
⼀一⾯面 1：ES 基础知识点与⾼高频考题解析
JavaScript 是 ECMAScript 规范的⼀一种实现，本⼩小节重点梳理理下 ECMAScript 中的常考知识点，然后
就⼀一些容易易出现的题⽬目进⾏行行解析。

知识点梳理理

变量量类型

JS 的数据类型分类和判断
值类型和引⽤用类型

原型与原型链（继承）

原型和原型链定义
继承写法

作⽤用域和闭包

执⾏行行上下⽂文
this
闭包是什什么

异步

同步 vs 异步
异步和单线程
前端异步的场景

ES6/7 新标准的考查

箭头函数
Module
Class
Set 和 Map
Promise

变量量类型

JavaScript 是⼀一种弱类型脚本语⾔言，所谓弱类型指的是定义变量量时，不不需要什什么类型，在程序运⾏行行过
程中会⾃自动判断类型。

ECMAScript 中定义了了 6 种原始类型：

Boolean
String
Number
Null
Undefined
Symbol（ES6 新定义）

注意：原始类型不不包含 Object。

题⽬目：类型判断⽤用到哪些⽅方法？

typeof

typeof xxx 得到的值有以下⼏几种类型： undefined boolean number string object
function 、 symbol ，⽐比较简单，不不再⼀一⼀一演示了了。这⾥里里需要注意的有三点：

typeof null 结果是 object ，实际这是 typeof 的⼀一个bug，null是原始值，⾮非引⽤用类型
typeof [1, 2] 结果是 object ，结果中没有 array 这⼀一项，引⽤用类型除了了 function 其他

的全部都是 object

typeof Symbol() ⽤用 typeof 获取 symbol 类型的值得到的是 symbol ，这是 ES6 新增的知
识点

instanceof

⽤用于实例例和构造函数的对应。例例如判断⼀一个变量量是否是数组，使⽤用 typeof ⽆无法判断，但可以使

⽤用 [1, 2] instanceof Array 来判断。因为， [1, 2] 是数组，它的构造函数就是 Array 。同

理理：

题⽬目：值类型和引⽤用类型的区别

值类型 vs 引⽤用类型

除了了原始类型，ES 还有引⽤用类型，上⽂文提到的 typeof 识别出来的类型中，只有 object 和

function 是引⽤用类型，其他都是值类型。

根据 JavaScript 中的变量量类型传递⽅方式，⼜又分为值类型和引⽤用类型，值类型变量量包括 Boolean、
String、Number、Undefined、Null，引⽤用类型包括了了 Object 类的所有，如 Date、Array、
Function 等。在参数传递⽅方式上，值类型是按值传递，引⽤用类型是按共享传递。

下⾯面通过⼀一个⼩小题⽬目，来看下两者的主要区别，以及实际开发中需要注意的地⽅方。

上述代码中， a b 都是值类型，两者分别修改赋值，相互之间没有任何影响。再看引⽤用类型的例例
⼦子：

function Foo(name) {

 this.name = name

}

var foo = new Foo('bar')

console.log(foo instanceof Foo) // true

// 值类型

var a = 10

var b = a

b = 20

console.log(a) // 10

console.log(b) // 20

上述代码中， a b 都是引⽤用类型。在执⾏行行了了 b = a 之后，修改 b 的属性值， a 的也跟着变化。因

为 a 和 b 都是引⽤用类型，指向了了同⼀一个内存地址，即两者引⽤用的是同⼀一个值，因此 b 修改属性

时， a 的值随之改动。

再借助题⽬目进⼀一步讲解⼀一下。

说出下⾯面代码的执⾏行行结果，并分析其原因。

通过代码执⾏行行，会发现：

a 的值没有发⽣生改变

⽽而 b 的值发⽣生了了改变

这就是因为 Number 类型的 a 是按值传递的，⽽而 Object 类型的 b 是按共享传递的。

JS 中这种设计的原因是：按值传递的类型，复制⼀一份存⼊入栈内存，这类类型⼀一般不不占⽤用太多内存，⽽而
且按值传递保证了了其访问速度。按共享传递的类型，是复制其引⽤用，⽽而不不是整个复制其值（C 语⾔言中
的指针），保证过⼤大的对象等不不会因为不不停复制内容⽽而造成内存的浪费。

