
InnoD 数据⻚结构
标签： MySQL 是怎样运⾏的

不同类型的⻚简介

前边我们简单提了⼀下⻚的概念，它是InnoDB管理存储空间的基本
单位，⼀个⻚的⼤⼩⼀般是16KB。InnoDB为了不同的⽬的⽽设计了
许多种不同类型的⻚，⽐如存放表空间头部信息的⻚，存放Insert
Buffer信息的⻚，存放INODE信息的⻚，存放undo⽇志信息的⻚等
等等等。当然了，如果我说的这些名词你⼀个都没有听过，就当我放
了个屁吧～ 不过这没有⼀⽑钱关系，我们今⼉个也不准备说这些类
型的⻚，我们聚焦的是那些存放我们表中记录的那种类型的⻚，官⽅
称这种存放记录的⻚为索引（INDEX）⻚，鉴于我们还没有了解过索
引是个什么东⻄，⽽这些表中的记录就是我们⽇常⼝中所称的数据，
所以⽬前还是叫这种存放记录的⻚为数据⻚吧。

数据⻚结构的快速浏览

数据⻚代表的这块16KB⼤⼩的存储空间可以被划分为多个部分，不
同部分有不同的功能，各个部分如图所示：

从图中可以看出，⼀个InnoDB数据⻚的存储空间⼤致被划分成了7
个部分，有的部分占⽤的字节数是确定的，有的部分占⽤的字节数是
不确定的。下边我们⽤表格的⽅式来⼤致描述⼀下这7个部分都存储
⼀些啥内容（快速的瞅⼀眼就⾏了，后边会详细唠叨的）：

名称 中⽂名
占⽤空间
⼤⼩

简单描述

File Header ⽂件头部 38字节 ⻚的⼀些通⽤信息

Page Header ⻚⾯头部 56字节
数据⻚专有的⼀些信

息

Infimum +
Supremum

最⼩记录和最⼤
记录

26字节 两个虚拟的⾏记录

User Records ⽤户记录 不确定
实际存储的⾏记录内

容

Free Space 空闲空间 不确定 ⻚中尚未使⽤的空间

Page Directory ⻚⾯⽬录 不确定
⻚中的某些记录的相

对位置

File Trailer ⽂件尾部 8字节 校验⻚是否完整

⼩贴⼠：

我们接下来并不打算按照⻚中各个部分的出现顺序来依次介绍它
们，因为各个部分中会出现很多⼤家⽬前不理解的概念，这会打击
各位读⽂章的信⼼与兴趣，希望各位能接受这种拍摄⼿法～

记录在⻚中的存储

在⻚的7个组成部分中，我们⾃⼰存储的记录会按照我们指定的⾏格
式存储到User Records部分。但是在⼀开始⽣成⻚的时候，其实
并没有User Records这个部分，每当我们插⼊⼀条记录，都会从
Free Space部分，也就是尚未使⽤的存储空间中申请⼀个记录⼤⼩
的空间划分到User Records部分，当Free Space部分的空间全
部被User Records部分替代掉之后，也就意味着这个⻚使⽤完
了，如果还有新的记录插⼊的话，就需要去申请新的⻚了，这个过程
的图示如下：

为了更好的管理在User Records中的这些记录，InnoDB可费了⼀
番⼒⽓呢，在哪费⼒⽓了呢？不就是把记录按照指定的⾏格式⼀条⼀
条摆在User Records部分么？其实这话还得从记录⾏格式的记录
头信息中说起。

记录头信息的秘密

为了故事的顺利发展，我们先创建⼀个表：

mysql> CREATE TABLE page_demo(
 -> c1 INT,
 -> c2 INT,
 -> c3 VARCHAR(10000),
 -> PRIMARY KEY (c1)
 ->) CHARSET=ascii ROW_FORMAT=Compact;
Query OK, 0 rows affected (0.03 sec)

这个新创建的page_demo表有3个列，其中c1和c2列是⽤来存储整
数的，c3列是⽤来存储字符串的。需要注意的是，我们把 c1 列指定
为主键，所以在具体的⾏格式中InnoDB就没必要为我们去创建那个
所谓的 row_id 隐藏列了。⽽且我们为这个表指定了ascii字符集
以及Compact的⾏格式。所以这个表中记录的⾏格式示意图就是这
样的：

