
InnoDB记录存储结构
标签： MySQL 是怎样运⾏的

准备⼯作

到现在为⽌，MySQL对于我们来说还是⼀个⿊盒，我们只负责使⽤客
户端发送请求并等待服务器返回结果，表中的数据到底存到了哪⾥？
以什么格式存放的？MySQL是以什么⽅式来访问的这些数据？这些问
题我们统统不知道，对于未知领域的探索向来就是社会主义核⼼价值
观中的⼀部分，作为新⼀代社会主义接班⼈，不把它们搞懂怎么⽀援
祖国建设呢？

我们前边唠叨请求处理过程的时候提到过，MySQL服务器上负责对表
中数据的读取和写⼊⼯作的部分是存储引擎，⽽服务器⼜⽀持不同类
型的存储引擎，⽐如InnoDB、MyISAM、Memory啥的，不同的存储
引擎⼀般是由不同的⼈为实现不同的特性⽽开发的，真实数据在不同
存储引擎中存放的格式⼀般是不同的，甚⾄有的存储引擎⽐如
Memory都不⽤磁盘来存储数据，也就是说关闭服务器后表中的数据
就消失了。由于InnoDB是MySQL默认的存储引擎，也是我们最常⽤
到的存储引擎，我们也没有那么多时间去把各个存储引擎的内部实现
都看⼀遍，所以本集要唠叨的是使⽤InnoDB作为存储引擎的数据存
储结构，了解了⼀个存储引擎的数据存储结构之后，其他的存储引擎
都是依葫芦画瓢，等我们⽤到了再说哈～

InnoDB⻚简介

InnoDB是⼀个将表中的数据存储到磁盘上的存储引擎，所以即使关
机后重启我们的数据还是存在的。⽽真正处理数据的过程是发⽣在内
存中的，所以需要把磁盘中的数据加载到内存中，如果是处理写⼊或
修改请求的话，还需要把内存中的内容刷新到磁盘上。⽽我们知道读
写磁盘的速度⾮常慢，和内存读写差了⼏个数量级，所以当我们想从
表中获取某些记录时，InnoDB存储引擎需要⼀条⼀条的把记录从磁
盘上读出来么？不，那样会慢死，InnoDB采取的⽅式是：将数据划
分为若⼲个⻚，以⻚作为磁盘和内存之间交互的基本单位，InnoDB
中⻚的⼤⼩⼀般为 16 KB。也就是在⼀般情况下，⼀次最少从磁盘
中读取16KB的内容到内存中，⼀次最少把内存中的16KB内容刷新到
磁盘中。

InnoDB⾏格式

我们平时是以记录为单位来向表中插⼊数据的，这些记录在磁盘上的
存放⽅式也被称为⾏格式或者记录格式。设计InnoDB存储引擎的⼤
叔们到现在为⽌设计了4种不同类型的⾏格式，分别
是Compact、Redundant、Dynamic和Compressed⾏格式，随着
时间的推移，他们可能会设计出更多的⾏格式，但是不管怎么变，在
原理上⼤体都是相同的。

指定⾏格式的语法

我们可以在创建或修改表的语句中指定⾏格式：

CREATE TABLE 表名 (列的信息) ROW_FORMAT=⾏格式名称

ALTER TABLE 表名 ROW_FORMAT=⾏格式名称

⽐如我们在xiaohaizi数据库⾥创建⼀个演示⽤的
表record_format_demo，可以这样指定它的⾏格式：

mysql> USE xiaohaizi;
Database changed

mysql> CREATE TABLE record_format_demo (
 -> c1 VARCHAR(10),
 -> c2 VARCHAR(10) NOT NULL,
 -> c3 CHAR(10),
 -> c4 VARCHAR(10)
 ->) CHARSET=ascii ROW_FORMAT=COMPACT;
Query OK, 0 rows affected (0.03 sec)

可以看到我们刚刚创建的这个表的⾏格式就是Compact，另外，我
们还显式指定了这个表的字符集为ascii，因为ascii字符集只包括
空格、标点符号、数字、⼤⼩写字⺟和⼀些不可⻅字符，所以我们的
汉字是不能存到这个表⾥的。我们现在向这个表中插⼊两条记录：

mysql> INSERT INTO record_format_demo(c1, c2, c3,
c4) VALUES('aaaa', 'bbb', 'cc', 'd'), ('eeee',
'fff', NULL, NULL);
Query OK, 2 rows affected (0.02 sec)
Records: 2 Duplicates: 0 Warnings: 0

