
B+树索引
标签： MySQL是怎样运⾏的

前边我们详细唠叨了InnoDB数据⻚的7个组成部分，知道了各个数
据⻚可以组成⼀个双向链表，⽽每个数据⻚中的记录会按照主键值从
⼩到⼤的顺序组成⼀个单向链表，每个数据⻚都会为存储在它⾥边⼉
的记录⽣成⼀个⻚⽬录，在通过主键查找某条记录的时候可以在⻚⽬
录中使⽤⼆分法快速定位到对应的槽，然后再遍历该槽对应分组中的
记录即可快速找到指定的记录（如果你对这段话有⼀丁点⼉疑惑，那
么接下来的部分不适合你，返回去看⼀下数据⻚结构吧）。⻚和记录
的关系示意图如下：

其中⻚a、⻚b、⻚c ... ⻚n 这些⻚可以不在物理结构上相连，只要
通过双向链表相关联即可。

没有索引的查找

本集的主题是索引，在正式介绍索引之前，我们需要了解⼀下没有索
引的时候是怎么查找记录的。为了⽅便⼤家理解，我们下边先只唠叨
搜索条件为对某个列精确匹配的情况，所谓精确匹配，就是搜索条件
中⽤等于=连接起的表达式，⽐如这样：

SELECT [列名列表] FROM 表名 WHERE 列名 = xxx;

在⼀个⻚中的查找

假设⽬前表中的记录⽐较少，所有的记录都可以被存放到⼀个⻚中，
在查找记录的时候可以根据搜索条件的不同分为两种情况：

以主键为搜索条件

这个查找过程我们已经很熟悉了，可以在⻚⽬录中使⽤⼆分法
快速定位到对应的槽，然后再遍历该槽对应分组中的记录即可
快速找到指定的记录。

以其他列作为搜索条件

对⾮主键列的查找的过程可就不这么幸运了，因为在数据⻚中
并没有对⾮主键列建⽴所谓的⻚⽬录，所以我们⽆法通过⼆分
法快速定位相应的槽。这种情况下只能从最⼩记录开始依次遍
历单链表中的每条记录，然后对⽐每条记录是不是符合搜索条
件。很显然，这种查找的效率是⾮常低的。

在很多⻚中查找

⼤部分情况下我们表中存放的记录都是⾮常多的，需要好多的数据⻚
来存储这些记录。在很多⻚中查找记录的话可以分为两个步骤：

1. 定位到记录所在的⻚。
2. 从所在的⻚内中查找相应的记录。

在没有索引的情况下，不论是根据主键列或者其他列的值进⾏查找，
由于我们并不能快速的定位到记录所在的⻚，所以只能从第⼀个⻚沿
着双向链表⼀直往下找，在每⼀个⻚中根据我们刚刚唠叨过的查找⽅
式去查找指定的记录。因为要遍历所有的数据⻚，所以这种⽅式显然

是超级耗时的，如果⼀个表有⼀亿条记录，使⽤这种⽅式去查找记录
那要等到猴年⻢⽉才能等到查找结果。所以祖国和⼈⺠都在期盼⼀种
能⾼效完成搜索的⽅法，索引同志就要亮相登台了。

索引

为了故事的顺利发展，我们先建⼀个表：

mysql> CREATE TABLE index_demo(
 -> c1 INT,
 -> c2 INT,
 -> c3 CHAR(1),
 -> PRIMARY KEY(c1)
 ->) ROW_FORMAT = Compact;
Query OK, 0 rows affected (0.03 sec)

这个新建的index_demo表中有2个INT类型的列，1个CHAR(1)类
型的列，⽽且我们规定了c1列为主键，这个表使⽤Compact⾏格式
来实际存储记录的。为了我们理解上的⽅便，我们简化了⼀
下index_demo表的⾏格式示意图：

我们只在示意图⾥展示记录的这⼏个部分：

record_type：记录头信息的⼀项属性，表示记录的类型，0
表示普通记录、2表示最⼩记录、3表示最⼤记录、1我们还没
⽤过，等会再说～

next_record：记录头信息的⼀项属性，表示下⼀条地址相
对于本条记录的地址偏移量，为了⽅便⼤家理解，我们都会⽤
箭头来表明下⼀条记录是谁。

各个列的值：这⾥只记录在index_demo表中的三个列，分别
是c1、c2和c3。

其他信息：除了上述3种信息以外的所有信息，包括其他隐藏
列的值以及记录的额外信息。

为了节省篇幅，我们之后的示意图中会把记录的其他信息这个部分省
略掉，因为它占地⽅并且不会有什么观赏效果。另外，为了⽅便理
解，我们觉得把记录竖着放看起来感觉更好，所以将记录格式示意图
的其他信息去掉并把它竖起来的效果就是这样：

