
redo ⽇志（下）
标签： MySQL 是怎样运⾏的

redo⽇志⽂件

redo⽇志刷盘时机

我们前边说mtr运⾏过程中产⽣的⼀组redo⽇志在mtr结束时会被复
制到log buffer中，可是这些⽇志总在内存⾥呆着也不是个办法，
在⼀些情况下它们会被刷新到磁盘⾥，⽐如：

log buffer空间不⾜时

log buffer的⼤⼩是有限的（通过系统变量
innodb_log_buffer_size指定），如果不停的往这个有限
⼤⼩的log buffer⾥塞⼊⽇志，很快它就会被填满。设计
InnoDB的⼤叔认为如果当前写⼊log buffer的redo⽇志量
已经占满了log buffer总容量的⼤约⼀半左右，就需要把这
些⽇志刷新到磁盘上。

事务提交时

我们前边说过之所以使⽤redo⽇志主要是因为它占⽤的空间
少，还是顺序写，在事务提交时可以不把修改过的Buffer
Pool⻚⾯刷新到磁盘，但是为了保证持久性，必须要把修改这
些⻚⾯对应的redo⽇志刷新到磁盘。

Force Log at Commit

后台线程不停的刷刷刷



后台有⼀个线程，⼤约每秒都会刷新⼀次log buffer中的
redo⽇志到磁盘。

正常关闭服务器时

做所谓的checkpoint时（我们现在没介绍过checkpoint的
概念，稍后会仔细唠叨，稍安勿躁）

其他的⼀些情况...

redo⽇志⽂件组

MySQL的数据⽬录（使⽤SHOW VARIABLES LIKE 'datadir'查
看）下默认有两个名为ib_logfile0和ib_logfile1的⽂件，log
buffer中的⽇志默认情况下就是刷新到这两个磁盘⽂件中。如果我
们对默认的redo⽇志⽂件不满意，可以通过下边⼏个启动参数来调
节：

innodb_log_group_home_dir

该参数指定了redo⽇志⽂件所在的⽬录，默认值就是当前的数
据⽬录。

innodb_log_file_size

该参数指定了每个redo⽇志⽂件的⼤⼩，在MySQL 5.7.21
这个版本中的默认值为48MB，

innodb_log_files_in_group

该参数指定redo⽇志⽂件的个数，默认值为2，最⼤值为
100。



从上边的描述中可以看到，磁盘上的redo⽇志⽂件不只⼀个，⽽是
以⼀个⽇志⽂件组的形式出现的。这些⽂件以ib_logfile[数字]
（数字可以是0、1、2...）的形式进⾏命名。在将redo⽇志写⼊⽇
志⽂件组时，是从ib_logfile0开始写，如果ib_logfile0写满
了，就接着ib_logfile1写，同理，ib_logfile1写满了就去写
ib_logfile2，依此类推。如果写到最后⼀个⽂件该咋办？那就重
新转到ib_logfile0继续写，所以整个过程如下图所示：

总共的redo⽇志⽂件⼤⼩其实就是：innodb_log_file_size ×
innodb_log_files_in_group。

⼩贴⼠：如果采⽤循环使⽤的⽅式向redo⽇志⽂件组⾥写数据的
话，那岂不是要追尾，也就是后写⼊的redo⽇志覆盖掉前边写的
redo⽇志？当然可能了！所以设计InnoDB的⼤叔提出了
checkpoint的概念，稍后我们重点唠叨～

redo⽇志⽂件格式

我们前边说过log buffer本质上是⼀⽚连续的内存空间，被划分成
了若⼲个512字节⼤⼩的block。将log buffer中的redo⽇志刷新到
磁盘的本质就是把block的镜像写⼊⽇志⽂件中，所以redo⽇志⽂件
其实也是由若⼲个512字节⼤⼩的block组成。

redo⽇志⽂件组中的每个⽂件⼤⼩都⼀样，格式也⼀样，都是由两
部分组成：



前2048个字节，也就是前4个block是⽤来存储⼀些管理信息
的。

从第2048字节往后是⽤来存储log buffer中的block镜像
的。

所以我们前边所说的循环使⽤redo⽇志⽂件，其实是从每个⽇志⽂
件的第2048个字节开始算，画个示意图就是这样：

普通block的格式我们在唠叨log buffer的时候都说过了，就
是log block header、log block body、log block
trialer这三个部分，就不重复介绍了。这⾥需要介绍⼀下每
个redo⽇志⽂件前2048个字节，也就是前4个特殊block的格式都
是⼲嘛的，废话少说，先看图：