现在表中的记录就是这个样⼦的：

mysql> SELECT * FROM record_format_demo;
+------+-----+------+------+
| c1 | c2 | c3 | c4 |
+------+-----+------+------+
| aaaa | bbb | cc | d |
| eeee | fff | NULL | NULL |
+------+-----+------+------+
2 rows in set (0.00 sec)

mysql>

演示表的内容也填充好了，现在我们就来看看各个⾏格式下的存储⽅
式到底有啥不同吧～

COMPACT⾏格式

废话不多说，直接看图：

⼤家从图中可以看出来，⼀条完整的记录其实可以被分为记录的额外
信息和记录的真实数据两⼤部分，下边我们详细看⼀下这两部分的组
成。

记录的额外信息

这部分信息是服务器为了描述这条记录⽽不得不额外添加的⼀些信
息，这些额外信息分为3类，分别是变⻓字段⻓度列表、NULL值列表
和记录头信息，我们分别看⼀下。

变⻓字段⻓度列表

我们知道MySQL⽀持⼀些变⻓的数据类型，⽐如
VARCHAR(M)、VARBINARY(M)、各种TEXT类型，各种BLOB类型，
我们也可以把拥有这些数据类型的列称为变⻓字段，变⻓字段中存储
多少字节的数据是不固定的，所以我们在存储真实数据的时候需要顺
便把这些数据占⽤的字节数也存起来，这样才不⾄于把MySQL服务器
搞懵，所以这些变⻓字段占⽤的存储空间分为两部分：

1. 真正的数据内容
2. 占⽤的字节数

在Compact⾏格式中，把所有变⻓字段的真实数据占⽤的字节⻓度
都存放在记录的开头部位，从⽽形成⼀个变⻓字段⻓度列表，各变⻓
字段数据占⽤的字节数按照列的顺序逆序存放，我们再次强调⼀遍，
是逆序存放！

我们拿record_format_demo表中的第⼀条记录来举个例⼦。因
为record_format_demo表的c1、c2、c4列都是VARCHAR(10)类
型的，也就是变⻓的数据类型，所以这三个列的值的⻓度都需要保存
在记录开头处，因为record_format_demo表中的各个列都使⽤的
是ascii字符集，所以每个字符只需要1个字节来进⾏编码，来看⼀
下第⼀条记录各变⻓字段内容的⻓度：

列名存储内容内容⻓度（⼗进制表示）内容⻓度（⼗六进制表示）

c1 'aaaa' 4 0x04
c2 'bbb' 3 0x03
c4 'd' 1 0x01

⼜因为这些⻓度值需要按照列的逆序存放，所以最后变⻓字段⻓度列
表的字节串⽤⼗六进制表示的效果就是（各个字节之间实际上没有空
格，⽤空格隔开只是⽅便理解）：

01 03 04

把这个字节串组成的变⻓字段⻓度列表填⼊上边的示意图中的效果就
是：

由于第⼀⾏记录中c1、c2、c4列中的字符串都⽐较短，也就是说内
容占⽤的字节数⽐较⼩，⽤1个字节就可以表示，但是如果变⻓列的
内容占⽤的字节数⽐较多，可能就需要⽤2个字节来表示。具体⽤1
个还是2个字节来表示真实数据占⽤的字节数，InnoDB有它的⼀套
规则，我们⾸先声明⼀下W、M和L的意思：

1. 假设某个字符集中表示⼀个字符最多需要使⽤的字节数为W，
也就是使⽤SHOW CHARSET语句的结果中的Maxlen列，⽐⽅
说utf8字符集中的W就是3，gbk字符集中的W就是2，ascii
字符集中的W就是1。

2. 对于变⻓类型VARCHAR(M)来说，这种类型表示能存储最多M
个字符（注意是字符不是字节），所以这个类型能表示的字符
串最多占⽤的字节数就是M×W。

3. 假设它实际存储的字符串占⽤的字节数是L。

所以确定使⽤1个字节还是2个字节表示真正字符串占⽤的字节数的
规则就是这样：

如果M×W <= 255，那么使⽤1个字节来表示真正字符串占⽤
的字节数。

也就是说InnoDB在读记录的变⻓字段⻓度列表时先查看表结
构，如果某个变⻓字段允许存储的最⼤字节数不⼤于255时，
可以认为只使⽤1个字节来表示真正字符串占⽤的字节数。