把⼀些记录放到⻚⾥边的示意图就是：

⼀个简单的索引⽅案

回到正题，我们在根据某个搜索条件查找⼀些记录时为什么要遍历所
有的数据⻚呢？因为各个⻚中的记录并没有规律，我们并不知道我们
的搜索条件匹配哪些⻚中的记录，所以 不得不 依次遍历所有的数据
⻚。所以如果我们想快速的定位到需要查找的记录在哪些数据⻚中该
咋办？还记得我们为根据主键值快速定位⼀条记录在⻚中的位置⽽设
⽴的⻚⽬录么？我们也可以想办法为快速定位记录所在的数据⻚⽽建
⽴⼀个别的⽬录，建这个⽬录必须完成下边这些事⼉：

下⼀个数据⻚中⽤户记录的主键值必须⼤于上⼀个⻚中⽤户记
录的主键值。

为了故事的顺利发展，我们这⾥需要做⼀个假设：假设我们的
每个数据⻚最多能存放3条记录（实际上⼀个数据⻚⾮常⼤，
可以存放下好多记录）。有了这个假设之后我们
向index_demo表插⼊3条记录：

mysql> INSERT INTO index_demo VALUES(1, 4,
'u'), (3, 9, 'd'), (5, 3, 'y');
Query OK, 3 rows affected (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 0

那么这些记录已经按照主键值的⼤⼩串联成⼀个单向链表了，
如图所示：

从图中可以看出来，index_demo表中的3条记录都被插⼊到
了编号为10的数据⻚中了。此时我们再来插⼊⼀条记录：

mysql> INSERT INTO index_demo VALUES(4, 4,
'a');
Query OK, 1 row affected (0.00 sec)

因为⻚10最多只能放3条记录，所以我们不得不再分配⼀个新
⻚：

咦？怎么分配的⻚号是28呀，不应该是11么？再次强调⼀遍，
新分配的数据⻚编号可能并不是连续的，也就是说我们使⽤的
这些⻚在存储空间⾥可能并不挨着。它们只是通过维护着上⼀
个⻚和下⼀个⻚的编号⽽建⽴了链表关系。另外，⻚10中⽤户
记录最⼤的主键值是5，⽽⻚28中有⼀条记录的主键值是4，因
为5 > 4，所以这就不符合下⼀个数据⻚中⽤户记录的主键值
必须⼤于上⼀个⻚中⽤户记录的主键值的要求，所以在插⼊主
键值为4的记录的时候需要伴随着⼀次记录移动，也就是把主
键值为5的记录移动到⻚28中，然后再把主键值为4的记录插⼊
到⻚10中，这个过程的示意图如下：

这个过程表明了在对⻚中的记录进⾏增删改操作的过程中，我
们必须通过⼀些诸如记录移动的操作来始终保证这个状态⼀直
成⽴：下⼀个数据⻚中⽤户记录的主键值必须⼤于上⼀个⻚中
⽤户记录的主键值。这个过程我们也可以称为⻚分裂。

给所有的⻚建⽴⼀个⽬录项。

由于数据⻚的编号可能并不是连续的，所以在向index_demo
表中插⼊许多条记录后，可能是这样的效果：

因为这些16KB的⻚在物理存储上可能并不挨着，所以如果想从
这么多⻚中根据主键值快速定位某些记录所在的⻚，我们需要
给它们做个⽬录，每个⻚对应⼀个⽬录项，每个⽬录项包括下
边两个部分：

⻚的⽤户记录中最⼩的主键值，我们⽤key来表示。
⻚号，我们⽤page_no表示。

所以我们为上边⼏个⻚做好的⽬录就像这样⼦：

以⻚28为例，它对应⽬录项2，这个⽬录项中包含着该⻚的⻚
号28以及该⻚中⽤户记录的最⼩主键值5。我们只需要把⼏个
⽬录项在物理存储器上连续存储，⽐如把他们放到⼀个数组
⾥，就可以实现根据主键值快速查找某条记录的功能了。⽐⽅
说我们想找主键值为20的记录，具体查找过程分两步：