从图中可以看出来，这4个block分别是：

log file header：描述该redo⽇志⽂件的⼀些整体属性，
看⼀下它的结构：

各个属性的具体释义如下：

属性名

⻓度
（单
位：
字
节）

描述

LOG_HEADER_FORMAT 4 redo⽇志的版本，在MySQL
5.7.21中该值永远为1

LOG_HEADER_PAD1 4 做字节填充⽤的，没什么实际
意义，忽略～



LOG_HEADER_START_LSN 8

标记本redo⽇志⽂件开始的
LSN值，也就是⽂件偏移量为
2048字节初对应的LSN值
（关于什么是LSN我们稍后再
看哈，看不懂的先忽略）。

LOG_HEADER_CREATOR 32

⼀个字符串，标记本redo⽇
志⽂件的创建者是谁。正常运
⾏时该值为MySQL的版本号，
⽐如："MySQL 5.7.21"，
使⽤mysqlbackup命令创建
的redo⽇志⽂件的该值
为"ibbackup"和创建时间。

LOG_BLOCK_CHECKSUM 4 本block的校验值，所有
block都有，我们不关⼼

⼩贴⼠：

设计InnoDB的⼤叔对redo⽇志的block格式做了很多次修
改，如果你阅读的其他书籍中发现上述的属性和你阅读书籍中
的属性有些出⼊，不要慌，正常现象，忘记以前的版本吧。另
外，LSN值我们后边才会介绍，现在千万别纠结LSN是个啥。

checkpoint1：记录关于checkpoint的⼀些属性，看⼀下
它的结构：



各个属性的具体释义如下：

属性名

⻓度
（单
位：
字
节）

描述

LOG_CHECKPOINT_NO 8

服务器
做checkpoint的
编号，每做⼀
次checkpoint，
该值就加1。

LOG_CHECKPOINT_LSN 8

服务器
做checkpoint结
束时对应的LSN



值，系统奔溃恢复
时将从该值开始。

LOG_CHECKPOINT_OFFSET 8
上个属性中的LSN
值在redo⽇志⽂件
组中的偏移量

LOG_CHECKPOINT_LOG_BUF_SIZE 8

服务器在
做checkpoint操
作时对应的log
buffer的⼤⼩

LOG_BLOCK_CHECKSUM 4
本block的校验值，
所有block都有，我
们不关⼼

⼩贴⼠：

现在看不懂上边这些关于checkpoint和LSN的属性的释义是
很正常的，我就是想让⼤家对上边这些属性混个脸熟，后边我
们后详细唠叨的。

第三个block未使⽤，忽略～

checkpoint2：结构和checkpoint1⼀样。

Log Sequeue Number

⾃系统开始运⾏，就不断的在修改⻚⾯，也就意味着会不断的⽣
成redo⽇志。redo⽇志的量在不断的递增，就像⼈的年龄⼀样，⾃
打出⽣起就不断递增，永远不可能缩减了。设计InnoDB的⼤叔为记
录已经写⼊的redo⽇志量，设计了⼀个称之为Log Sequeue
Number的全局变量，翻译过来就是：⽇志序列号，简称lsn。不过
不像⼈⼀出⽣的年龄是0岁，设计InnoDB的⼤叔规定初始的lsn值
为8704（也就是⼀条redo⽇志也没写⼊时，lsn的值为8704）。