从图中可以看到，我们特意把记录头信息的5个字节的数据给标出来
了，说明它很重要，我们再次先把这些记录头信息中各个属性的⼤体
意思浏览⼀下（我们⽬前使⽤Compact⾏格式进⾏演示）：

名称

⼤⼩
（单
位：
bit）

描述

预留位1 1 没有使⽤

预留位2 1 没有使⽤

delete_mask 1 标记该记录是否被删除

min_rec_mask 1 B+树的每层⾮叶⼦节点中的最⼩记录都会
添加该标记

n_owned 4 表示当前记录拥有的记录数

heap_no 13 表示当前记录在记录堆的位置信息

record_type 3
表示当前记录的类型，0表示普通记录，1
表示B+树⾮叶节点记录，2表示最⼩记

录，3表示最⼤记录
next_record 16 表示下⼀条记录的相对位置

由于我们现在主要在唠叨记录头信息的作⽤，所以为了⼤家理解上的
⽅便，我们只在page_demo表的⾏格式演示图中画出有关的头信息
属性以及c1、c2、c3列的信息（其他信息没画不代表它们不存在
啊，只是为了理解上的⽅便在图中省略了～），简化后的⾏格式示意
图就是这样：

下边我们试着向page_demo表中插⼊⼏条记录：

mysql> INSERT INTO page_demo VALUES(1, 100,
'aaaa'), (2, 200, 'bbbb'), (3, 300, 'cccc'), (4,
400, 'dddd');
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

为了⽅便⼤家分析这些记录在⻚的User Records部分中是怎么表
示的，我把记录中头信息和实际的列数据都⽤⼗进制表示出来了（其
实是⼀堆⼆进制位），所以这些记录的示意图就是：

看这个图的时候需要注意⼀下，各条记录在User Records中存储
的时候并没有空隙，这⾥只是为了⼤家观看⽅便才把每条记录单独画
在⼀⾏中。我们对照着这个图来看看记录头信息中的各个属性是啥意
思：

delete_mask

这个属性标记着当前记录是否被删除，占⽤1个⼆进制位，值
为0的时候代表记录并没有被删除，为1的时候代表记录被删除
掉了。

啥？被删除的记录还在⻚中么？是的，摆在台⾯上的和背地⾥
做的可能⼤相径庭，你以为它删除了，可它还在真实的磁盘上
[摊⼿]（忽然想起冠希～）。这些被删除的记录之所以不⽴即
从磁盘上移除，是因为移除它们之后把其他的记录在磁盘上重
新排列需要性能消耗，所以只是打⼀个删除标记⽽已，所有被
删除掉的记录都会组成⼀个所谓的垃圾链表，在这个链表中的
记录占⽤的空间称之为所谓的可重⽤空间，之后如果有新记录
插⼊到表中的话，可能把这些被删除的记录占⽤的存储空间覆
盖掉。

⼩贴⼠：

将这个delete_mask位设置为1和将被删除的记录加⼊到垃圾
链表中其实是两个阶段，我们后边在介绍事务的时候会详细唠
叨删除操作的详细过程，稍安勿躁。

min_rec_mask

B+树的每层⾮叶⼦节点中的最⼩记录都会添加该标记，什么是
个B+树？什么是个⾮叶⼦节点？好吧，等会再聊这个问题。反
正我们⾃⼰插⼊的四条记录的min_rec_mask值都是0，意味
着它们都不是B+树的⾮叶⼦节点中的最⼩记录。

n_owned

这个暂时保密，稍后它是主⻆～

heap_no

这个属性表示当前记录在本⻚中的位置，从图中可以看出来，
我们插⼊的4条记录在本⻚中的位置分别是：2、3、4、5。是
不是少了点啥？是的，怎么不⻅heap_no值为0和1的记录呢？

这其实是设计InnoDB的⼤叔们玩的⼀个⼩把戏，他们⾃动给
每个⻚⾥边⼉加了两个记录，由于这两个记录并不是我们⾃⼰
插⼊的，所以有时候也称为伪记录或者虚拟记录。这两个伪记
录⼀个代表最⼩记录，⼀个代表最⼤记录，等⼀下哈~，记录
可以⽐⼤⼩么？