如果M×W > 255，则分为两种情况：

如果L <= 127，则⽤1个字节来表示真正字符串占⽤的
字节数。

如果L > 127，则⽤2个字节来表示真正字符串占⽤的字
节数。

InnoDB在读记录的变⻓字段⻓度列表时先查看表结构，如果
某个变⻓字段允许存储的最⼤字节数⼤于255时，该怎么区分
它正在读的某个字节是⼀个单独的字段⻓度还是半个字段⻓度
呢？设计InnoDB的⼤叔使⽤该字节的第⼀个⼆进制位作为标
志位：如果该字节的第⼀个位为0，那该字节就是⼀个单独的
字段⻓度（使⽤⼀个字节表示不⼤于127的⼆进制的第⼀个位
都为0），如果该字节的第⼀个位为1，那该字节就是半个字段
⻓度。

对于⼀些占⽤字节数⾮常多的字段，⽐⽅说某个字段⻓度⼤于
了16KB，那么如果该记录在单个⻚⾯中⽆法存储时，InnoDB
会把⼀部分数据存放到所谓的溢出⻚中（我们后边会唠叨），
在变⻓字段⻓度列表处只存储留在本⻚⾯中的⻓度，所以使⽤
两个字节也可以存放下来。

总结⼀下就是说：如果该可变字段允许存储的最⼤字节数（M×W）超
过255字节并且真实存储的字节数（L）超过127字节，则使⽤2个字
节，否则使⽤1个字节。

另外需要注意的⼀点是，变⻓字段⻓度列表中只存储值为 ⾮NULL
的列内容占⽤的⻓度，值为 NULL 的列的⻓度是不储存的 。也就是
说对于第⼆条记录来说，因为c4列的值为NULL，所以第⼆条记录的
变⻓字段⻓度列表只需要存储c1和c2列的⻓度即可。其中c1列存储
的值为'eeee'，占⽤的字节数为4，c2列存储的值为'fff'，占⽤
的字节数为3，所以变⻓字段⻓度列表需2个字节。填充完变⻓字段
⻓度列表的两条记录的对⽐图如下：

⼩贴⼠：

并不是所有记录都有这个 变⻓字段⻓度列表 部分，⽐⽅说表中所
有的列都不是变⻓的数据类型的话，这⼀部分就不需要有。

NULL值列表

我们知道表中的某些列可能存储NULL值，如果把这些NULL值都放到
记录的真实数据中存储会很占地⽅，所以Compact⾏格式把这些值
为NULL的列统⼀管理起来，存储到NULL值列表中，它的处理过程是
这样的：

1. ⾸先统计表中允许存储NULL的列有哪些。

我们前边说过，主键列、被NOT NULL修饰的列都是不可以存
储NULL值的，所以在统计的时候不会把这些列算进去。⽐⽅说
表record_format_demo的3个列c1、c3、c4都是允许存储

NULL值的，⽽c2列是被NOT NULL修饰，不允许存储NULL
值。

2. 如果表中没有允许存储 NULL 的列，则 NULL值列表 也不存在
了，否则将每个允许存储NULL的列对应⼀个⼆进制位，⼆进制
位按照列的顺序逆序排列，⼆进制位表示的意义如下：

⼆进制位的值为1时，代表该列的值为NULL。
⼆进制位的值为0时，代表该列的值不为NULL。

因为表record_format_demo有3个值允许为NULL的列，所
以这3个列和⼆进制位的对应关系就是这样：

再⼀次强调，⼆进制位按照列的顺序逆序排列，所以第⼀个
列c1和最后⼀个⼆进制位对应。

3. MySQL规定NULL值列表必须⽤整数个字节的位表示，如果使⽤
的⼆进制位个数不是整数个字节，则在字节的⾼位补0。

表record_format_demo只有3个值允许为NULL的列，对应3
个⼆进制位，不⾜⼀个字节，所以在字节的⾼位补0，效果就
是这样：

以此类推，如果⼀个表中有9个允许为NULL，那这个记录的
NULL值列表部分就需要2个字节来表示了。

知道了规则之后，我们再返回头看表record_format_demo中的两
条记录中的NULL值列表应该怎么储存。因为只有c1、c3、c4这3个
列允许存储NULL值，所以所有记录的NULL值列表只需要⼀个字节。

对于第⼀条记录来说，c1、c3、c4这3个列的值都不
为NULL，所以它们对应的⼆进制位都是0，画个图就是这样：

所以第⼀条记录的NULL值列表⽤⼗六进制表示就是：0x00。

对于第⼆条记录来说，c1、c3、c4这3个列中c3和c4的值都
为NULL，所以这3个列对应的⼆进制位的情况就是：

所以第⼆条记录的NULL值列表⽤⼗六进制表示就是：0x06。

所以这两条记录在填充了NULL值列表后的示意图就是这样：

记录头信息

除了变⻓字段⻓度列表、NULL值列表之外，还有⼀个⽤于描述记录
的记录头信息，它是由固定的5个字节组成。5个字节也就是40个⼆
进制位，不同的位代表不同的意思，如图：