我们知道在向log buffer中写⼊redo⽇志时不是⼀条⼀条写⼊
的，⽽是以⼀个mtr⽣成的⼀组redo⽇志为单位进⾏写⼊的。⽽且
实际上是把⽇志内容写在了log blcok body处。但是在统计lsn
的增⻓量时，是按照实际写⼊的⽇志量加上占⽤的log block
header和log block trailer来计算的。我们来看⼀个例⼦：

系统第⼀次启动后初始化log buffer时，buf_free（就是
标记下⼀条redo⽇志应该写⼊到log buffer的位置的变量）
就会指向第⼀个block的偏移量为12字节（log block
header的⼤⼩）的地⽅，那么lsn值也会跟着增加12：

如果某个mtr产⽣的⼀组redo⽇志占⽤的存储空间⽐较⼩，也
就是待插⼊的block剩余空闲空间能容纳这个mtr提交的⽇志
时，lsn增⻓的量就是该mtr⽣成的redo⽇志占⽤的字节数，
就像这样：

我们假设上图中mtr_1产⽣的redo⽇志量为200字节，那
么lsn就要在8716的基础上增加200，变为8916。



如果某个mtr产⽣的⼀组redo⽇志占⽤的存储空间⽐较⼤，也
就是待插⼊的block剩余空闲空间不⾜以容纳这个mtr提交的⽇
志时，lsn增⻓的量就是该mtr⽣成的redo⽇志占⽤的字节数
加上额外占⽤的log block header和log block
trailer的字节数，就像这样：

我们假设上图中mtr_2产⽣的redo⽇志量为1000字节，为了
将mtr_2产⽣的redo⽇志写⼊log buffer，我们不得不额外
多分配两个block，所以lsn的值需要在8916的基础上增
加1000 + 12×2 + 4 × 2 = 1032。

⼩贴⼠：

为什么初始的lsn值为8704呢？我也不太清楚，⼈家就这么规定
的。其实你也可以规定你⼀⽣下来算1岁，只要保证随着时间的流
逝，你的年龄不断增⻓就好了。

从上边的描述中可以看出来，每⼀组由mtr⽣成的redo⽇志都有⼀个
唯⼀的LSN值与其对应，LSN值越⼩，说明redo⽇志产⽣的越早。

flushed_to_disk_lsn



redo⽇志是⾸先写到log buffer中，之后才会被刷新到磁盘上的
redo⽇志⽂件。所以设计InnoDB的⼤叔提出了⼀个称之
为buf_next_to_write的全局变量，标记当前log buffer中已
经有哪些⽇志被刷新到磁盘中了。画个图表示就是这样：

我们前边说lsn是表示当前系统中写⼊的redo⽇志量，这包括了写
到log buffer⽽没有刷新到磁盘的⽇志，相应的，设计InnoDB的
⼤叔提出了⼀个表示刷新到磁盘中的redo⽇志量的全局变量，称之
为flushed_to_disk_lsn。系统第⼀次启动时，该变量的值和初
始的lsn值是相同的，都是8704。随着系统的运⾏，redo⽇志被不
断写⼊log buffer，但是并不会⽴即刷新到磁盘，lsn的值就和
flushed_to_disk_lsn的值拉开了差距。我们演示⼀下：

系统第⼀次启动后，向log buffer中写⼊了
mtr_1、mtr_2、mtr_3这三个mtr产⽣的redo⽇志，假设这
三个mtr开始和结束时对应的lsn值分别是：

mtr_1：8716 ～ 8916
mtr_2：8916 ～ 9948
mtr_3：9948 ～ 10000



此时的lsn已经增⻓到了10000，但是由于没有刷新操作，所
以此时flushed_to_disk_lsn的值仍为8704，如图：

随后进⾏将log buffer中的block刷新到redo⽇志⽂件的操
作，假设将mtr_1和mtr_2的⽇志刷新到磁盘，那
么flushed_to_disk_lsn就应该增⻓mtr_1和mtr_2写⼊的
⽇志量，所以flushed_to_disk_lsn的值增⻓到了9948，
如图：



综上所述，当有新的redo⽇志写⼊到log buffer时，⾸先lsn的
值会增⻓，但flushed_to_disk_lsn不变，随后随着不断有log
buffer中的⽇志被刷新到磁盘上，flushed_to_disk_lsn的值也
跟着增⻓。如果两者的值相同时，说明log buffer中的所有redo⽇志
都已经刷新到磁盘中了。