是的，记录也可以⽐⼤⼩，对于⼀条完整的记录来说，⽐较记
录的⼤⼩就是⽐较主键的⼤⼩。⽐⽅说我们插⼊的4⾏记录的
主键值分别是：1、2、3、4，这也就意味着这4条记录的⼤⼩
从⼩到⼤依次递增。

⼩贴⼠：

请注意我强调了对于`⼀条完整的记录`来说，⽐较记录的⼤⼩
就相当于⽐的是主键的⼤⼩。后边我们还会介绍只存储⼀条记
录的部分列的情况，敬请期待～

但是不管我们向⻚中插⼊了多少⾃⼰的记录，设计InnoDB的
⼤叔们都规定他们定义的两条伪记录分别为最⼩记录与最⼤记
录。这两条记录的构造⼗分简单，都是由5字节⼤⼩的记录头
信息和8字节⼤⼩的⼀个固定的部分组成的，如图所示

由于这两条记录不是我们⾃⼰定义的记录，所以它们并不存放
在⻚的User Records部分，他们被单独放在⼀个称
为Infimum + Supremum的部分，如图所示：

从图中我们可以看出来，最⼩记录和最⼤记录的heap_no值分
别是0和1，也就是说它们的位置最靠前。

record_type

这个属性表示当前记录的类型，⼀共有4种类型的记录，0表示
普通记录，1表示B+树⾮叶节点记录，2表示最⼩记录，3表示
最⼤记录。从图中我们也可以看出来，我们⾃⼰插⼊的记录就
是普通记录，它们的record_type值都是0，⽽最⼩记录和最
⼤记录的record_type值分别为2和3。

⾄于record_type为1的情况，我们之后在说索引的时候会重
点强调的。

next_record

这玩意⼉⾮常重要，它表示从当前记录的真实数据到下⼀条记
录的真实数据的地址偏移量。⽐⽅说第⼀条记录的
next_record值为32，意味着从第⼀条记录的真实数据的地
址处向后找32个字节便是下⼀条记录的真实数据。如果你熟悉
数据结构的话，就⽴即明⽩了，这其实是个链表，可以通过⼀
条记录找到它的下⼀条记录。但是需要注意注意再注意的⼀点
是，下⼀条记录指得并不是按照我们插⼊顺序的下⼀条记录，
⽽是按照主键值由⼩到⼤的顺序的下⼀条记录。⽽且规定

Infimum记录（也就是最⼩记录） 的下⼀条记录就本⻚中主
键值最⼩的⽤户记录，⽽本⻚中主键值最⼤的⽤户记录的下⼀
条记录就是 Supremum记录（也就是最⼤记录） ，为了更形
象的表示⼀下这个next_record起到的作⽤，我们⽤箭头来
替代⼀下next_record中的地址偏移量：

从图中可以看出来，我们的记录按照主键从⼩到⼤的顺序形成
了⼀个单链表。最⼤记录的next_record的值为0，这也就是
说最⼤记录是没有下⼀条记录了，它是这个单链表中的最后⼀
个节点。如果从中删除掉⼀条记录，这个链表也是会跟着变化
的，⽐如我们把第2条记录删掉：

mysql> DELETE FROM page_demo WHERE c1 = 2;
Query OK, 1 row affected (0.02 sec)

删掉第2条记录后的示意图就是：

从图中可以看出来，删除第2条记录前后主要发⽣了这些变
化：

第2条记录并没有从存储空间中移除，⽽是把该条记录的
delete_mask值设置为1。
第2条记录的next_record值变为了0，意味着该记录没
有下⼀条记录了。
第1条记录的next_record指向了第3条记录。
还有⼀点你可能忽略了，就是最⼤记录的n_owned值从5
变成了4，关于这⼀点的变化我们稍后会详细说明的。

所以，不论我们怎么对⻚中的记录做增删改操作，InnoDB始终
会维护⼀条记录的单链表，链表中的各个节点是按照主键值由
⼩到⼤的顺序连接起来的。

⼩贴⼠：

你会不会觉得next_record这个指针有点⼉怪，为啥要指向
记录头信息和真实数据之间的位置呢？为啥不⼲脆指向整条记
录的开头位置，也就是记录的额外信息开头的位置呢？