这些⼆进制位代表的详细信息如下表：

名称

⼤⼩
（单
位：
bit）

描述

预留位1 1 没有使⽤

预留位2 1 没有使⽤

delete_mask 1 标记该记录是否被删除

min_rec_mask 1 B+树的每层⾮叶⼦节点中的最⼩记录都会
添加该标记

n_owned 4 表示当前记录拥有的记录数

heap_no 13 表示当前记录在记录堆的位置信息

record_type 3
表示当前记录的类型，0表示普通记录，1
表示B+树⾮叶⼦节点记录，2表示最⼩记

录，3表示最⼤记录
next_record 16 表示下⼀条记录的相对位置

⼤家不要被这么多的属性和陌⽣的概念给吓着，我这⾥只是为了内容
的完整性把这些位代表的意思都写了出来，现在没必要把它们的意思
都记住，记住也没啥⽤，现在只需要看⼀遍混个脸熟，等之后⽤到这
些属性的时候我们再回过头来看。

因为我们并不清楚这些属性详细的⽤法，所以这⾥就不分析各个属性
值是怎么产⽣的了，之后我们遇到会详细看的。所以我们现在直接看
⼀下record_format_demo中的两条记录的头信息分别是什么：

⼩贴⼠：

再⼀次强调，⼤家如果看不懂记录头信息⾥各个位代表的概念千万
别纠结，我们后边会说的～

记录的真实数据

对于record_format_demo表来说，记录的真实数据除了
c1、c2、c3、c4这⼏个我们⾃⼰定义的列的数据以外，MySQL会为
每个记录默认的添加⼀些列（也称为隐藏列），具体的列如下：

列名 是否必须占⽤空间 描述

row_id 否 6字节 ⾏ID，唯⼀标识⼀条记录
transaction_id 是 6字节 事务ID
roll_pointer 是 7字节 回滚指针

⼩贴⼠：

实际上这⼏个列的真正名称其实是：DB_ROW_ID、DB_TRX_ID、
DB_ROLL_PTR，我们为了美观才写成了row_id、
transaction_id和roll_pointer。

这⾥需要提⼀下InnoDB表对主键的⽣成策略：优先使⽤⽤户⾃定义
主键作为主键，如果⽤户没有定义主键，则选取⼀个Unique键作为
主键，如果表中连Unique键都没有定义的话，则InnoDB会为表默
认添加⼀个名为row_id的隐藏列作为主键。所以我们从上表中可以
看出：InnoDB存储引擎会为每条记录都添加 transaction_id 和
roll_pointer 这两个列，但是 row_id 是可选的（在没有⾃定义主
键以及Unique键的情况下才会添加该列）。这些隐藏列的值不⽤我
们操⼼，InnoDB存储引擎会⾃⼰帮我们⽣成的。

因为表record_format_demo并没有定义主键，所以MySQL服务器
会为每条记录增加上述的3个列。现在看⼀下加上记录的真实数据的
两个记录⻓什么样吧：

看这个图的时候我们需要注意⼏点：

1. 表record_format_demo使⽤的是ascii字符集，所以
0x61616161就表示字符串'aaaa'，0x626262就表示字符
串'bbb'，以此类推。

2. 注意第1条记录中c3列的值，它是CHAR(10)类型的，它实际
存储的字符串是：'cc'，⽽ascii字符集中的字节表示
是'0x6363'，虽然表示这个字符串只占⽤了2个字节，但整
个c3列仍然占⽤了10个字节的空间，除真实数据以外的8个字
节的统统都⽤空格字符填充，空格字符在ascii字符集的表示
就是0x20。

3. 注意第2条记录中c3和c4列的值都为NULL，它们被存储在了前
边的NULL值列表处，在记录的真实数据处就不再冗余存储，从
⽽节省存储空间。

CHAR(M)列的存储格式

record_format_demo表的c1、c2、c4列的类型
是VARCHAR(10)，⽽c3列的类型是CHAR(10)，我们说在Compact
⾏格式下只会把变⻓类型的列的⻓度逆序存到变⻓字段⻓度列表中，
就像这样：