⼩贴⼠：

应⽤程序向磁盘写⼊⽂件时其实是先写到操作系统的缓冲区中去，
如果某个写⼊操作要等到操作系统确认已经写到磁盘时才返回，那
需要调⽤⼀下操作系统提供的fsync函数。其实只有当系统执⾏了
fsync函数后，flushed_to_disk_lsn的值才会跟着增⻓，当仅
仅把log buffer中的⽇志写⼊到操作系统缓冲区却没有显式的刷
新到磁盘时，另外的⼀个称之为write_lsn的值跟着增⻓。不过为
了⼤家理解上的⽅便，我们在讲述时把flushed_to_disk_lsn和
write_lsn的概念混淆了起来。

lsn值和redo⽇志⽂件偏移量的对应关系

因为lsn的值是代表系统写⼊的redo⽇志量的⼀个总和，⼀个mtr中
产⽣多少⽇志，lsn的值就增加多少（当然有时候要加上log
block header和log block trailer的⼤⼩），这样mtr产⽣
的⽇志写到磁盘中时，很容易计算某⼀个lsn值在redo⽇志⽂件组
中的偏移量，如图：



初始时的LSN值是8704，对应⽂件偏移量2048，之后每个mtr向磁
盘中写⼊多少字节⽇志，lsn的值就增⻓多少。

flush链表中的LSN

我们知道⼀个mtr代表⼀次对底层⻚⾯的原⼦访问，在访问过程中可
能会产⽣⼀组不可分割的redo⽇志，在mtr结束时，会把这⼀组
redo⽇志写⼊到log buffer中。除此之外，在mtr结束时还有⼀
件⾮常重要的事情要做，就是把在mtr执⾏过程中可能修改过的⻚⾯
加⼊到Buffer Pool的flush链表。为了防⽌⼤家早已忘记flush链表
是个啥，我们再看⼀下图：

当第⼀次修改某个缓存在Buffer Pool中的⻚⾯时，就会把这个⻚
⾯对应的控制块插⼊到flush链表的头部，之后再修改该⻚⾯时由于
它已经在flush链表中了，就不再次插⼊了。也就是说flush链表中
的脏⻚是按照⻚⾯的第⼀次修改时间从⼤到⼩进⾏排序的。在这个过
程中会在缓存⻚对应的控制块中记录两个关于⻚⾯何时修改的属性：



oldest_modification：如果某个⻚⾯被加载到Buffer
Pool后进⾏第⼀次修改，那么就将修改该⻚⾯的mtr开始时对
应的lsn值写⼊这个属性。

newest_modification：每修改⼀次⻚⾯，都会将修改该⻚
⾯的mtr结束时对应的lsn值写⼊这个属性。也就是说该属性
表示⻚⾯最近⼀次修改后对应的系统lsn值。

我们接着上边唠叨flushed_to_disk_lsn的例⼦看⼀下：

假设mtr_1执⾏过程中修改了⻚a，那么在mtr_1执⾏结束
时，就会将⻚a对应的控制块加⼊到flush链表的头部。并且
将mtr_1开始时对应的lsn，也就是8716写⼊⻚a对应的控制
块的oldest_modification属性中，把mtr_1结束时对应的
lsn，也就是8404写⼊⻚a对应的控制块的
newest_modification属性中。画个图表示⼀下（为了让图
⽚美观⼀些，我们把oldest_modification缩写成了o_m，
把newest_modification缩写成了n_m）：



接着假设mtr_2执⾏过程中⼜修改了⻚b和⻚c两个⻚⾯，那么
在mtr_2执⾏结束时，就会将⻚b和⻚c对应的控制块都加⼊到
flush链表的头部。并且将mtr_2开始时对应的lsn，也就是
8404写⼊⻚b和⻚c对应的控制块的oldest_modification
属性中，把mtr_2结束时对应的lsn，也就是9436写⼊⻚b和
⻚c对应的控制块的newest_modification属性中。画个图
表示⼀下：