1. 先从⽬录项中根据⼆分法快速确定出主键值为20的记录
在⽬录项3中（因为 12 < 20 < 209），它对应的⻚是
⻚9。

2. 再根据前边说的在⻚中查找记录的⽅式去⻚9中定位具体
的记录。

⾄此，针对数据⻚做的简易⽬录就搞定了。不过忘了说了，这个⽬录
有⼀个别名，称为索引。

InnoDB中的索引⽅案

上边之所以称为⼀个简易的索引⽅案，是因为我们为了在根据主键值
进⾏查找时使⽤⼆分法快速定位具体的⽬录项⽽假设所有⽬录项都可
以在物理存储器上连续存储，但是这样做有⼏个问题：

InnoDB是使⽤⻚来作为管理存储空间的基本单位，也就是最
多能保证16KB的连续存储空间，⽽随着表中记录数量的增多，
需要⾮常⼤的连续的存储空间才能把所有的⽬录项都放下，这
对记录数量⾮常多的表是不现实的。

我们时常会对记录进⾏增删，假设我们把⻚28中的记录都删除
了，⻚28也就没有存在的必要了，那意味着⽬录项2也就没有
存在的必要了，这就需要把⽬录项2后的⽬录项都向前移动⼀
下，这种牵⼀发⽽动全身的设计不是什么好主意～

所以，设计InnoDB的⼤叔们需要⼀种可以灵活管理所有⽬录项的⽅
式。他们灵光乍现，忽然发现这些⽬录项其实⻓得跟我们的⽤户记录
差不多，只不过⽬录项中的两个列是主键和⻚号⽽已，所以他们复⽤
了之前存储⽤户记录的数据⻚来存储⽬录项，为了和⽤户记录做⼀下
区分，我们把这些⽤来表示⽬录项的记录称为⽬录项记录。那
InnoDB怎么区分⼀条记录是普通的⽤户记录还是⽬录项记录呢？别
忘了记录头信息⾥的record_type属性，它的各个取值代表的意思
如下：

0：普通的⽤户记录
1：⽬录项记录
2：最⼩记录
3：最⼤记录

哈哈，原来这个值为1的record_type是这个意思呀，我们把前边
使⽤到的⽬录项放到数据⻚中的样⼦就是这样：

从图中可以看出来，我们新分配了⼀个编号为30的⻚来专⻔存储⽬
录项记录。这⾥再次强调⼀遍⽬录项记录和普通的⽤户记录的不同
点：

⽬录项记录的record_type值是1，⽽普通⽤户记录的
record_type值是0。

⽬录项记录只有主键值和⻚的编号两个列，⽽普通的⽤户记录
的列是⽤户⾃⼰定义的，可能包含很多列，另外还有InnoDB
⾃⼰添加的隐藏列。

还记得我们之前在唠叨记录头信息的时候说过⼀个叫
min_rec_mask的属性么，只有在存储⽬录项记录的⻚中的主
键值最⼩的⽬录项记录的min_rec_mask值为1，其他别的记
录的min_rec_mask值都是0。

除了上述⼏点外，这两者就没啥差别了，它们⽤的是⼀样的数据⻚
（⻚⾯类型都是0x45BF，这个属性在File Header中，忘了的话
可以翻到前边的⽂章看），⻚的组成结构也是⼀样⼀样的（就是我们
前边介绍过的7个部分），都会为主键值⽣成Page Directory（⻚
⽬录），从⽽在按照主键值进⾏查找时可以使⽤⼆分法来加快查询速
度。现在以查找主键为20的记录为例，根据某个主键值去查找记录
的步骤就可以⼤致拆分成下边两步：

1. 先到存储⽬录项记录的⻚，也就是⻚30中通过⼆分法快速定位
到对应⽬录项，因为12 < 20 < 209，所以定位到对应的记
录所在的⻚就是⻚9。

2. 再到存储⽤户记录的⻚9中根据⼆分法快速定位到主键值为20
的⽤户记录。

虽然说⽬录项记录中只存储主键值和对应的⻚号，⽐⽤户记录需要的
存储空间⼩多了，但是不论怎么说⼀个⻚只有16KB⼤⼩，能存放的
⽬录项记录也是有限的，那如果表中的数据太多，以⾄于⼀个数据⻚
不⾜以存放所有的⽬录项记录，该咋办呢？

当然是再多整⼀个存储⽬录项记录的⻚喽～ 为了⼤家更好的理解新
分配⼀个⽬录项记录⻚的过程，我们假设⼀个存储⽬录项记录的⻚最
多只能存放4条⽬录项记录（请注意是假设哦，真实情况下可以存放
好多条的），所以如果此时我们再向上图中插⼊⼀条主键值为320的
⽤户记录的话，那就需要分配⼀个新的存储⽬录项记录的⻚喽：