但是这只是因为我们的record_format_demo表采⽤的是ascii字
符集，这个字符集是⼀个定⻓字符集，也就是说表示⼀个字符采⽤固
定的⼀个字节，如果采⽤变⻓的字符集（也就是表示⼀个字符需要的
字节数不确定，⽐如gbk表示⼀个字符要1~2个字节、utf8表示⼀
个字符要1~3个字节等）的话，c3列的⻓度也会被存储到变⻓字段
⻓度列表中，⽐如我们修改⼀下record_format_demo表的字符
集：

mysql> ALTER TABLE record_format_demo MODIFY
COLUMN c3 CHAR(10) CHARACTER SET utf8;
Query OK, 2 rows affected (0.02 sec)
Records: 2 Duplicates: 0 Warnings: 0

修改该列字符集后记录的变⻓字段⻓度列表也发⽣了变化，如图：

这就意味着：对于 CHAR(M) 类型的列来说，当列采⽤的是定⻓字
符集时，该列占⽤的字节数不会被加到变⻓字段⻓度列表，⽽如果采
⽤变⻓字符集时，该列占⽤的字节数也会被加到变⻓字段⻓度列表。

另外有⼀点还需要注意，变⻓字符集的CHAR(M)类型的列要求⾄少
占⽤M个字节，⽽VARCHAR(M)却没有这个要求。⽐⽅说对于使
⽤utf8字符集的CHAR(10)的列来说，该列存储的数据字节⻓度的
范围是10～30个字节。即使我们向该列中存储⼀个空字符串也会占
⽤10个字节，这是怕将来更新该列的值的字节⻓度⼤于原有值的字
节⻓度⽽⼩于10个字节时，可以在该记录处直接更新，⽽不是在存
储空间中重新分配⼀个新的记录空间，导致原有的记录空间称为所谓
的碎⽚。（这⾥你感受到设计Compact⾏格式的⼤叔既想节省存储
空间，⼜不想更新CHAR(M)类型的列产⽣碎⽚时的纠结⼼情了
吧。）

Redundant⾏格式

其实知道了Compact⾏格式之后，其他的⾏格式就是依葫芦画瓢
了。我们现在要介绍的Redundant⾏格式是MySQL5.0之前⽤的⼀
种⾏格式，也就是说它已经⾮常⽼了，但是本着知识完整性的⻆度还
是要提⼀下，⼤家乐呵乐呵的看就好。

画个图展示⼀下Redundant⾏格式的全貌：

现在我们把表record_format_demo的⾏格式修改
为Redundant：

mysql> ALTER TABLE record_format_demo
ROW_FORMAT=Redundant;
Query OK, 0 rows affected (0.05 sec)
Records: 0 Duplicates: 0 Warnings: 0

为了⽅便⼤家理解和节省篇幅，我们直接把
表record_format_demo在Redundant⾏格式下的两条记录的真
实存储数据提供出来，之后我们着重分析两种⾏格式的不同即可。