从图中可以看出来，每次新插⼊到flush链表中的节点都是被
放在了头部，也就是说flush链表中前边的脏⻚修改的时间⽐
较晚，后边的脏⻚修改时间⽐较早。

接着假设mtr_3执⾏过程中修改了⻚b和⻚d，不过⻚b之前已
经被修改过了，所以它对应的控制块已经被插⼊到了flush链
表，所以在mtr_2执⾏结束时，只需要将⻚d对应的控制块都
加⼊到flush链表的头部即可。所以需要将mtr_3开始时对应
的lsn，也就是9436写⼊⻚c对应的控制块的
oldest_modification属性中，把mtr_3结束时对应的
lsn，也就是10000写⼊⻚c对应的控制块的
newest_modification属性中。另外，由于⻚b在mtr_3执
⾏过程中⼜发⽣了⼀次修改，所以需要更新⻚b对应的控制块
中newest_modification的值为10000。画个图表示⼀下：



总结⼀下上边说的，就是：flush链表中的脏⻚按照修改发⽣的时间
顺序进⾏排序，也就是按照oldest_modification代表的LSN值进⾏
排序，被多次更新的⻚⾯不会重复插⼊到flush链表中，但是会更新
newest_modification属性的值。

checkpoint

有⼀个很不幸的事实就是我们的redo⽇志⽂件组容量是有限的，我
们不得不选择循环使⽤redo⽇志⽂件组中的⽂件，但是这会造成最
后写的redo⽇志与最开始写的redo⽇志追尾，这时应该想到：redo
⽇志只是为了系统奔溃后恢复脏⻚⽤的，如果对应的脏⻚已经刷新到
了磁盘，也就是说即使现在系统奔溃，那么在重启后也⽤不着使⽤
redo⽇志恢复该⻚⾯了，所以该redo⽇志也就没有存在的必要了，
那么它占⽤的磁盘空间就可以被后续的redo⽇志所重⽤。也就是
说：判断某些redo⽇志占⽤的磁盘空间是否可以覆盖的依据就是它
对应的脏⻚是否已经刷新到磁盘⾥。我们看⼀下前边⼀直唠叨的那个
例⼦：



如图，虽然mtr_1和mtr_2⽣成的redo⽇志都已经被写到了磁盘
上，但是它们修改的脏⻚仍然留在Buffer Pool中，所以它们⽣成
的redo⽇志在磁盘上的空间是不可以被覆盖的。之后随着系统的运
⾏，如果⻚a被刷新到了磁盘，那么它对应的控制块就会从flush链
表中移除，就像这样⼦：



这样mtr_1⽣成的redo⽇志就没有⽤了，它们占⽤的磁盘空间就可
以被覆盖掉了。设计InnoDB的⼤叔提出了⼀个全局变量
checkpoint_lsn来代表当前系统中可以被覆盖的redo⽇志总量是
多少，这个变量初始值也是8704。

⽐⽅说现在⻚a被刷新到了磁盘，mtr_1⽣成的redo⽇志就可以被覆
盖了，所以我们需要进⾏⼀个增加checkpoint_lsn的操作，我们
把这个过程称之为做⼀次checkpoint。做⼀次checkpoint其实可
以分为两个步骤：



步骤⼀：计算⼀下当前系统中可以被覆盖的redo⽇志对应的
lsn值最⼤是多少。

redo⽇志可以被覆盖，意味着它对应的脏⻚被刷到了磁盘，只
要我们计算出当前系统中被最早修改的脏⻚对应的
oldest_modification值，那凡是在系统lsn值⼩于该节点
的oldest_modification值时产⽣的redo⽇志都是可以被覆盖
掉的，我们就把该脏⻚的oldest_modification赋值给
checkpoint_lsn。

⽐⽅说当前系统中⻚a已经被刷新到磁盘，那么flush链表的
尾节点就是⻚c，该节点就是当前系统中最早修改的脏⻚了，
它的oldest_modification值为8404，我们就把8404赋值
给checkpoint_lsn（也就是说在redo⽇志对应的lsn值⼩于
8404时就可以被覆盖掉）。