因为这个位置刚刚好，向左读取就是记录头信息，向右读取就
是真实数据。⽽且next_record指针始终是从该位置开始向
左读取的第⼀个属性，这意味着可以⾮常有效地读取⻚⾯中的
所有记录，⽽⽆需解析变⻓字段⻓度列表、NULL值列表之类的
可变⻓度部分。另外，由于从next_record指针处向左读是
记录的额外信息部分，所以我们之前说变⻓字段⻓度列
表、NULL值列表中的信息都是逆序存放的意思⼤家也就理解
了。

再来看⼀个有意思的事情，因为主键值为2的记录被我们删掉了，但
是存储空间却没有回收，如果我们再次把这条记录插⼊到表中，会发
⽣什么事呢？

mysql> INSERT INTO page_demo VALUES(2, 200,
'bbbb');
Query OK, 1 row affected (0.00 sec)

我们看⼀下记录的存储情况：

从图中可以看到，InnoDB并没有因为新记录的插⼊⽽为它申请新的
存储空间，⽽是直接复⽤了原来被删除记录的存储空间。

⼩贴⼠：

当数据⻚中存在多条被删除掉的记录时，这些记录的next_record
属性将会把这些被删除掉的记录组成⼀个垃圾链表，以备之后重⽤
这部分存储空间。

Page Directory（⻚⽬录）

现在我们了解了记录在⻚中按照主键值由⼩到⼤顺序串联成⼀个单链
表，那如果我们想根据主键值查找⻚中的某条记录该咋办呢？⽐如说
这样的查询语句：

SELECT * FROM page_demo WHERE c1 = 3;

最笨的办法：从Infimum记录（最⼩记录）开始，沿着链表⼀直往
后找，总有⼀天会找到（或者找不到[摊⼿]），在找的时候还能投机
取巧，因为链表中各个记录的值是按照从⼩到⼤顺序排列的，所以当

链表的某个节点代表的记录的主键值⼤于你想要查找的主键值时，你
就可以停⽌查找了，因为该节点后边的节点的主键值依次递增。

这个⽅法在⻚中存储的记录数量⽐较少的情况⽤起来也没啥问题，⽐
⽅说现在我们的表⾥只有4条⾃⼰插⼊的记录，所以最多找4次就可
以把所有记录都遍历⼀遍，但是如果⼀个⻚中存储了⾮常多的记录，
这么查找对性能来说还是有损耗的，所以我们说这种遍历查找这是⼀
个笨办法。但是设计InnoDB的⼤叔们是什么⼈，他们能⽤这么笨的
办法么，当然是要设计⼀种更6的查找⽅式喽，他们从书的⽬录中找
到了灵感。

我们平常想从⼀本书中查找某个内容的时候，⼀般会先看⽬录，找到
需要查找的内容对应的书的⻚码，然后到对应的⻚码查看内容。设计
InnoDB的⼤叔们为我们的记录也制作了⼀个类似的⽬录，他们的制
作过程是这样的：

1. 将所有正常的记录（包括最⼤和最⼩记录，不包括标记为已删
除的记录）划分为⼏个组。

2. 每个组的最后⼀条记录（也就是组内最⼤的那条记录）的头信
息中的n_owned属性表示该记录拥有多少条记录，也就是该组
内共有⼏条记录。

3. 将每个组的最后⼀条记录的地址偏移量单独提取出来按顺序存
储到靠近⻚的尾部的地⽅，这个地⽅就是所谓的Page
Directory，也就是⻚⽬录（此时应该返回头看看⻚⾯各个部
分的图）。⻚⾯⽬录中的这些地址偏移量被称为槽（英⽂
名：Slot），所以这个⻚⾯⽬录就是由槽组成的。

⽐⽅说现在的page_demo表中正常的记录共有6条，InnoDB会把它
们分成两组，第⼀组中只有⼀个最⼩记录，第⼆组中是剩余的5条记
录，看下边的示意图：

从这个图中我们需要注意这么⼏点：

现在⻚⽬录部分中有两个槽，也就意味着我们的记录被分成了
两个组，槽0中的值是112，代表最⼤记录的地址偏移量（就是
从⻚⾯的0字节开始数，数112个字节）；槽1中的值是99，代
表最⼩记录的地址偏移量。

注意最⼩和最⼤记录的头信息中的n_owned属性

最⼩记录的n_owned值为1，这就代表着以最⼩记录结尾
的这个分组中只有1条记录，也就是最⼩记录本身。
最⼤记录的n_owned值为5，这就代表着以最⼤记录结尾
的这个分组中只有5条记录，包括最⼤记录本身还有我们
⾃⼰插⼊的4条记录。