从图中可以看出，我们插⼊了⼀条主键值为320的⽤户记录之后需要
两个新的数据⻚：

为存储该⽤户记录⽽新⽣成了⻚31。

因为原先存储⽬录项记录的⻚30的容量已满（我们前边假设只
能存储4条⽬录项记录），所以不得不需要⼀个新的⻚32来存
放⻚31对应的⽬录项。

现在因为存储⽬录项记录的⻚不⽌⼀个，所以如果我们想根据主键值
查找⼀条⽤户记录⼤致需要3个步骤，以查找主键值为20的记录为
例：

1. 确定⽬录项记录⻚

我们现在的存储⽬录项记录的⻚有两个，即⻚30和⻚32，⼜因
为⻚30表示的⽬录项的主键值的范围是[1, 320)，⻚32表示
的⽬录项的主键值不⼩于320，所以主键值为20的记录对应的
⽬录项记录在⻚30中。

2. 通过⽬录项记录⻚确定⽤户记录真实所在的⻚。

在⼀个存储⽬录项记录的⻚中通过主键值定位⼀条⽬录项记录
的⽅式说过了，不赘述了～

3. 在真实存储⽤户记录的⻚中定位到具体的记录。

在⼀个存储⽤户记录的⻚中通过主键值定位⼀条⽤户记录的⽅
式已经说过200遍了，你再不会我就，我就，我就求你到上⼀
篇唠叨数据⻚结构的⽂章中多看⼏遍，求你了～

那么问题来了，在这个查询步骤的第1步中我们需要定位存储⽬录项
记录的⻚，但是这些⻚在存储空间中也可能不挨着，如果我们表中的
数据⾮常多则会产⽣很多存储⽬录项记录的⻚，那我们怎么根据主键
值快速定位⼀个存储⽬录项记录的⻚呢？其实也简单，为这些存储⽬
录项记录的⻚再⽣成⼀个更⾼级的⽬录，就像是⼀个多级⽬录⼀样，
⼤⽬录⾥嵌套⼩⽬录，⼩⽬录⾥才是实际的数据，所以现在各个⻚的
示意图就是这样⼦：

如图，我们⽣成了⼀个存储更⾼级⽬录项的⻚33，这个⻚中的两条
记录分别代表⻚30和⻚32，如果⽤户记录的主键值在[1, 320)之
间，则到⻚30中查找更详细的⽬录项记录，如果主键值不⼩于320的
话，就到⻚32中查找更详细的⽬录项记录。不过这张图好漂亮喔，
随着表中记录的增加，这个⽬录的层级会继续增加，如果简化⼀下，
那么我们可以⽤下边这个图来描述它：

这玩意⼉像不像⼀个倒过来的树呀，上头是树根，下头是树叶！其实
这是⼀种组织数据的形式，或者说是⼀种数据结构，它的名称
是B+树。

⼩贴⼠：

为啥叫`B+`呢，`B`树是个啥？喔对不起，这不是我们讨论的范
围，你可以去找⼀本数据结构或算法的书来看。什么？数据结构的
书看不懂？等我～

不论是存放⽤户记录的数据⻚，还是存放⽬录项记录的数据⻚，我们
都把它们存放到B+树这个数据结构中了，所以我们也称这些数据⻚
为节点。从图中可以看出来，我们的实际⽤户记录其实都存放在
B+树的最底层的节点上，这些节点也被称为叶⼦节点或叶节点，其
余⽤来存放⽬录项的节点称为⾮叶⼦节点或者内节点，其中B+树最
上边的那个节点也称为根节点。

从图中可以看出来，⼀个B+树的节点其实可以分成好多层，设计
InnoDB的⼤叔们为了讨论⽅便，规定最下边的那层，也就是存放我
们⽤户记录的那层为第0层，之后依次往上加。之前的讨论我们做了
⼀个⾮常极端的假设：存放⽤户记录的⻚最多存放3条记录，存放⽬
录项记录的⻚最多存放4条记录。其实真实环境中⼀个⻚存放的记录
数量是⾮常⼤的，假设，假设，假设所有存放⽤户记录的叶⼦节点代
表的数据⻚可以存放100条⽤户记录，所有存放⽬录项记录的内节点
代表的数据⻚可以存放1000条⽬录项记录，那么：

如果B+树只有1层，也就是只有1个⽤于存放⽤户记录的节点，
最多能存放100条记录。

如果B+树有2层，最多能存放1000×100=100000条记录。

如果B+树有3层，最多能存放1000×1000×100=100000000
条记录。

如果B+树有4层，最多能存
放1000×1000×1000×100=100000000000条记录。哇咔咔
～这么多的记录！！！

你的表⾥能存放100000000000条记录么？所以⼀般情况下，我们
⽤到的B+树都不会超过4层，那我们通过主键值去查找某条记录最多
只需要做4个⻚⾯内的查找（查找3个⽬录项⻚和⼀个⽤户记录
⻚），⼜因为在每个⻚⾯内有所谓的Page Directory（⻚⽬
录），所以在⻚⾯内也可以通过⼆分法实现快速定位记录，这不是很
⽜么，哈哈！