步骤⼆：将checkpoint_lsn和对应的redo⽇志⽂件组偏移
量以及此次checkpint的编号写到⽇志⽂件的管理信息（就
是checkpoint1或者checkpoint2）中。

设计InnoDB的⼤叔维护了⼀个⽬前系统做了多少
次checkpoint的变量checkpoint_no，每做⼀
次checkpoint，该变量的值就加1。我们前边说过计算⼀
个lsn值对应的redo⽇志⽂件组偏移量是很容易的，所以可以
计算得到该checkpoint_lsn在redo⽇志⽂件组中对应的偏
移量checkpoint_offset，然后把这三个值都写到redo⽇
志⽂件组的管理信息中。

我们说过，每⼀个redo⽇志⽂件都有2048个字节的管理信
息，但是上述关于checkpoint的信息只会被写到⽇志⽂件组的
第⼀个⽇志⽂件的管理信息中。不过我们是存储
到checkpoint1中还是checkpoint2中呢？设计InnoDB的
⼤叔规定，当checkpoint_no的值是偶数时，就写
到checkpoint1中，是奇数时，就写到checkpoint2中。



记录完checkpoint的信息之后，redo⽇志⽂件组中各个lsn值的
关系就像这样：

批量从flush链表中刷出脏⻚

我们在介绍Buffer Pool的时候说过，⼀般情况下都是后台的线程
在对LRU链表和flush链表进⾏刷脏操作，这主要因为刷脏操作⽐较
慢，不想影响⽤户线程处理请求。但是如果当前系统修改⻚⾯的操作
⼗分频繁，这样就导致写⽇志操作⼗分频繁，系统lsn值增⻓过快。
如果后台的刷脏操作不能将脏⻚刷出，那么系统⽆法及时
做checkpoint，可能就需要⽤户线程同步的从flush链表中把那些
最早修改的脏⻚（oldest_modification最⼩的脏⻚）刷新到磁
盘，这样这些脏⻚对应的redo⽇志就没⽤了，然后就可以去
做checkpoint了。

查看系统中的各种LSN值

我们可以使⽤SHOW ENGINE INNODB STATUS命令查看当
前InnoDB存储引擎中的各种LSN值的情况，⽐如：



mysql> SHOW ENGINE INNODB STATUS\G

(...省略前边的许多状态)
LOG
---
Log sequence number 124476971
Log flushed up to   124099769
Pages flushed up to 124052503
Last checkpoint at  124052494
0 pending log flushes, 0 pending chkp writes
24 log i/o's done, 2.00 log i/o's/second
----------------------
(...省略后边的许多状态)

其中：

Log sequence number：代表系统中的lsn值，也就是当前
系统已经写⼊的redo⽇志量，包括写⼊log buffer中的⽇
志。

Log flushed up to：代表flushed_to_disk_lsn的
值，也就是当前系统已经写⼊磁盘的redo⽇志量。

Pages flushed up to：代表flush链表中被最早修改的那
个⻚⾯对应的oldest_modification属性值。

Last checkpoint at：当前系统的checkpoint_lsn值。

innodb_flush_log_at_trx_commit的⽤法

我们前边说为了保证事务的持久性，⽤户线程在事务提交时需要将该
事务执⾏过程中产⽣的所有redo⽇志都刷新到磁盘上。这⼀条要求
太狠了，会很明显的降低数据库性能。如果有的同学对事务的持久性



要求不是那么强烈的话，可以选择修改⼀个称
为innodb_flush_log_at_trx_commit的系统变量的值，该变量
有3个可选的值：

0：当该系统变量值为0时，表示在事务提交时不⽴即向磁盘中
同步redo⽇志，这个任务是交给后台线程做的。

这样很明显会加快请求处理速度，但是如果事务提交后服务器
挂了，后台线程没有及时将redo⽇志刷新到磁盘，那么该事务
对⻚⾯的修改会丢失。

1：当该系统变量值为0时，表示在事务提交时需要将redo⽇
志同步到磁盘，可以保证事务的持久性。1也
是innodb_flush_log_at_trx_commit的默认值。