99和112这样的地址偏移量很不直观，我们⽤箭头指向的⽅式替代数
字，这样更易于我们理解，所以修改后的示意图就是这样：

哎呀，咋看上去怪怪的，这么乱的图对于我这个强迫症真是不能忍，
那我们就暂时不管各条记录在存储设备上的排列⽅式了，单纯从逻辑
上看⼀下这些记录和⻚⽬录的关系：

这样看就顺眼多了嘛！为什么最⼩记录的n_owned值为1，⽽最⼤记
录的n_owned值为5呢，这⾥头有什么猫腻么？

是的，设计InnoDB的⼤叔们对每个分组中的记录条数是有规定的：
对于最⼩记录所在的分组只能有 1 条记录，最⼤记录所在的分组拥
有的记录条数只能在 1~8 条之间，剩下的分组中记录的条数范围只
能在是 4~8 条之间。所以分组是按照下边的步骤进⾏的：

初始情况下⼀个数据⻚⾥只有最⼩记录和最⼤记录两条记录，
它们分属于两个分组。

之后每插⼊⼀条记录，都会从⻚⽬录中找到主键值⽐本记录的
主键值⼤并且差值最⼩的槽，然后把该槽对应的记录的
n_owned值加1，表示本组内⼜添加了⼀条记录，直到该组中
的记录数等于8个。

在⼀个组中的记录数等于8个后再插⼊⼀条记录时，会将组中
的记录拆分成两个组，⼀个组中4条记录，另⼀个5条记录。这
个过程会在⻚⽬录中新增⼀个槽来记录这个新增分组中最⼤的
那条记录的偏移量。

由于现在page_demo表中的记录太少，⽆法演示添加了⻚⽬录之后
加快查找速度的过程，所以再往page_demo表中添加⼀些记录：

mysql> INSERT INTO page_demo VALUES(5, 500,
'eeee'), (6, 600, 'ffff'), (7, 700, 'gggg'), (8,
800, 'hhhh'), (9, 900, 'iiii'), (10, 1000,
'jjjj'), (11, 1100, 'kkkk'), (12, 1200, 'llll'),
(13, 1300, 'mmmm'), (14, 1400, 'nnnn'), (15,
1500, 'oooo'), (16, 1600, 'pppp');
Query OK, 12 rows affected (0.00 sec)
Records: 12 Duplicates: 0 Warnings: 0

哈，我们⼀⼝⽓⼜往表中添加了12条记录，现在就⼀共有16条正常
的记录了（包括最⼩和最⼤记录），这些记录被分成了5个组，如图
所示：

因为把16条记录的全部信息都画在⼀张图⾥太占地⽅，让⼈眼花缭
乱的，所以只保留了⽤户记录头信息中的n_owned和next_record
属性，也省略了各个记录之间的箭头，我没画不等于没有啊！现在看
怎么从这个⻚⽬录中查找记录。因为各个槽代表的记录的主键值都是
从⼩到⼤排序的，所以我们可以使⽤所谓的⼆分法来进⾏快速查找。
4个槽的编号分别是：0、1、2、3、4，所以初始情况下最低的槽就
是low=0，最⾼的槽就是high=4。⽐⽅说我们想找主键值为5的记
录，过程是这样的：

1. 计算中间槽的位置：(0+4)/2=2，所以查看槽2对应记录的主
键值为8，⼜因为8 > 5，所以设置high=2，low保持不变。

2. 重新计算中间槽的位置：(0+2)/2=1，所以查看槽1对应的主
键值为4。所以设置low=1，high保持不变。

3. 因为high - low的值为1，所以确定主键值为5的记录在槽2
对应的组中，接下来就是通过遍历槽2对应的组的链表来进⾏
查找了。由于⼀个组中包含的记录条数只能是1~8条，所以遍
历⼀个组中的记录的代价是很⼩的。