下边我们从各个⽅⾯看⼀下Redundant⾏格式有什么不同的地⽅：

字段⻓度偏移列表

注意Compact⾏格式的开头是变⻓字段⻓度列表，
⽽Redundant⾏格式的开头是字段⻓度偏移列表，与变⻓字段
⻓度列表有两处不同：

没有了变⻓两个字，意味着Redundant⾏格式会把该条
记录中所有列（包括隐藏列）的⻓度信息都按照逆序存储
到字段⻓度偏移列表。

多了个偏移两个字，这意味着计算列值⻓度的⽅式不像
Compact⾏格式那么直观，它是采⽤两个相邻数值的差
值来计算各个列值的⻓度。

⽐如第⼀条记录的字段⻓度偏移列表就是：

25 24 1A 17 13 0C 06

因为它是逆序排放的，所以按照列的顺序排列就是：

06 0C 13 17 1A 24 25

按照两个相邻数值的差值来计算各个列值的⻓度的意思就
是：

第⼀列(`row_id`)的⻓度就是 0x06个字节，也就是6
个字节。

第⼆列(`transaction_id`)的⻓度就是 (0x0C -
0x06)个字节，也就是6个字节。

第三列(`roll_pointer`)的⻓度就是 (0x13 -
0x0C)个字节，也就是7个字节。

第四列(`c1`)的⻓度就是 (0x17 - 0x13)个字节，
也就是4个字节。

第五列(`c2`)的⻓度就是 (0x1A - 0x17)个字节，
也就是3个字节。

第六列(`c3`)的⻓度就是 (0x24 - 0x1A)个字节，
也就是10个字节。

第七列(`c4`)的⻓度就是 (0x25 - 0x24)个字节，
也就是1个字节。

记录头信息

Redundant⾏格式的记录头信息占⽤6字节，48个⼆进制位，
这些⼆进制位代表的意思如下：

名称
⼤⼩（单
位：
bit）

描述

预留位1 1 没有使⽤

预留位2 1 没有使⽤

delete_mask 1 标记该记录是否被删除

min_rec_mask 1 B+树的每层⾮叶⼦节点中的最

min_rec_mask 1
⼩记录都会添加该标记

n_owned 4 表示当前记录拥有的记录数

heap_no 13 表示当前记录在⻚⾯堆的位置信
息

n_field 10 表示记录中列的数量

1byte_offs_flag 1
标记字段⻓度偏移列表中的偏移
量是使⽤1字节还是2字节表示

的

next_record 16 表示下⼀条记录的相对位置

第⼀条记录中的头信息是：

00 00 10 0F 00 BC

根据这六个字节可以计算出各个属性的值，如下：

预留位1：0x00
预留位2：0x00
delete_mask: 0x00
min_rec_mask: 0x00
n_owned: 0x00
heap_no: 0x02
n_field: 0x07
1byte_offs_flag: 0x01
next_record:0xBC

与Compact⾏格式的记录头信息对⽐来看，有两处不同：

Redundant⾏格式多了n_field和1byte_offs_flag
这两个属性。

Redundant⾏格式没有record_type这个属性。

Redundant⾏格式中NULL值的处理

因为Redundant⾏格式并没有NULL值列表，所以需要别的⽅
式来存储字段的NULL值，具体策略如下：

如果该存储NULL值的字段是变⻓数据类型的，则在字段
⻓度偏移列表中记录即可，并不占⽤记录的真实数据部
分。

⽐如record_format_demo表的c4列是VARCHAR(10)
类型的，⽽第⼆条记录的c4列存储的是NULL值，我们回
过头看⼀下第⼆条记录的字段⻓度偏移列表如下：

A4 A4 1A 17 13 0C 06

按照列的顺序排放就是：

06 0C 13 17 1A A4 A4

可以看到第⼆条记录的c4列的偏移⻓度和c3列的相同都
是A4，意味着c4列的⻓度为0，也就意味着存储的
是NULL值。

如果该存储NULL值的字段是CHAR(M)数据类型的，则将
占⽤记录的真实数据部分，并把该字段对应的数据使
⽤0x00字节填充。

如图第⼆条记录的c3列的值是NULL，⽽c3列的类型
是CHAR(10)，占⽤记录的真实数据部分10字节，所以我
们看到在Redundant⾏格式中使
⽤0x00000000000000000000来表示NULL值。

除了以上的⼏点之外，Redundant⾏格式和Compact⾏格式还是⼤
致相同的。

CHAR(M)列的存储格式

我们知道Compact⾏格式在CHAR(M)类型的列中存储数据的时候还
挺麻烦，分变⻓字符集和定⻓字符集的情况，⽽在Redundant⾏格
式中⼗分⼲脆，不管该列使⽤的字符集是啥，只要是使⽤CHAR(M)
类型，占⽤的真实数据空间就是该字符集表示⼀个字符最多需要的字
节数和M的乘积。⽐⽅说使⽤utf8字符集的CHAM(10)类型的列占⽤
的真实数据空间始终为30个字节，使⽤gbk字符集的CHAM(10)类型
的列占⽤的真实数据空间始终为20个字节。由此可以看出来，使
⽤Redundant⾏格式的CHAR(M)类型的列是不会产⽣碎⽚的。

⾏溢出数据

VARCHAR(M)最多能存储的数据

我们知道对于VARCHAR(M)类型的列最多可以占⽤65535个字节。其
中的M代表该类型最多存储的字符数量，如果我们使⽤ascii字符集
的话，⼀个字符就代表⼀个字节，我们看看VARCHAR(65535)是否
可⽤：

mysql> CREATE TABLE varchar_size_demo(
 -> c VARCHAR(65535)
 ->) CHARSET=ascii ROW_FORMAT=Compact;
ERROR 1118 (42000): Row size too large. The
maximum row size for the used table type, not
counting BLOBs, is 65535. This includes storage
overhead, check the manual. You have to change
some columns to TEXT or BLOBs
mysql>

从报错信息⾥可以看出，MySQL对⼀条记录占⽤的最⼤存储空间是有
限制的，除了BLOB或者TEXT类型的列之外，其他所有的列（不包括
隐藏列和记录头信息）占⽤的字节⻓度加起来不能超过65535个字
节。所以MySQL服务器建议我们把存储类型改为TEXT或者BLOB的类