引⽤用类型经常会在代码中按照下⾯面的写法使⽤用，或者说容易易不不知不不觉中造成错误！

// 引⽤用类型

var a = {x: 10, y: 20}

var b = a

b.x = 100

b.y = 200

console.log(a) // {x: 100, y: 200}

console.log(b) // {x: 100, y: 200}

function foo(a){

 a = a * 10;

}

function bar(b){

 b.value = 'new';

}

var a = 1;

var b = {value: 'old'};

foo(a);

bar(b);

console.log(a); // 1

console.log(b); // value: new

虽然 obj 本身是个引⽤用类型的变量量（对象），但是内部的 a 和 b ⼀一个是值类型⼀一个是引⽤用类型， a

的赋值不不会改变 obj.a ，但是 b 的操作却会反映到 obj 对象上。

原型和原型链

JavaScript 是基于原型的语⾔言，原型理理解起来⾮非常简单，但却特别重要，下⾯面还是通过题⽬目来理理解下
JavaScript 的原型概念。

题⽬目：如何理理解 JavaScript 的原型

对于这个问题，可以从下⾯面这⼏几个要点来理理解和回答，下⾯面⼏几条必须记住并且理理解

所有的引⽤用类型（数组、对象、函数），都具有对象特性，即可⾃自由扩展属性（ null 除外）
所有的引⽤用类型（数组、对象、函数），都有⼀一个 __proto__ 属性，属性值是⼀一个普通的对象
所有的函数，都有⼀一个 prototype 属性，属性值也是⼀一个普通的对象
所有的引⽤用类型（数组、对象、函数）， __proto__ 属性值指向它的构造函数的 prototype
属性值

通过代码解释⼀一下，⼤大家可⾃自⾏行行运⾏行行以下代码，看结果。

var obj = {

 a: 1,

 b: [1,2,3]

}

var a = obj.a

var b = obj.b

a = 2

b.push(4)

console.log(obj, a, b)

// 要点⼀一：⾃自由扩展属性

var obj = {}; obj.a = 100;

var arr = []; arr.a = 100;

function fn () {}

fn.a = 100;

// 要点⼆二：__proto__

console.log(obj.__proto__);

console.log(arr.__proto__);

console.log(fn.__proto__);

// 要点三：函数有 prototype

console.log(fn.prototype)

// 要点四：引⽤用类型的 __proto__ 属性值指向它的构造函数的 prototype 属性值

console.log(obj.__proto__ === Object.prototype)

原型

先写⼀一个简单的代码示例例。

执⾏行行 printName 时很好理理解，但是执⾏行行 alertName 时发⽣生了了什什么？这⾥里里再记住⼀一个重点 当试图得
到⼀一个对象的某个属性时，如果这个对象本身没有这个属性，那么会去它的 __proto__ （即它的构
造函数的 prototype ）中寻找，因此 f.alertName 就会找到 Foo.prototype.alertName 。

那么如何判断这个属性是不不是对象本身的属性呢？使⽤用 hasOwnProperty ，常⽤用的地⽅方是遍历⼀一个

对象的时候。

题⽬目：如何理理解 JS 的原型链

原型链

还是接着上⾯面的示例例，如果执⾏行行 f.toString() 时，⼜又发⽣生了了什什么？

// 构造函数

function Foo(name, age) {

 this.name = name

}

Foo.prototype.alertName = function () {

 alert(this.name)

}

// 创建示例例

var f = new Foo('zhangsan')

f.printName = function () {

 console.log(this.name)

}

// 测试

f.printName()

f.alertName()

var item

for (item in f) {

 // ⾼高级浏览器器已经在 for in 中屏蔽了了来⾃自原型的属性，但是这⾥里里建议⼤大家还是加上这个判

断，保证程序的健壮性

 if (f.hasOwnProperty(item)) {

 console.log(item)

 }

}

// 省略略 N ⾏行行

// 测试

f.printName()

f.alertName()

f.toString()

因为 f 本身没有 toString() ，并且 f.__proto__ （即 Foo.prototype ）中也没

有 toString 。这个问题还是得拿出刚才那句句话——当试图得到⼀一个对象的某个属性时，如果这个对
象本身没有这个属性，那么会去它的 __proto__ （即它的构造函数的 prototype ）中寻找。