所以在⼀个数据⻚中查找指定主键值的记录的过程分为两步：

1. 通过⼆分法确定该记录所在的槽。

2. 通过记录的next_record属性遍历该槽所在的组中的各个记
录。

⼩贴⼠：

如果你不知道⼆分法是个什么东⻄，找个基础算法书看看吧。什
么？算法书写的看不懂？等我～

Page Header（⻚⾯头部）

设计InnoDB的⼤叔们为了能得到⼀个数据⻚中存储的记录的状态信
息，⽐如本⻚中已经存储了多少条记录，第⼀条记录的地址是什么，
⻚⽬录中存储了多少个槽等等，特意在⻚中定义了⼀个叫Page
Header的部分，它是⻚结构的第⼆部分，这个部分占⽤固定的56个
字节，专⻔存储各种状态信息，具体各个字节都是⼲嘛的看下表：

名称
占⽤
空间
⼤⼩

描述

PAGE_N_DIR_SLOTS 2字
节

在⻚⽬录中的槽数量

PAGE_HEAP_TOP 2字
节
还未使⽤的空间最⼩地址，也就是说从

该地址之后就是Free Space

PAGE_N_HEAP 2字
节
本⻚中的记录的数量（包括最⼩和最⼤
记录以及标记为删除的记录）

PAGE_FREE
2字
节

第⼀个已经标记为删除的记录地址（各
个已删除的记录通过next_record也
会组成⼀个单链表，这个单链表中的记

录可以被重新利⽤）

PAGE_GARBAGE 2字
节

已删除记录占⽤的字节数

PAGE_LAST_INSERT 2字
节

最后插⼊记录的位置

PAGE_DIRECTION 2字
节

记录插⼊的⽅向

PAGE_N_DIRECTION 2字
节

⼀个⽅向连续插⼊的记录数量

PAGE_N_RECS 2字
节
该⻚中记录的数量（不包括最⼩和最⼤
记录以及被标记为删除的记录）

PAGE_MAX_TRX_ID 8字
节
修改当前⻚的最⼤事务ID，该值仅在⼆

级索引中定义

PAGE_LEVEL 2字
节

当前⻚在B+树中所处的层级

PAGE_INDEX_ID 8字
节

索引ID，表示当前⻚属于哪个索引

PAGE_BTR_SEG_LEAF 10字
节

B+树叶⼦段的头部信息，仅在B+树的
Root⻚定义

PAGE_BTR_SEG_TOP 10字
节

B+树⾮叶⼦段的头部信息，仅在B+树
的Root⻚定义

如果⼤家认真看过前边的⽂章，从PAGE_N_DIR_SLOTS
到PAGE_LAST_INSERT以及PAGE_N_RECS的意思⼤家⼀定是清楚
的，如果不清楚，对不起，你应该回头再看⼀遍前边的⽂章。剩下的
状态信息看不明⽩不要着急，饭要⼀⼝⼀⼝吃，东⻄要⼀点⼀点学
（⼀定要稍安勿躁哦，不要被这些名词吓到）。在这⾥我们先唠叨⼀
下PAGE_DIRECTION和PAGE_N_DIRECTION的意思：

PAGE_DIRECTION

假如新插⼊的⼀条记录的主键值⽐上⼀条记录的主键值⽐上⼀
条记录⼤，我们说这条记录的插⼊⽅向是右边，反之则是左
边。⽤来表示最后⼀条记录插⼊⽅向的状态就
是PAGE_DIRECTION。

PAGE_N_DIRECTION

假设连续⼏次插⼊新记录的⽅向都是⼀致的，InnoDB会把沿
着同⼀个⽅向插⼊记录的条数记下来，这个条数就
⽤PAGE_N_DIRECTION这个状态表示。当然，如果最后⼀条
记录的插⼊⽅向改变了的话，这个状态的值会被清零重新统
计。

⾄于我们没提到的那写属性，我没说是因为现在不需要⼤家知道。不
要着急，当我们学完了后边的内容，你再回头看，⼀切都是那么清
晰。

⼩贴⼠：

说到这个有些东⻄后边我们学过后回头看就很清晰的事⼉不禁让我
想到了乔布斯在斯坦福⼤学的演讲，摆⼀下原⽂：

“You can't connect the dots looking forward; you
can only connect them looking backwards. So you
have to trust that the dots will somehow connect
in your future.You have to trust in something -
your gut, destiny, life, karma, whatever. This
approach has never let me down, and it has made
all the difference in my life.”