型。这个65535个字节除了列本身的数据之外，还包括⼀些其他的数
据（storage overhead），⽐如说我们为了存储⼀
个VARCHAR(M)类型的列，其实需要占⽤3部分存储空间：

真实数据
真实数据占⽤字节的⻓度
NULL值标识，如果该列有NOT NULL属性则可以没有这部分存
储空间

如果该VARCHAR类型的列没有NOT NULL属性，那最多只能存储
65532个字节的数据，因为真实数据的⻓度可能占⽤2个字节，NULL
值标识需要占⽤1个字节：

mysql> CREATE TABLE varchar_size_demo(
 -> c VARCHAR(65532)
 ->) CHARSET=ascii ROW_FORMAT=Compact;
Query OK, 0 rows affected (0.02 sec)

如果VARCHAR类型的列有NOT NULL属性，那最多只能存储65533个
字节的数据，因为真实数据的⻓度可能占⽤2个字节，不需要NULL值
标识：

mysql> DROP TABLE varchar_size_demo;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE varchar_size_demo(
 -> c VARCHAR(65533) NOT NULL
 ->) CHARSET=ascii ROW_FORMAT=Compact;
Query OK, 0 rows affected (0.02 sec)

如果VARCHAR(M)类型的列使⽤的不是ascii字符集，那会怎么样
呢？来看⼀下：

mysql> DROP TABLE varchar_size_demo;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE varchar_size_demo(
 -> c VARCHAR(65532)
 ->) CHARSET=gbk ROW_FORMAT=Compact;
ERROR 1074 (42000): Column length too big for
column 'c' (max = 32767); use BLOB or TEXT
instead

mysql> CREATE TABLE varchar_size_demo(
 -> c VARCHAR(65532)
 ->) CHARSET=utf8 ROW_FORMAT=Compact;
ERROR 1074 (42000): Column length too big for
column 'c' (max = 21845); use BLOB or TEXT
instead

从执⾏结果中可以看出，如果VARCHAR(M)类型的列使⽤的不
是ascii字符集，那M的最⼤取值取决于该字符集表示⼀个字符最多
需要的字节数。在列的值允许为NULL的情况下，gbk字符集表示⼀
个字符最多需要2个字符，那在该字符集下，M的最⼤取值就
是32766（也就是：65532/2），也就是说最多能存储32766个字
符；utf8字符集表示⼀个字符最多需要3个字符，那在该字符集
下，M的最⼤取值就是21844，就是说最多能存储21844（也就是：
65532/3）个字符。

⼩贴⼠：

上述所⾔在列的值允许为NULL的情况下，gbk字符集下M的最⼤取值
就是32766，utf8字符集下M的最⼤取值就是21844，这都是在表
中只有⼀个字段的情况下说的，⼀定要记住⼀个⾏中的所有列（不
包括隐藏列和记录头信息）占⽤的字节⻓度加起来不能超过65535
个字节！

记录中的数据太多产⽣的溢出

我们以ascii字符集下的varchar_size_demo表为例，插⼊⼀条
记录：

mysql> CREATE TABLE varchar_size_demo(
 -> c VARCHAR(65532)
 ->) CHARSET=ascii ROW_FORMAT=Compact;
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO varchar_size_demo(c)
VALUES(REPEAT('a', 65532));
Query OK, 1 row affected (0.00 sec)

其中的REPEAT('a', 65532)是⼀个函数调⽤，它表示⽣成⼀个把
字符'a'重复65532次的字符串。前边说过，MySQL中磁盘和内存交
互的基本单位是⻚，也就是说MySQL是以⻚为基本单位来管理存储空
间的，我们的记录都会被分配到某个⻚中存储。⽽⼀个⻚的⼤⼩⼀般
是16KB，也就是16384字节，⽽⼀个VARCHAR(M)类型的列就最多
可以存储65532个字节，这样就可能造成⼀个⻚存放不了⼀条记录的
尴尬情况。

在Compact和Reduntant⾏格式中，对于占⽤存储空间⾮常⼤的
列，在记录的真实数据处只会存储该列的⼀部分数据，把剩余的数据
分散存储在⼏个其他的⻚中，然后记录的真实数据处⽤20个字节存
储指向这些⻚的地址（当然这20个字节中还包括这些分散在其他⻚
⾯中的数据的占⽤的字节数），从⽽可以找到剩余数据所在的⻚，如
图所示：

从图中可以看出来，对于Compact和Reduntant⾏格式来说，如果
某⼀列中的数据⾮常多的话，在本记录的真实数据处只会存储该列的
前768个字节的数据和⼀个指向其他⻚的地址，然后把剩下的数据存
放到其他⻚中，这个过程也叫做⾏溢出，存储超出768字节的那些⻚
⾯也被称为溢出⻚。画⼀个简图就是这样：