如果在 f.__proto__ 中没有找到 toString ，那么就继续去 f.__proto__.__proto__ 中寻找，因

为 f.__proto__ 就是⼀一个普通的对象⽽而已嘛！

f.__proto__ 即 Foo.prototype ，没有找到 toString ，继续往上找

f.__proto__.__proto__ 即 Foo.prototype.__proto__ 。 Foo.prototype 就是⼀一个普通

的对象，因此 Foo.prototype.__proto__ 就是 Object.prototype ，在这⾥里里可以找

到 toString

因此 f.toString 最终对应到了了 Object.prototype.toString

这样⼀一直往上找，你会发现是⼀一个链式的结构，所以叫做“原型链”。如果⼀一直找到最上层都没有找
到，那么就宣告失败，返回 undefined 。最上层是什什么 —— Object.prototype.__proto__ ===
null

原型链中的 this

所有从原型或更更⾼高级原型中得到、执⾏行行的⽅方法，其中的 this 在执⾏行行时，就指向了了当前这个触发事件

执⾏行行的对象。因此 printName 和 alertName 中的 this 都是 f 。

作⽤用域和闭包

作⽤用域和闭包是前端⾯面试中，最可能考查的知识点。例例如下⾯面的题⽬目：

题⽬目：现在有个 HTML ⽚片段，要求编写代码，点击编号为⼏几的链接就 alert 弹出其编号

⼀一般不不知道这个题⽬目⽤用闭包的话，会写出下⾯面的代码：

实际上执⾏行行才会发现始终弹出的是 6 ，这时候就应该通过闭包来解决：

 编号1，点击我请弹出1

 2

 3

 4

 5

var list = document.getElementsByTagName('li');

for (var i = 0; i < list.length; i++) {

 list[i].addEventListener('click', function(){

 alert(i + 1)

 }, true)

}

要理理解闭包，就需要我们从「执⾏行行上下⽂文」开始讲起。

执⾏行行上下⽂文

先讲⼀一个关于 变量量提升 的知识点，⾯面试中可能会遇⻅见下⾯面的问题，很多候选⼈人都回答错误：

题⽬目：说出下⾯面执⾏行行的结果（这⾥里里笔者直接注释输出了了）

在⼀一段 JS 脚本（即⼀一个 <script> 标签中）执⾏行行之前，要先解析代码（所以说 JS 是解释执⾏行行的脚本
语⾔言），解析的时候会先创建⼀一个 全局执⾏行行上下⽂文 环境，先把代码中即将执⾏行行的（内部函数的不不
算，因为你不不知道函数何时执⾏行行）变量量、函数声明都拿出来。变量量先暂时赋值为 undefined ，函数

则先声明好可使⽤用。这⼀一步做完了了，然后再开始正式执⾏行行程序。再次强调，这是在代码执⾏行行之前才开
始的⼯工作。

我们来看下上⾯面的⾯面试⼩小题⽬目，为什什么 a 是 undefined ，⽽而 b 却报错了了，实际 JS 在代码执⾏行行之
前，要「全⽂文解析」，发现 var a ，知道有个 a 的变量量，存⼊入了了执⾏行行上下⽂文，⽽而 b 没有找到 var

关键字，这时候没有在执⾏行行上下⽂文提前「占位」，所以代码执⾏行行的时候，提前报到的 a 是有记录的，

只不不过值暂时还没有赋值，即为 undefined ，⽽而 b 在执⾏行行上下⽂文没有找到，⾃自然会报错（没有找

到 b 的引⽤用）。

另外，⼀一个函数在执⾏行行之前，也会创建⼀一个 函数执⾏行行上下⽂文 环境，跟 全局上下⽂文 差不不多，不不过 函数
执⾏行行上下⽂文 中会多出 this arguments 和函数的参数。参数和 arguments 好理理解，这⾥里里的 this

咱们需要专⻔门讲解。

总结⼀一下：

var list = document.getElementsByTagName('li');

for (var i = 0; i < list.length; i++) {

 list[i].addEventListener('click', function(i){

 return function(){

 alert(i + 1)

 }

 }(i), true)

}

console.log(a) // undefined

var a = 100

fn('zhangsan') // 'zhangsan' 20

function fn(name) {

 age = 20

 console.log(name, age)

 var age

}

console.log(b); // 这⾥里里报错

// Uncaught ReferenceError: b is not defined

b = 100;