聚簇索引

我们上边介绍的B+树本身就是⼀个⽬录，或者说本身就是⼀个索
引。它有两个特点：

1. 使⽤记录主键值的⼤⼩进⾏记录和⻚的排序，这包括三个⽅⾯
的含义：

⻚内的记录是按照主键的⼤⼩顺序排成⼀个单向链表。

各个存放⽤户记录的⻚也是根据⻚中⽤户记录的主键⼤⼩
顺序排成⼀个双向链表。

存放⽬录项记录的⻚分为不同的层次，在同⼀层次中的⻚
也是根据⻚中⽬录项记录的主键⼤⼩顺序排成⼀个双向链
表。

2. B+树的叶⼦节点存储的是完整的⽤户记录。

所谓完整的⽤户记录，就是指这个记录中存储了所有列的值
（包括隐藏列）。

我们把具有这两种特性的B+树称为聚簇索引，所有完整的⽤户记录
都存放在这个聚簇索引的叶⼦节点处。这种聚簇索引并不需要我们
在MySQL语句中显式的使⽤INDEX语句去创建（后边会介绍索引相关
的语句），InnoDB存储引擎会⾃动的为我们创建聚簇索引。另外有
趣的⼀点是，在InnoDB存储引擎中，聚簇索引就是数据的存储⽅式
（所有的⽤户记录都存储在了叶⼦节点），也就是所谓的索引即数
据，数据即索引。

⼆级索引

⼤家有⽊有发现，上边介绍的聚簇索引只能在搜索条件是主键值时才
能发挥作⽤，因为B+树中的数据都是按照主键进⾏排序的。那如果
我们想以别的列作为搜索条件该咋办呢？难道只能从头到尾沿着链表
依次遍历记录么？

不，我们可以多建⼏棵B+树，不同的B+树中的数据采⽤不同的排序
规则。⽐⽅说我们⽤c2列的⼤⼩作为数据⻚、⻚中记录的排序规
则，再建⼀棵B+树，效果如下图所示：

这个B+树与上边介绍的聚簇索引有⼏处不同：

使⽤记录c2列的⼤⼩进⾏记录和⻚的排序，这包括三个⽅⾯的
含义：

⻚内的记录是按照c2列的⼤⼩顺序排成⼀个单向链表。

各个存放⽤户记录的⻚也是根据⻚中记录的c2列⼤⼩顺
序排成⼀个双向链表。

存放⽬录项记录的⻚分为不同的层次，在同⼀层次中的⻚
也是根据⻚中⽬录项记录的c2列⼤⼩顺序排成⼀个双向
链表。

B+树的叶⼦节点存储的并不是完整的⽤户记录，⽽只是c2列
+主键这两个列的值。

⽬录项记录中不再是主键+⻚号的搭配，⽽变成了c2列+⻚号的
搭配。

所以如果我们现在想通过c2列的值查找某些记录的话就可以使⽤我
们刚刚建好的这个B+树了。以查找c2列的值为4的记录为例，查找过
程如下：

1. 确定⽬录项记录⻚

根据根⻚⾯，也就是⻚44，可以快速定位到⽬录项记录所在的
⻚为⻚42（因为2 < 4 < 9）。

2. 通过⽬录项记录⻚确定⽤户记录真实所在的⻚。

在⻚42中可以快速定位到实际存储⽤户记录的⻚，但是由于c2
列并没有唯⼀性约束，所以c2列值为4的记录可能分布在多个
数据⻚中，⼜因为2 < 4 ≤ 4，所以确定实际存储⽤户记录的
⻚在⻚34和⻚35中。

3. 在真实存储⽤户记录的⻚中定位到具体的记录。

到⻚34和⻚35中定位到具体的记录。

4. 但是这个B+树的叶⼦节点中的记录只存储了c2和c1（也就是
主键）两个列，所以我们必须再根据主键值去聚簇索引中再查
找⼀遍完整的⽤户记录。

各位各位，看到步骤4的操作了么？我们根据这个以c2列⼤⼩排序的
B+树只能确定我们要查找记录的主键值，所以如果我们想根据c2列
的值查找到完整的⽤户记录的话，仍然需要到聚簇索引中再查⼀遍，
这个过程也被称为回表。也就是根据c2列的值查询⼀条完整的⽤户
记录需要使⽤到2棵B+树！！！