最后需要注意的是，不只是 VARCHAR(M) 类型的列，其他的
TEXT、BLOB 类型的列在存储数据⾮常多的时候也会发⽣⾏溢出。

⾏溢出的临界点

那发⽣⾏溢出的临界点是什么呢？也就是说在列存储多少字节的数据
时就会发⽣⾏溢出？

MySQL中规定⼀个⻚中⾄少存放两⾏记录，⾄于为什么这么规定我们
之后再说，现在看⼀下这个规定造成的影响。以上边的
varchar_size_demo表为例，它只有⼀个列c，我们往这个表中插
⼊两条记录，每条记录最少插⼊多少字节的数据才会⾏溢出的现象
呢？这得分析⼀下⻚中的空间都是如何利⽤的。

每个⻚除了存放我们的记录以外，也需要存储⼀些额外的信
息，乱七⼋糟的额外信息加起来需要136个字节的空间（现在
只要知道这个数字就好了），其他的空间都可以被⽤来存储记
录。

每个记录需要的额外信息是27字节。

这27个字节包括下边这些部分：

2个字节⽤于存储真实数据的⻓度
1个字节⽤于存储列是否是NULL值
5个字节⼤⼩的头信息
6个字节的row_id列
6个字节的transaction_id列
7个字节的roll_pointer列

假设⼀个列中存储的数据字节数为n，那么发⽣⾏溢出现象时需要满
⾜这个式⼦：

136 + 2×(27 + n) > 16384

求解这个式⼦得出的解是：n > 8098。也就是说如果⼀个列中存储
的数据不⼤于8098个字节，那就不会发⽣⾏溢出，否则就会发⽣⾏
溢出。不过这个8098个字节的结论只是针对只有⼀个列的
varchar_size_demo表来说的，如果表中有多个列，那上边的式
⼦和结论都需要改⼀改了，所以重点就是：你不⽤关注这个临界点是
什么，只要知道如果我们想⼀个⾏中存储了很⼤的数据时，可能发⽣
⾏溢出的现象。

Dynamic和Compressed⾏格式

下边要介绍另外两个⾏格式，Dynamic和Compressed⾏格式，我
现在使⽤的MySQL版本是5.7，它的默认⾏格式就是Dynamic，这俩
⾏格式和Compact⾏格式挺像，只不过在处理⾏溢出数据时有点⼉
分歧，它们不会在记录的真实数据处存储字段真实数据的前768个字
节，⽽是把所有的字节都存储到其他⻚⾯中，只在记录的真实数据处
存储其他⻚⾯的地址，就像这样：

Compressed⾏格式和Dynamic不同的⼀点是，Compressed⾏格
式会采⽤压缩算法对⻚⾯进⾏压缩，以节省空间。

CHAR(M)中的M值过⼤的情况

CHAR(M)类型的列可以存储的最⼤字节⻓度等于该列使⽤的字符集
表示⼀个字符需要的最⼤字节数和M的乘积。如果某个列使⽤的
是CHAR(M)类型，并且它可以存储的最⼤字节⻓度超过768字节，那
么不论我们使⽤的是上述4种的哪种⾏格式，InnoDB都会把该列当
成变⻓字段看待。⽐⽅说采⽤utf8mb4的CHAR(255)类型的列将会
被当作变⻓字段看待，因为4×255 > 768。

总结

1. ⻚是MySQL中磁盘和内存交互的基本单位，也是MySQL是管理
存储空间的基本单位。

2. 指定和修改⾏格式的语法如下：

CREATE TABLE 表名 (列的信息) ROW_FORMAT=⾏格式名
称

ALTER TABLE 表名 ROW_FORMAT=⾏格式名称

3. InnoDB⽬前定义了4中⾏格式

COMPACT⾏格式

具体组成如图：

Redundant⾏格式

具体组成如图：

Dynamic和Compressed⾏格式

这两种⾏格式类似于COMPACT⾏格式，只不过在处理⾏
溢出数据时有点⼉分歧，它们不会在记录的真实数据处存
储字符串的前768个字节，⽽是把所有的字节都存储到其
他⻚⾯中，只在记录的真实数据处存储其他⻚⾯的地址。

另外，Compressed⾏格式会采⽤压缩算法对⻚⾯进⾏压
缩。

⼀个⻚⼀般是16KB，当记录中的数据太多，当前⻚放不下的时
候，会把多余的数据存储到其他⻚中，这种现象称为⾏溢出。