上边这段话纯属⼼⾎来潮写的，⼤意是坚持做⾃⼰喜欢的事⼉，你
在做的时候可能并不能搞清楚这些事⼉对⾃⼰之后的⼈⽣有啥影
响，但当你⼀路⾛来回头看时，⼀切都是那么清晰，就像是命中注
定的⼀样。上述内容跟MySQL毫⽆⼲系，请忽略～

File Header（⽂件头部）

上边唠叨的Page Header是专⻔针对数据⻚记录的各种状态信息，
⽐⽅说⻚⾥头有多少个记录了呀，有多少个槽了呀。我们现在描述的
File Header针对各种类型的⻚都通⽤，也就是说不同类型的⻚都
会以File Header作为第⼀个组成部分，它描述了⼀些针对各种⻚
都通⽤的⼀些信息，⽐⽅说这个⻚的编号是多少，它的上⼀个⻚、下
⼀个⻚是谁啦吧啦吧啦～ 这个部分占⽤固定的38个字节，是由下边
这些内容组成的：

名称

占
⽤
空
间
⼤
⼩

描述

FIL_PAGE_SPACE_OR_CHKSUM 4字
节

⻚的校验和
（checksum值）

FIL_PAGE_OFFSET 4字
节

⻚号

FIL_PAGE_PREV 4字
节

上⼀个⻚的⻚号

FIL_PAGE_NEXT 4字
节

下⼀个⻚的⻚号

FIL_PAGE_LSN 8字
节

⻚⾯被最后修改时
对应的⽇志序列位
置（英⽂名是：Log

Sequence
Number）

FIL_PAGE_TYPE
2字
节 该⻚的类型

FIL_PAGE_FILE_FLUSH_LSN 8字
节

仅在系统表空间的
⼀个⻚中定义，代
表⽂件⾄少被刷新
到了对应的LSN值

FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID4字
节
⻚属于哪个表空间

对照着这个表格，我们看⼏个⽬前⽐较重要的部分：

FIL_PAGE_SPACE_OR_CHKSUM

这个代表当前⻚⾯的校验和（checksum）。啥是个校验和？
就是对于⼀个很⻓很⻓的字节串来说，我们会通过某种算法来
计算⼀个⽐较短的值来代表这个很⻓的字节串，这个⽐较短的
值就称为校验和。这样在⽐较两个很⻓的字节串之前先⽐较这
两个⻓字节串的校验和，如果校验和都不⼀样两个⻓字节串肯
定是不同的，所以省去了直接⽐较两个⽐较⻓的字节串的时间
损耗。

FIL_PAGE_OFFSET

每⼀个⻚都有⼀个单独的⻚号，就跟你的身份证号码⼀
样，InnoDB通过⻚号来可以唯⼀定位⼀个⻚。

FIL_PAGE_TYPE

这个代表当前⻚的类型，我们前边说过，InnoDB为了不同的
⽬的⽽把⻚分为不同的类型，我们上边介绍的其实都是存储记
录的数据⻚，其实还有很多别的类型的⻚，具体如下表：