为什么我们还需要⼀次回表操作呢？直接把完整的⽤户记录放到叶⼦
节点不就好了么？你说的对，如果把完整的⽤户记录放到叶⼦节点是
可以不⽤回表，但是太占地⽅了呀～相当于每建⽴⼀棵B+树都需要
把所有的⽤户记录再都拷⻉⼀遍，这就有点太浪费存储空间了。因为
这种按照⾮主键列建⽴的B+树需要⼀次回表操作才可以定位到完整
的⽤户记录，所以这种B+树也被称为⼆级索引（英⽂名secondary
index），或者辅助索引。由于我们使⽤的是c2列的⼤⼩作为B+树
的排序规则，所以我们也称这个B+树为为c2列建⽴的索引。

联合索引

我们也可以同时以多个列的⼤⼩作为排序规则，也就是同时为多个列
建⽴索引，⽐⽅说我们想让B+树按照c2和c3列的⼤⼩进⾏排序，这
个包含两层含义：

先把各个记录和⻚按照c2列进⾏排序。
在记录的c2列相同的情况下，采⽤c3列进⾏排序

为c2和c3列建⽴的索引的示意图如下：

如图所示，我们需要注意⼀下⼏点：

每条⽬录项记录都由c2、c3、⻚号这三个部分组成，各条记录
先按照c2列的值进⾏排序，如果记录的c2列相同，则按照c3
列的值进⾏排序。

B+树叶⼦节点处的⽤户记录由c2、c3和主键c1列组成。

千万要注意⼀点，以c2和c3列的⼤⼩为排序规则建⽴的B+树称为联
合索引，它的意思与分别为c2和c3列分别建⽴索引的表述是不同
的，不同点如下：

建⽴联合索引只会建⽴如上图⼀样的1棵B+树。

为c2和c3列分别建⽴索引会分别以c2和c3列的⼤⼩为排序规
则建⽴2棵B+树。

InnoDB的B+树索引的注意事项

根⻚⾯万年不动窝

我们前边介绍B+树索引的时候，为了⼤家理解上的⽅便，先把存储
⽤户记录的叶⼦节点都画出来，然后接着画存储⽬录项记录的内节
点，实际上B+树的形成过程是这样的：

每当为某个表创建⼀个B+树索引（聚簇索引不是⼈为创建的，
默认就有）的时候，都会为这个索引创建⼀个根节点⻚⾯。最
开始表中没有数据的时候，每个B+树索引对应的根节点中既没
有⽤户记录，也没有⽬录项⽬录。

随后向表中插⼊⽤户记录时，先把⽤户记录存储到这个根节点
中。

当根节点中的可⽤空间⽤完时继续插⼊记录，此时会将根节点
中的所有记录复制到⼀个新分配的⻚，⽐如⻚a中，然后对这
个新⻚进⾏⻚分裂的操作，得到另⼀个新⻚，⽐如⻚b。这时
新插⼊的记录根据键值（也就是聚簇索引中的主键值，⼆级索
引中对应的索引列的值）的⼤⼩就会被分配到⻚a或者⻚b中，
⽽根节点便升级为存储⽬录项记录的⻚。

这个过程需要⼤家特别注意的是：⼀个B+树索引的根节点⾃诞⽣之
⽇起，便不会再移动。这样只要我们对某个表建⽴⼀个索引，那么它
的根节点的⻚号便会被记录到某个地⽅，然后凡是InnoDB存储引擎
需要⽤到这个索引的时候，都会从那个固定的地⽅取出根节点的⻚
号，从⽽来访问这个索引。

⼩贴⼠：

跟⼤家剧透⼀下，这个存储某个索引的根节点在哪个⻚⾯中的信息
就是传说中的数据字典中的⼀项信息，关于更多数据字典的内容，
后边会详细唠叨，别着急哈。

内节点中⽬录项记录的唯⼀性

我们知道B+树索引的内节点中⽬录项记录的内容是索引列 + ⻚号的
搭配，但是这个搭配对于⼆级索引来说有点⼉不严谨。还拿
index_demo表为例，假设这个表中的数据是这样的：

c1 c2 c3
1 1 'u'
3 1 'd'
5 1 'y'
7 1 'a'