2：当该系统变量值为0时，表示在事务提交时需要将redo⽇
志写到操作系统的缓冲区中，但并不需要保证将⽇志真正的刷
新到磁盘。

这种情况下如果数据库挂了，操作系统没挂的话，事务的持久
性还是可以保证的，但是操作系统也挂了的话，那就不能保证
持久性了。

崩溃恢复

在服务器不挂的情况下，redo⽇志简直就是个⼤累赘，不仅没⽤，
反⽽让性能变得更差。但是万⼀，我说万⼀啊，万⼀数据库挂了，那
redo⽇志可是个宝了，我们就可以在重启时根据redo⽇志中的记录
就可以将⻚⾯恢复到系统奔溃前的状态。我们接下来⼤致看⼀下恢复
过程是个啥样。

确定恢复的起点



我们前边说过，checkpoint_lsn之前的redo⽇志都可以被覆盖，
也就是说这些redo⽇志对应的脏⻚都已经被刷新到磁盘中了，既然
它们已经被刷盘，我们就没必要恢复它们了。对于
checkpoint_lsn之后的redo⽇志，它们对应的脏⻚可能没被刷
盘，也可能被刷盘了，我们不能确定，所以需要从
checkpoint_lsn开始读取redo⽇志来恢复⻚⾯。

当然，redo⽇志⽂件组的第⼀个⽂件的管理信息中有两个block都存
储了checkpoint_lsn的信息，我们当然是要选取最近发⽣的那次
checkpoint的信息。衡量checkpoint发⽣时间早晚的信息就是所
谓的checkpoint_no，我们只要把checkpoint1和checkpoint2
这两个block中的checkpoint_no值读出来⽐⼀下⼤⼩，哪个的
checkpoint_no值更⼤，说明哪个block存储的就是最近的⼀
次checkpoint信息。这样我们就能拿到最近发⽣的checkpoint对
应的checkpoint_lsn值以及它在redo⽇志⽂件组中的偏移量
checkpoint_offset。

确定恢复的终点

redo⽇志恢复的起点确定了，那终点是哪个呢？这个还得从block的
结构说起。我们说在写redo⽇志的时候都是顺序写的，写满了⼀个
block之后会再往下⼀个block中写：



普通block的log block header部分有⼀个称之
为LOG_BLOCK_HDR_DATA_LEN的属性，该属性值记录了当前block
⾥使⽤了多少字节的空间。对于被填满的block来说，该值永远
为512。如果该属性的值不为512，那么就是它了，它就是此次奔溃
恢复中需要扫描的最后⼀个block。

怎么恢复

确定了需要扫描哪些redo⽇志进⾏奔溃恢复之后，接下来就是怎么
进⾏恢复了。假设现在的redo⽇志⽂件中有5条redo⽇志，如图：

由于redo 0在checkpoint_lsn后边，恢复时可以不管它。我们现
在可以按照redo⽇志的顺序依次扫描checkpoint_lsn之后的各条
redo⽇志，按照⽇志中记载的内容将对应的⻚⾯恢复出来。这样没
什么问题，不过设计InnoDB的⼤叔还是想了⼀些办法加快这个恢复
的过程：

使⽤哈希表

根据redo⽇志的space ID和page number属性计算出散列
值，把space ID和page number相同的redo⽇志放到哈希
表的同⼀个槽⾥，如果有多个space ID和page number都相
同的redo⽇志，那么它们之间使⽤链表连接起来，按照⽣成的
先后顺序链接起来的，如图所示：



之后就可以遍历哈希表，因为对同⼀个⻚⾯进⾏修改的redo⽇
志都放在了⼀个槽⾥，所以可以⼀次性将⼀个⻚⾯修复好（避
免了很多读取⻚⾯的随机IO），这样可以加快恢复速度。另外
需要注意⼀点的是，同⼀个⻚⾯的redo⽇志是按照⽣成时间顺
序进⾏排序的，所以恢复的时候也是按照这个顺序进⾏恢复，
如果不按照⽣成时间顺序进⾏排序的话，那么可能出现错误。
⽐如原先的修改操作是先插⼊⼀条记录，再删除该条记录，如
果恢复时不按照这个顺序来，就可能变成先删除⼀条记录，再
插⼊⼀条记录，这显然是错误的。

