复到没有插⼊记录时的状态了。再
看看tbl2表的表现：

mysql> SELECT * FROM tbl2;
Empty set (0.00 sec)

mysql> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO tbl2 VALUES(1);
Query OK, 1 row affected (0.00 sec)

mysql> ROLLBACK;
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> SELECT * FROM tbl2;
+------+
| i |
+------+
| 1 |
+------+
1 row in set (0.00 sec)

可以看到，虽然我们使⽤了ROLLBACK语句来回滚事务，但是插⼊的
那条记录还是留在了tbl2表中。

⾃动提交

MySQL中有⼀个系统变量autocommit：

mysql> SHOW VARIABLES LIKE 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.01 sec)

可以看到它的默认值为ON，也就是说默认情况下，如果我们不显式
的使⽤START TRANSACTION或者BEGIN语句开启⼀个事务，那么
每⼀条语句都算是⼀个独⽴的事务，这种特性称之为事务的⾃动提
交。假如我们在狗哥向猫爷转账10元时不以START TRANSACTION
或者BEGIN语句显式的开启⼀个事务，那么下边这两条语句就相当于
放到两个独⽴的事务中去执⾏：

UPDATE account SET balance = balance - 10 WHERE
id = 1;
UPDATE account SET balance = balance + 10 WHERE
id = 2;

当然，如果我们想关闭这种⾃动提交的功能，可以使⽤下边两种⽅法
之⼀：

显式的的使⽤START TRANSACTION或者BEGIN语句开启⼀个
事务。

这样在本次事务提交或者回滚前会暂时关闭掉⾃动提交的功
能。

把系统变量autocommit的值设置为OFF，就像这样：

SET autocommit = OFF;

这样的话，我们写⼊的多条语句就算是属于同⼀个事务了，直
到我们显式的写出COMMIT语句来把这个事务提交掉，或者显

式的写出ROLLBACK语句来把这个事务回滚掉。

隐式提交

当我们使⽤START TRANSACTION或者BEGIN语句开启了⼀个事
务，或者把系统变量autocommit的值设置为OFF时，事务就不会进
⾏⾃动提交，但是如果我们输⼊了某些语句之后就会悄悄的提交掉，
就像我们输⼊了COMMIT语句了⼀样，这种因为某些特殊的语句⽽导
致事务提交的情况称为隐式提交，这些会导致事务隐式提交的语句包
括：

定义或修改数据库对象的数据定义语⾔（Data definition
language，缩写为：DDL）。

所谓的数据库对象，指的就是数据库、表、视图、存储过程等
等这些东⻄。当我们使⽤CREATE、ALTER、DELETE等语句去
修改这些所谓的数据库对象时，就会隐式的提交前边语句所属
于的事务，就像这样：

BEGIN;

SELECT ... # 事务中的⼀条语句
UPDATE ... # 事务中的⼀条语句
... # 事务中的其它语句

CREATE TABLE ... # 此语句会隐式的提交前边语句所属于
的事务

隐式使⽤或修改mysql数据库中的表

当我们使⽤ALTER USER、CREATE USER、DROP
USER、GRANT、RENAME USER、REVOKE、SET PASSWORD
等语句时也会隐式的提交前边语句所属于的事务。

事务控制或关于锁定的语句

当我们在⼀个事务还没提交或者回滚时就⼜使⽤START
TRANSACTION或者BEGIN语句开启了另⼀个事务时，会隐式
的提交上⼀个事务，⽐如这样：

BEGIN;

SELECT ... # 事务中的⼀条语句
UPDATE ... # 事务中的⼀条语句
... # 事务中的其它语句

BEGIN; # 此语句会隐式的提交前边语句所属于的事务

或者当前的autocommit系统变量的值为OFF，我们⼿动把它
调为ON时，也会隐式的提交前边语句所属的事务。

或者使⽤LOCK TABLES、UNLOCK TABLES等关于锁定的语句
也会隐式的提交前边语句所属的事务。

加载数据的语句

⽐如我们使⽤LOAD DATA语句来批量往数据库中导⼊数据时，
也会隐式的提交前边语句所属的事务。

关于MySQL复制的⼀些语句

使⽤START SLAVE、STOP SLAVE、RESET
SLAVE、CHANGE MASTER TO等语句时也会隐式的提交前边
语句所属的事务。

其它的⼀些语句

使⽤ANALYZE TABLE、CACHE INDEX、CHECK
TABLE、FLUSH、 LOAD INDEX INTO CACHE、OPTIMIZE
TABLE、REPAIR TABLE、RESET等语句也会隐式的提交前边
语句所属的事务。

⼩贴⼠：

上边提到的⼀些语句，如果你都认识并且知道是⼲嘛⽤的那再好不
过了，不认识也不要⽓馁，这⾥写出来只是为了内容的完整性，把
可能会导致事务隐式提交的情况都列举⼀下，具体每个语句都是⼲
嘛⽤的等我们遇到了再说哈。

保存点

如果你开启了⼀个事务，并且已经敲了很多语句，忽然发现上⼀条语
句有点问题，你只好使⽤ROLLBACK语句来让数据库状态恢复到事务
执⾏之前的样⼦，然后⼀切从头再来，总有⼀种⼀夜回到解放前的感
觉。所以设计数据库的⼤叔们提出了⼀个保存点（英
⽂：savepoint）的概念，就是在事务对应的数据库语句中打⼏个
点，我们在调⽤ROLLBACK语句时可以指定会滚到哪个点，⽽不是回
到最初的原点。定义保存点的语法如下：

SAVEPOINT 保存点名称;

当我们想回滚到某个保存点时，可以使⽤下边这个语句（下边语句中
的单词WORK和SAVEPOINT是可有可⽆的）：

ROLLBACK [WORK] TO [SAVEPOINT] 保存点名称;

不过如果ROLLBACK语句后边不跟随保存点名称的话，会直接回滚到
事务执⾏之前的状态。

如果我们想删除某个保存点，可以使⽤这个语句：

RELEASE SAVEPOINT 保存点名称;

下边还是以狗哥向猫爷转账10元的例⼦展示⼀下保存点的⽤法，在
执⾏完扣除狗哥账户的钱10元的语句之后打⼀个保存点：

mysql> SELECT * FROM account;
+----+--------+---------+
| id | name | balance |
+----+--------+---------+
| 1 | 狗哥 | 11 |
| 2 | 猫爷 | 2 |
+----+--------+---------+
2 rows in set (0.00 sec)

mysql> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql> UPDATE account SET balance = balance - 10
WHERE id = 1;
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SAVEPOINT s1; # ⼀个保存点
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM account;
+----+--------+---------+
| id | name | balance |
+----+--------+---------+
| 1 | 狗哥 | 1 |
| 2 | 猫爷 | 2 |
+----+--------+---------+
2 rows in set (0.00 sec)

mysql> UPDATE account SET balance = balance + 1
WHERE id = 2; # 更新错了
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> ROLLBACK TO s1; # 回滚到保存点s1处
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM account;
+----+--------+---------+
| id | name | balance |
+----+--------+---------+
| 1 | 狗哥 | 1 |
| 2 | 猫爷 | 2 |
+----+--------+---------+
2 rows in set (0.00 sec)