如果⼆级索引中⽬录项记录的内容只是索引列 + ⻚号的搭配的话，
那么为c2列建⽴索引后的B+树应该⻓这样：

如果我们想新插⼊⼀⾏记录，其中c1、c2、c3的值分别
是：9、1、'c'，那么在修改这个为c2列建⽴的⼆级索引对应的
B+树时便碰到了个⼤问题：由于⻚3中存储的⽬录项记录是由c2列
+ ⻚号的值构成的，⻚3中的两条⽬录项记录对应的c2列的值都
是1，⽽我们新插⼊的这条记录的c2列的值也是1，那我们这条新插
⼊的记录到底应该放到⻚4中，还是应该放到⻚5中啊？答案是：对
不起，懵逼了。

为了让新插⼊记录能找到⾃⼰在那个⻚⾥，我们需要保证在B+树的
同⼀层内节点的⽬录项记录除⻚号这个字段以外是唯⼀的。所以对于
⼆级索引的内节点的⽬录项记录的内容实际上是由三个部分构成的：

索引列的值
主键值
⻚号

也就是我们把主键值也添加到⼆级索引内节点中的⽬录项记录了，这
样就能保证B+树每⼀层节点中各条⽬录项记录除⻚号这个字段外是
唯⼀的，所以我们为c2列建⽴⼆级索引后的示意图实际上应该是这
样⼦的：

这样我们再插⼊记录(9, 1, 'c')时，由于⻚3中存储的⽬录项记
录是由c2列 + 主键 + ⻚号的值构成的，可以先把新记录的c2列的
值和⻚3中各⽬录项记录的c2列的值作⽐较，如果c2列的值相同的
话，可以接着⽐较主键值，因为B+树同⼀层中不同⽬录项记录的c2
列 + 主键的值肯定是不⼀样的，所以最后肯定能定位唯⼀的⼀条⽬
录项记录，在本例中最后确定新记录应该被插⼊到⻚5中。

⼀个⻚⾯最少存储2条记录

我们前边说过⼀个B+树只需要很少的层级就可以轻松存储数亿条记
录，查询速度杠杠的！这是因为B+树本质上就是⼀个⼤的多层级⽬
录，每经过⼀个⽬录时都会过滤掉许多⽆效的⼦⽬录，直到最后访问
到存储真实数据的⽬录。那如果⼀个⼤的⽬录中只存放⼀个⼦⽬录是
个啥效果呢？那就是⽬录层级⾮常⾮常⾮常多，⽽且最后的那个存放
真实数据的⽬录中只能存放⼀条记录。费了半天劲只能存放⼀条真实
的⽤户记录？逗我呢？所以InnoDB的⼀个数据⻚⾄少可以存放两条
记录，这也是我们之前唠叨记录⾏格式的时候说过⼀个结论（我们当
时依据这个结论推导了表中只有⼀个列时该列在不发⽣⾏溢出的情况
下最多能存储多少字节，忘了的话回去看看吧）。

MyISAM中的索引⽅案简单介绍

⾄此，我们介绍的都是InnoDB存储引擎中的索引⽅案，为了内容的
完整性，以及各位可能在⾯试的时候遇到这类的问题，我们有必要再
简单介绍⼀下MyISAM存储引擎中的索引⽅案。我们知道InnoDB中
索引即数据，也就是聚簇索引的那棵B+树的叶⼦节点中已经把所有
完整的⽤户记录都包含了，⽽MyISAM的索引⽅案虽然也使⽤树形结
构，但是却将索引和数据分开存储：

将表中的记录按照记录的插⼊顺序单独存储在⼀个⽂件中，称
之为数据⽂件。这个⽂件并不划分为若⼲个数据⻚，有多少记
录就往这个⽂件中塞多少记录就成了。我们可以通过⾏号⽽快
速访问到⼀条记录。

MyISAM记录也需要记录头信息来存储⼀些额外数据，我们以
上边唠叨过的index_demo表为例，看⼀下这个表中的记录使
⽤MyISAM作为存储引擎在存储空间中的表示：

由于在插⼊数据的时候并没有刻意按照主键⼤⼩排序，所以我
们并不能在这些数据上使⽤⼆分法进⾏查找。

使⽤MyISAM存储引擎的表会把索引信息另外存储到⼀个称为
索引⽂件的另⼀个⽂件中。MyISAM会单独为表的主键创建⼀
个索引，只不过在索引的叶⼦节点中存储的不是完整的⽤户记
录，⽽是主键值 + ⾏号的组合。也就是先通过索引找到对应
的⾏号，再通过⾏号去找对应的记录！

这⼀点和InnoDB是完全不相同的，在InnoDB存储引擎中，我
们只需要根据主键值对聚簇索引进⾏⼀次查找就能找到对应的
记录，⽽在MyISAM中却需要进⾏⼀次回表操作，意味
着MyISAM中建⽴的索引相当于全部都是⼆级索引！