范围：⼀一段 <script> 、js ⽂文件或者⼀一个函数
全局上下⽂文：变量量定义，函数声明
函数上下⽂文：变量量定义，函数声明， this ， arguments

this

先搞明⽩白⼀一个很重要的概念 —— this 的值是在执⾏行行的时候才能确认，定义的时候不不能确认！ 为什什
么呢 —— 因为 this 是执⾏行行上下⽂文环境的⼀一部分，⽽而执⾏行行上下⽂文需要在代码执⾏行行之前确定，⽽而不不是

定义的时候。看如下例例⼦子

this 执⾏行行会有不不同，主要集中在这⼏几个场景中

作为构造函数执⾏行行，构造函数中
作为对象属性执⾏行行，上述代码中 a.fn()

作为普通函数执⾏行行，上述代码中 fn1()

⽤用于 call apply bind ，上述代码中 a.fn.call({name: 'B'})

下⾯面再来讲解下什什么是作⽤用域和作⽤用域链，作⽤用域链和作⽤用域也是常考的题⽬目。

题⽬目：如何理理解 JS 的作⽤用域和作⽤用域链

作⽤用域

ES6 之前 JS 没有块级作⽤用域。例例如

从上⾯面的例例⼦子可以体会到作⽤用域的概念，作⽤用域就是⼀一个独⽴立的地盘，让变量量不不会外泄、暴暴露露出去。
上⾯面的 name 就被暴暴露露出去了了，因此，JS 没有块级作⽤用域，只有全局作⽤用域和函数作⽤用域。

var a = {

 name: 'A',

 fn: function () {

 console.log(this.name)

 }

}

a.fn() // this === a

a.fn.call({name: 'B'}) // this === {name: 'B'}

var fn1 = a.fn

fn1() // this === window

if (true) {

 var name = 'zhangsan'

}

console.log(name)

全局作⽤用域就是最外层的作⽤用域，如果我们写了了很多⾏行行 JS 代码，变量量定义都没有⽤用函数包括，那么它
们就全部都在全局作⽤用域中。这样的坏处就是很容易易撞⻋车、冲突。

这就是为何 jQuery、Zepto 等库的源码，所有的代码都会放在 (function(){....})() 中。因为放

在⾥里里⾯面的所有变量量，都不不会被外泄和暴暴露露，不不会污染到外⾯面，不不会对其他的库或者 JS 脚本造成影响。
这是函数作⽤用域的⼀一个体现。

附：ES6 中开始加⼊入了了块级作⽤用域，使⽤用 let 定义变量量即可，如下：

作⽤用域链

⾸首先认识⼀一下什什么叫做 ⾃自由变量量 。如下代码中， console.log(a) 要得到 a 变量量，但是在当前的作

⽤用域中没有定义 a （可对⽐比⼀一下 b ）。当前作⽤用域没有定义的变量量，这成为 ⾃自由变量量 。⾃自由变量量如
何得到 —— 向⽗父级作⽤用域寻找。

如果⽗父级也没呢？再⼀一层⼀一层向上寻找，直到找到全局作⽤用域还是没找到，就宣布放弃。这种⼀一层⼀一
层的关系，就是 作⽤用域链 。

var a = 100

function fn() {

 var a = 200

 console.log('fn', a)

}

console.log('global', a)

fn()

// 张三写的代码中

var data = {a: 100}

// 李李四写的代码中

var data = {x: true}

if (true) {

 let name = 'zhangsan'

}

console.log(name) // 报错，因为let定义的name是在if这个块级作⽤用域

var a = 100

function fn() {

 var b = 200

 console.log(a)

 console.log(b)

}

fn()

闭包

讲完这些内容，我们再来看⼀一个例例⼦子，通过例例⼦子来理理解闭包。

⾃自由变量量将从作⽤用域链中去寻找，但是 依据的是函数定义时的作⽤用域链，⽽而不不是函数执⾏行行时，以上这
个例例⼦子就是闭包。闭包主要有两个应⽤用场景：

函数作为返回值，上⾯面的例例⼦子就是
函数作为参数传递，看以下例例⼦子

⾄至此，对应着「作⽤用域和闭包」这部分⼀一开始的点击弹出 alert 的代码再看闭包，就很好理理解了了。

var a = 100

function F1() {

 var b = 200

 function F2() {

 var c = 300

 console.log(a) // ⾃自由变量量，顺作⽤用域链向⽗父作⽤用域找

 console.log(b) // ⾃自由变量量，顺作⽤用域链向⽗父作⽤用域找

 console.log(c) // 本作⽤用域的变量量

 }

 F2()