跳过已经刷新到磁盘的⻚⾯

我们前边说过，checkpoint_lsn之前的redo⽇志对应的脏
⻚确定都已经刷到磁盘了，但是checkpoint_lsn之后的
redo⽇志我们不能确定是否已经刷到磁盘，主要是因为在最近
做的⼀次checkpoint后，可能后台线程⼜不断的从LRU链表
和flush链表中将⼀些脏⻚刷出Buffer Pool。这些
在checkpoint_lsn之后的redo⽇志，如果它们对应的脏⻚
在奔溃发⽣时已经刷新到磁盘，那在恢复时也就没有必要根
据redo⽇志的内容修改该⻚⾯了。



那在恢复时怎么知道某个redo⽇志对应的脏⻚是否在奔溃发⽣
时已经刷新到磁盘了呢？这还得从⻚⾯的结构说起，我们前边
说过每个⻚⾯都有⼀个称之为File Header的部分，在File
Header⾥有⼀个称之为FIL_PAGE_LSN的属性，该属性记载
了最近⼀次修改⻚⾯时对应的lsn值（其实就是⻚⾯控制块中
的newest_modification值）。如果在做了某
次checkpoint之后有脏⻚被刷新到磁盘中，那么该⻚对应的
FIL_PAGE_LSN代表的lsn值肯定⼤于checkpoint_lsn的
值，凡是符合这种情况的⻚⾯就不需要做恢复操作了，所以更
进⼀步提升了奔溃恢复的速度。

遗漏的问题：LOG_BLOCK_HDR_NO是如何
计算的

我们前边说过，对于实际存储redo⽇志的普通的log block来说，
在log block header处有⼀个称之为LOG_BLOCK_HDR_NO的属
性（忘记了的话回头再看看哈），我们说这个属性代表⼀个唯⼀的标
号。这个属性是初次使⽤该block时分配的，跟当时的系统lsn值有
关。使⽤下边的公式计算该block的LOG_BLOCK_HDR_NO值：

((lsn / 512) & 0x3FFFFFFFUL) + 1

这个公式⾥的0x3FFFFFFFUL可能让⼤家有点困惑，其实它的⼆进
制表示可能更亲切⼀点：



从图中可以看出，0x3FFFFFFFUL对应的⼆进制数的前2位为0，后
30位的值都为1。我们刚开始学计算机的时候就学过，⼀个⼆进制位
与0做与运算（&）的结果肯定是0，⼀个⼆进制位与1做与运算
（&）的结果就是原值。让⼀个数和0x3FFFFFFFUL做与运算的意思
就是要将该值的前2个⽐特位的值置为0，这样该值就肯定⼩于或等
于0x3FFFFFFFUL了。这也就说明了，不论lsn多⼤，((lsn /
512) & 0x3FFFFFFFUL)的值肯定在0~0x3FFFFFFFUL之间，再
加1的话肯定在1~0x40000000UL之间。⽽0x40000000UL这个值
⼤家应该很熟悉，这个值就代表着1GB。也就是说系统最多能产⽣不
重复的LOG_BLOCK_HDR_NO值只有1GB个。设计InnoDB的⼤叔规定
redo⽇志⽂件组中包含的所有⽂件⼤⼩总和不得超过512GB，⼀个
block⼤⼩是512字节，也就是说redo⽇志⽂件组中包含的block块
最多为1GB个，所以有1GB个不重复的编号值也就够⽤了。

另外，LOG_BLOCK_HDR_NO值的第⼀个⽐特位⽐较特殊，称之
为flush bit，如果该值为1，代表着本block是在某次将log
buffer中的block刷新到磁盘的操作中的第⼀个被刷⼊的block。