类型名称
⼗六进
制

描述

FIL_PAGE_TYPE_ALLOCATED 0x0000 最新分配，还没使⽤
FIL_PAGE_UNDO_LOG 0x0002 Undo⽇志⻚

FIL_PAGE_INODE 0x0003 段信息节点

FIL_PAGE_IBUF_FREE_LIST 0x0004 Insert Buffer空闲列
表

FIL_PAGE_IBUF_BITMAP 0x0005 Insert Buffer位图
FIL_PAGE_TYPE_SYS 0x0006 系统⻚

FIL_PAGE_TYPE_TRX_SYS 0x0007 事务系统数据

FIL_PAGE_TYPE_FSP_HDR 0x0008 表空间头部信息

FIL_PAGE_TYPE_XDES 0x0009 扩展描述⻚

FIL_PAGE_TYPE_BLOB 0x000A BLOB⻚

FIL_PAGE_INDEX 0x45BF 索引⻚，也就是我们
所说的数据⻚

我们存放记录的数据⻚的类型其实是FIL_PAGE_INDEX，也就
是所谓的索引⻚。⾄于啥是个索引，且听下回分解～

FIL_PAGE_PREV和FIL_PAGE_NEXT

我们前边强调过，InnoDB都是以⻚为单位存放数据的，有时
候我们存放某种类型的数据占⽤的空间⾮常⼤（⽐⽅说⼀张表
中可以有成千上万条记录），InnoDB可能不可以⼀次性为这
么多数据分配⼀个⾮常⼤的存储空间，如果分散到多个不连续
的⻚中存储的话需要把这些⻚关联起来，FIL_PAGE_PREV和
FIL_PAGE_NEXT就分别代表本⻚的上⼀个和下⼀个⻚的⻚
号。这样通过建⽴⼀个双向链表把许许多多的⻚就都串联起来
了，⽽⽆需这些⻚在物理上真正连着。需要注意的是，并不是
所有类型的⻚都有上⼀个和下⼀个⻚的属性，不过我们本集中
唠叨的数据⻚（也就是类型为FIL_PAGE_INDEX的⻚）是有这
两个属性的，所以所有的数据⻚其实是⼀个双链表，就像这
样：

关于File Header的其他属性我们暂时⽤不到，等⽤到的时候再提
哈～

File Trailer

我们知道InnoDB存储引擎会把数据存储到磁盘上，但是磁盘速度太
慢，需要以⻚为单位把数据加载到内存中处理，如果该⻚中的数据在
内存中被修改了，那么在修改后的某个时间需要把数据同步到磁盘
中。但是在同步了⼀半的时候中断电了咋办，这不是莫名尴尬么？为
了检测⼀个⻚是否完整（也就是在同步的时候有没有发⽣只同步⼀半
的尴尬情况），设计InnoDB的⼤叔们在每个⻚的尾部都加了⼀
个File Trailer部分，这个部分由8个字节组成，可以分成2个⼩
部分：

前4个字节代表⻚的校验和

这个部分是和File Header中的校验和相对应的。每当⼀个
⻚⾯在内存中修改了，在同步之前就要把它的校验和算出来，
因为File Header在⻚⾯的前边，所以校验和会被⾸先同步
到磁盘，当完全写完时，校验和也会被写到⻚的尾部，如果完
全同步成功，则⻚的⾸部和尾部的校验和应该是⼀致的。如果
写了⼀半⼉断电了，那么在File Header中的校验和就代表
着已经修改过的⻚，⽽在File Trialer中的校验和代表着原
先的⻚，⼆者不同则意味着同步中间出了错。

后4个字节代表⻚⾯被最后修改时对应的⽇志序列位置（LSN）

这个部分也是为了校验⻚的完整性的，只不过我们⽬前还没说
LSN是个什么意思，所以⼤家可以先不⽤管这个属性。

这个File Trailer与FILE Header类似，都是所有类型的⻚通⽤
的。

总结

1. InnoDB为了不同的⽬的⽽设计了不同类型的⻚，我们把⽤于存
放记录的⻚叫做数据⻚。

2. ⼀个数据⻚可以被⼤致划分为7个部分，分别是

File Header，表示⻚的⼀些通⽤信息，占固定的38字
节。
Page Header，表示数据⻚专有的⼀些信息，占固定的
56个字节。
Infimum + Supremum，两个虚拟的伪记录，分别表示
⻚中的最⼩和最⼤记录，占固定的26个字节。
User Records：真实存储我们插⼊的记录的部分，⼤
⼩不固定。
Free Space：⻚中尚未使⽤的部分，⼤⼩不确定。
Page Directory：⻚中的某些记录相对位置，也就是
各个槽在⻚⾯中的地址偏移量，⼤⼩不固定，插⼊的记录
越多，这个部分占⽤的空间越多。
File Trailer：⽤于检验⻚是否完整的部分，占⽤固
定的8个字节。

3. 每个记录的头信息中都有⼀个next_record属性，从⽽使⻚
中的所有记录串联成⼀个单链表。

4. InnoDB会为把⻚中的记录划分为若⼲个组，每个组的最后⼀
个记录的地址偏移量作为⼀个槽，存放在Page Directory
中，所以在⼀个⻚中根据主键查找记录是⾮常快的，分为两
步：

通过⼆分法确定该记录所在的槽。

通过记录的next_record属性遍历该槽所在的组中的各个
记录。

5. 每个数据⻚的File Header部分都有上⼀个和下⼀个⻚的编
号，所以所有的数据⻚会组成⼀个双链表。

6. 为保证从内存中同步到磁盘的⻚的完整性，在⻚的⾸部和尾部
都会存储⻚中数据的校验和和⻚⾯最后修改时对应的LSN值，
如果⾸部和尾部的校验和和LSN值校验不成功的话，就说明同
步过程出现了问题。