}

F1()

function F1() {

 var a = 100

 return function () {

 console.log(a)

 }

}

var f1 = F1()

var a = 200

f1()

function F1() {

 var a = 100

 return function () {

 console.log(a)

 }

}

function F2(f1) {

 var a = 200

 console.log(f1())

}

var f1 = F1()

F2(f1)

异步

异步和同步也是⾯面试中常考的内容，下⾯面笔者来讲解下同步和异步的区别。

同步 vs 异步

先看下⾯面的 demo，根据程序阅读起来表达的意思，应该是先打印 100 ，1秒钟之后打印 200 ，最后

打印 300 。但是实际运⾏行行根本不不是那么回事。

再对⽐比以下程序。先打印 100 ，再弹出 200 （等待⽤用户确认），最后打印 300 。这个运⾏行行效果就符

合预期要求。

这俩到底有何区别？—— 第⼀一个示例例中间的步骤根本没有阻塞接下来程序的运⾏行行，⽽而第⼆二个示例例却阻
塞了了后⾯面程序的运⾏行行。前⾯面这种表现就叫做 异步（后⾯面这个叫做 同步 ），即不不会阻塞后⾯面程序的运
⾏行行。

异步和单线程

JS 需要异步的根本原因是 JS 是单线程运⾏行行的，即在同⼀一时间只能做⼀一件事，不不能“⼀一⼼心⼆二⽤用”。

⼀一个 Ajax 请求由于⽹网络⽐比较慢，请求需要 5 秒钟。如果是同步，这 5 秒钟⻚页⾯面就卡死在这⾥里里啥也⼲干
不不了了了了。异步的话，就好很多了了，5 秒等待就等待了了，其他事情不不耽误做，⾄至于那 5 秒钟等待是⽹网速
太慢，不不是因为 JS 的原因。

讲到单线程，我们再来看个真题：

题⽬目：讲解下⾯面代码的执⾏行行过程和结果

console.log(100)

setTimeout(function () {

 console.log(200)

}, 1000)

console.log(300)

console.log(100)

alert(200) // 1秒钟之后点击确认

console.log(300)

var a = true;

setTimeout(function(){

 a = false;

}, 100)

while(a){

 console.log('while执⾏行行了了')

}

这是⼀一个很有迷惑性的题⽬目，不不少候选⼈人认为 100ms 之后，由于 a 变成了了 false ，所以 while 就

中⽌止了了，实际不不是这样，因为JS是单线程的，所以进⼊入 while 循环之后，没有「时间」（线程）去跑

定时器器了了，所以这个代码跑起来是个死循环！

前端异步的场景

定时 setTimeout setInterval
⽹网络请求，如 Ajax 加载

Ajax 代码示例例

img 代码示例例（常⽤用于打点统计）

ES6/7 新标准的考查

题⽬目：ES6 箭头函数中的 this 和普通函数中的有什什么不不同

箭头函数

箭头函数是 ES6 中新的函数定义形式， function name(arg1, arg2) {...} 可以使⽤用 (arg1,

arg2) => {...} 来定义。示例例如下：

console.log('start')

$.get('./data1.json', function (data1) {

 console.log(data1)

})

console.log('end')

console.log('start')

var img = document.createElement('img')

// 或者 img = new Image()

img.onload = function () {

 console.log('loaded')

 img.onload = null

}

img.src = '/xxx.png'

console.log('end')

箭头函数存在的意义，第⼀一写起来更更加简洁，第⼆二可以解决 ES6 之前函数执⾏行行中 this 是全局变量量的

问题，看如下代码

题⽬目：ES6 模块化如何使⽤用？

Module

ES6 中模块化语法更更加简洁，直接看示例例。

如果只是输出⼀一个唯⼀一的对象，使⽤用 export default 即可，代码如下

// JS 普通函数

var arr = [1, 2, 3]

arr.map(function (item) {

 console.log(index)

 return item + 1

})

