
函数的定义

本节课内容

 函数的定义

 函数的分类

 函数的创建方法

 函数的返回 return

函数的定义

将一件事情的步骤封装在一起并得到最终结果

函数名代表了这个函数要做的事情

函数体是实现函数功能的流程

方法或功能

函数可以帮助我们重复使用，通过函数名我们可以知道函数的作用

1：把冰箱门打开

2：把大象装进去

3：把冰箱门关上

把大象装进冰箱

函数的分类

 内置函数

 自定义函数
print
id
int
str
max,
min
range

内置函数

通过关键字 def 的功能

实现python中函数的创建

通过关键字 def 定义函数

def name (args…) :

todo something..

返回值

通过关键字 def 函数执行

函数名+小括号执行函数

函数结果的返回--return

 将函数结果返回的关键字

 return只能在函数体内使用

 return支持返回所有的python类型

 有返回值的函数可以直接赋值给一个变量

函数结果的返回--return

举例：
def add(a, b):

c = a + b
return c

result = add(a=1, b=1) # 参数按顺序传递
print(result)
>> 2

return与print的区别

 print只是单纯的将对象打印，不支持赋值语句

 return是对函数执行结果的返回，也支持赋值语句

函数的传参

本节课内容

 必传参数

 默认参数

 不确定参数

 参数规则

必传参数

 函数中定义的参数没有默认值，在调用函数时如果不传入则报错

 在定义函数的时候，参数后边没有等号与默认值

错误：def add（a=1, b=1) x

在定义函数的时候，没有默认值且必须在函数执行的时候传递进去的
参数就是必传参数

默认参数

 在定义函数的时候，定义的参数含有默认值，就说他是一个默认参数

def add(a, b=1)

参数名，赋值等号，默认值

不确定参数—可变参数

没有固定参数的函数，需要传递不确定参数（不知道要传的参数名

具体是什么）

*args 代表： 将无参数的变量合并成元组

**kwargs 代表将有参数与默认值的赋值语句合并成字典

def add(*args, **kwargs):
…

add(1, 2, 3, name='dewei', age=33)

对应*args 对应**kwargs

参数规则

 参数的定义从左到右依次是 必传参数，默认参数，可变元组参数，可变字

典参数

 函数的参数传递非常灵活

 必传参数与默认参数的传参多样化

def add(a, b=1, *args, **kwargs)

1 2 3 4

函数的参数类型定义

本节课内容

参数定义类型的方法

参数定义类型的方法

 函数定义在python3.7之后可用

 函数不会对参数类型进行验证

def person(name:str, age:int=33):
print(name, age)

参数名+冒号+类型函数
参数名+冒号+类型
函数+等号+默认值

局部变量与全局变量

本节课内容

 全局变量

 局部变量

 global

全局变量

coding:utf-8

name = 'dewei'

def test():
print(name)

在python脚本最上层代
码块的变量

全局变量可以在函数内被
读取使用

局部变量

coding:utf-8

def test():
name = 'dewei'
print(name)

print(name)

在函数体内定义的变量

X 局部变量无法在自身函数以外使用

global

将全局变量可以在函数体内进行修改

global

coding:utf-8

name =

def test():
name = 'dewei'
print(name)

print(name)

在函数体内定义的变量

X 局部变量无法在自身函数
以外使用

global

coding:utf-8

name = 'dewei'

def test():
global name
name = '小慕’

print(name)

定义一个全局变量

定义函数

global + 全局变量名

函数体内给全局变量重新赋值

小慕

工作中，不建议使用global对全局变量进行修改

函数的递归

本节课内容

 什么是递归函数

 递归的定义方法

 递归函数的说明

递归函数

只要我不累：
我可以一直跑步

一个函数不停的将自己反复执行

递归函数的定义方法

coding:utf-8

def test(a):
print(a)
return test(a) 通过返回值 直接执行自身函数

递归函数的说明

 内存溢出

 避免滥用递归

匿名函数lambda

本节课内容

 lambda 功能

 lambda 用法

lambda功能

 即用即删除，很适合需要完成一项功能，但是此功能只在此一处使用

 定义一个轻量化的函数

匿名函数的定义方法

无参数

lambda : valuef =

f()

有参数

lambda x,y : x * yf =

f(3, 4)