如果有需要的话，我们也可以对其它的列分别建⽴索引或者建
⽴联合索引，原理和InnoDB中的索引差不多，不过在叶⼦节
点处存储的是相应的列 + ⾏号。这些索引也全部都是⼆级索
引。

⼩贴⼠：

MyISAM的⾏格式有定⻓记录格式（Static）、变⻓记录格式
（Dynamic）、压缩记录格式（Compressed）。上边⽤到的
index_demo表采⽤定⻓记录格式，也就是⼀条记录占⽤存储空间
的⼤⼩是固定的，这样就可以轻松算出某条记录在数据⽂件中的地
址偏移量。但是变⻓记录格式就不⾏了，MyISAM会直接在索引叶⼦
节点处存储该条记录在数据⽂件中的地址偏移量。通过这个可以看
出，MyISAM的回表操作是⼗分快速的，因为是拿着地址偏移量直接
到⽂件中取数据的，反观InnoDB是通过获取主键之后再去聚簇索引
⾥边⼉找记录，虽然说也不慢，但还是⽐不上直接⽤地址去访问。

此处我们只是⾮常简要的介绍了⼀下MyISAM的索引，具体细节全拿
出来⼜可以写⼀篇⽂章了。这⾥只是希望⼤家理解InnoDB中的索引
即数据，数据即索引，⽽MyISAM中却是索引是索引、数据是数据。

MySQL中创建和删除索引的语句

光顾着唠叨索引的原理了，那我们如何使⽤MySQL语句去建⽴这种索
引呢？InnoDB和MyISAM会⾃动为主键或者声明为UNIQUE的列去⾃
动建⽴B+树索引，但是如果我们想为其他的列建⽴索引就需要我们

显式的去指明。为啥不⾃动为每个列都建⽴个索引呢？别忘了，每建
⽴⼀个索引都会建⽴⼀棵B+树，每插⼊⼀条记录都要维护各个记
录、数据⻚的排序关系，这是很费性能和存储空间的。

我们可以在创建表的时候指定需要建⽴索引的单个列或者建⽴联合索
引的多个列：

CREATE TALBE 表名 (
 各种列的信息 ··· ,
 [KEY|INDEX] 索引名 (需要被索引的单个列或多个列)
)

其中的KEY和INDEX是同义词，任意选⽤⼀个就可以。我们也可以在
修改表结构的时候添加索引：

ALTER TABLE 表名 ADD [INDEX|KEY] 索引名 (需要被索引的
单个列或多个列);

也可以在修改表结构的时候删除索引：

ALTER TABLE 表名 DROP [INDEX|KEY] 索引名;

⽐⽅说我们想在创建index_demo表的时候就为c2和c3列添加⼀个
联合索引，可以这么写建表语句：

CREATE TABLE index_demo(
 c1 INT,
 c2 INT,
 c3 CHAR(1),
 PRIMARY KEY(c1),
 INDEX idx_c2_c3 (c2, c3)
);

在这个建表语句中我们创建的索引名是idx_c2_c3，这个名称可以
随便起，不过我们还是建议以idx_为前缀，后边跟着需要建⽴索引
的列名，多个列名之间⽤下划线_分隔开。

如果我们想删除这个索引，可以这么写：

ALTER TABLE index_demo DROP INDEX idx_c2_c3;

总结

1. 对于InnoDB存储引擎来说，在单个⻚中查找某条记录分为两
种情况：

以主键为搜索条件，可以使⽤Page Directory通过⼆
分法快速定位相应的⽤户记录。

以其他列为搜索条件，需要按照记录组成的单链表依次遍
历各条记录。

2. 没有索引的情况下，不论是以主键还是其他列作为搜索条件，
只能沿着⻚的双链表从左到右依次遍历各个⻚。

3. InnoDB存储引擎的索引是⼀棵B+树，完整的⽤户记录都存储
在B+树第0层的叶⼦节点，其他层次的节点都属于内节点，内
节点⾥存储的是⽬录项记录。InnoDB的索引分为两⼤种：

聚簇索引

以主键值的⼤⼩为⻚和记录的排序规则，在叶⼦节点处存
储的记录包含了表中所有的列。

⼆级索引

以⾃定义的列的⼤⼩为⻚和记录的排序规则，在叶⼦节点
处存储的记录内容是列 + 主键。

4. MyISAM存储引擎的数据和索引分开存储，这种存储引擎的索
引全部都是⼆级索引，在叶⼦节点处存储的是列 + ⻚号。