// ES6 箭头函数

const arr = [1, 2, 3]

arr.map((item, index) => {

 console.log(index)

 return item + 1

})

function fn() {

 console.log('real', this) // {a: 100} ，该作⽤用域下的 this 的真实的值

 var arr = [1, 2, 3]

 // 普通 JS

 arr.map(function (item) {

 console.log('js', this) // window 。普通函数，这⾥里里打印出来的是全局变量量，

令⼈人费解

 return item + 1

 })

 // 箭头函数

 arr.map(item => {

 console.log('es6', this) // {a: 100} 。箭头函数，这⾥里里打印的就是⽗父作⽤用域

的 this

 return item + 1

 })

}

fn.call({a: 100})

如果想要输出许多个对象，就不不能⽤用 default 了了，且 import 时候要加 {...} ，代码如下

题⽬目：ES6 class 和普通构造函数的区别

class

class 其实⼀一直是 JS 的关键字（保留留字），但是⼀一直没有正式使⽤用，直到 ES6 。 ES6 的 class 就是取
代之前构造函数初始化对象的形式，从语法上更更加符合⾯面向对象的写法。例例如：

JS 构造函数的写法

⽤用 ES6 class 的写法

// 创建 util1.js ⽂文件，内容如

export default {

 a: 100

}

// 创建 index.js ⽂文件，内容如

import obj from './util1.js'

console.log(obj)

// 创建 util2.js ⽂文件，内容如

export function fn1() {

 alert('fn1')

}

export function fn2() {

 alert('fn2')

}

// 创建 index.js ⽂文件，内容如

import { fn1, fn2 } from './util2.js'

fn1()

fn2()

function MathHandle(x, y) {

 this.x = x;

 this.y = y;

}

MathHandle.prototype.add = function () {

 return this.x + this.y;

};

var m = new MathHandle(1, 2);

console.log(m.add())

注意以下⼏几点，全都是关于 class 语法的：

class 是⼀一种新的语法形式，是 class Name {...} 这种形式，和函数的写法完全不不⼀一样

两者对⽐比，构造函数函数体的内容要放在 class 中的 constructor 函数中， constructor 即

构造器器，初始化实例例时默认执⾏行行
class 中函数的写法是 add() {...} 这种形式，并没有 function 关键字

使⽤用 class 来实现继承就更更加简单了了，⾄至少⽐比构造函数实现继承简单很多。看下⾯面例例⼦子

JS 构造函数实现继承

ES6 class 实现继承

class MathHandle {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 }

 add() {

 return this.x + this.y;

 }

}

const m = new MathHandle(1, 2);

console.log(m.add())

// 动物

function Animal() {

 this.eat = function () {

 console.log('animal eat')

 }

}

// 狗

function Dog() {

 this.bark = function () {

 console.log('dog bark')

 }

}

Dog.prototype = new Animal()

// 哈⼠士奇

var hashiqi = new Dog()

class Animal {

 constructor(name) {

 this.name = name

 }

 eat() {

 console.log(`${this.name} eat`)

 }

注意以下两点：

使⽤用 extends 即可实现继承，更更加符合经典⾯面向对象语⾔言的写法，如 Java
⼦子类的 constructor ⼀一定要执⾏行行 super() ，以调⽤用⽗父类的 constructor

题⽬目：ES6 中新增的数据类型有哪些？

Set 和 Map

Set 和 Map 都是 ES6 中新增的数据结构，是对当前 JS 数组和对象这两种重要数据结构的扩展。由于
是新增的数据结构，⽬目前尚未被⼤大规模使⽤用，但是作为前端程序员，提前了了解是必须做到的。先总结
⼀一下两者最关键的地⽅方：

Set 类似于数组，但数组可以允许元素重复，Set 不不允许元素重复
Map 类似于对象，但普通对象的 key 必须是字符串串或者数字，⽽而 Map 的 key 可以是任何数据类
型

Set

Set 实例例不不允许元素有重复，可以通过以下示例例证明。可以通过⼀一个数组初始化⼀一个 Set 实例例，或者
通过 add 添加元素，元素不不能重复，重复的会被忽略略。

Set 实例例的属性和⽅方法有

}

class Dog extends Animal {

 constructor(name) {

 super(name)

 this.name = name

 }

 say() {

 console.log(`${this.name} say`)

 }

}

const dog = new Dog('哈⼠士奇')

dog.say()

dog.eat()

// 例例1

const set = new Set([1, 2, 3, 4, 4]);

console.log(set) // Set(4) {1, 2, 3, 4}

// 例例2

const set = new Set();

[2, 3, 5, 4, 5, 8, 8].forEach(item => set.add(item));

for (let item of set) {

 console.log(item);

}

// 2 3 5 4 8

size ：获取元素数量量。

add(value) ：添加元素，返回 Set 实例例本身。
delete(value) ：删除元素，返回⼀一个布尔值，表示删除是否成功。

has(value) ：返回⼀一个布尔值，表示该值是否是 Set 实例例的元素。
clear() ：清除所有元素，没有返回值。

Set 实例例的遍历，可使⽤用如下⽅方法

keys() ：返回键名的遍历器器。

values() ：返回键值的遍历器器。不不过由于 Set 结构没有键名，只有键值（或者说键名和键值是
同⼀一个值），所以 keys() 和 values() 返回结果⼀一致。

entries() ：返回键值对的遍历器器。

forEach() ：使⽤用回调函数遍历每个成员。

const s = new Set();

s.add(1).add(2).add(2); // 添加元素

s.size // 2

s.has(1) // true

s.has(2) // true

s.has(3) // false

s.delete(2);

s.has(2) // false

s.clear();

console.log(s); // Set(0) {}

let set = new Set(['aaa', 'bbb', 'ccc']);

for (let item of set.keys()) {

 console.log(item);

}

// aaa

// bbb

// ccc

for (let item of set.values()) {

 console.log(item);

}

// aaa

// bbb

// ccc

for (let item of set.entries()) {

 console.log(item);

}

Map

Map 的⽤用法和普通对象基本⼀一致，先看⼀一下它能⽤用⾮非字符串串或者数字作为 key 的特性。

需要使⽤用 new Map() 初始化⼀一个实例例，下⾯面代码中 set get has delete 顾名即可思义（下⽂文
也会演示）。其中， map.set(obj, 'OK') 就是⽤用对象作为的 key （不不光可以是对象，任何数据类
型都可以），并且后⾯面通过 map.get(obj) 正确获取了了。

Map 实例例的属性和⽅方法如下：

size ：获取成员的数量量

set ：设置成员 key 和 value
get ：获取成员属性值

has ：判断成员是否存在

delete ：删除成员

clear ：清空所有

// ["aaa", "aaa"]

// ["bbb", "bbb"]

// ["ccc", "ccc"]

set.forEach((value, key) => console.log(key + ' : ' + value))

// aaa : aaa

// bbb : bbb

// ccc : ccc

const map = new Map();

const obj = {p: 'Hello World'};

map.set(obj, 'OK')

map.get(obj) // "OK"

map.has(obj) // true

map.delete(obj) // true

map.has(obj) // false

const map = new Map();

map.set('aaa', 100);

map.set('bbb', 200);

map.size // 2

map.get('aaa') // 100

map.has('aaa') // true

map.delete('aaa')

map.has('aaa') // false

Map 实例例的遍历⽅方法有：

keys() ：返回键名的遍历器器。

values() ：返回键值的遍历器器。

entries() ：返回所有成员的遍历器器。

forEach() ：遍历 Map 的所有成员。

Promise

Promise 是 CommonJS 提出来的这⼀一种规范，有多个版本，在 ES6 当中已经纳⼊入规范，原⽣生⽀支持
Promise 对象，⾮非 ES6 环境可以⽤用类似 Bluebird、Q 这类库来⽀支持。

Promise 可以将回调变成链式调⽤用写法，流程更更加清晰，代码更更加优雅。

简单归纳下 Promise：三个状态、两个过程、⼀一个⽅方法，快速记忆⽅方法：3-2-1

三个状态： pending 、 fulfilled 、 rejected

两个过程：

map.clear()

const map = new Map();

map.set('aaa', 100);

map.set('bbb', 200);

for (let key of map.keys()) {

 console.log(key);

}

// "aaa"

// "bbb"

for (let value of map.values()) {

 console.log(value);

}

// 100

// 200

for (let item of map.entries()) {

 console.log(item[0], item[1]);

}

// aaa 100

// bbb 200

// 或者

for (let [key, value] of map.entries()) {

 console.log(key, value);

}

// aaa 100

// bbb 200

pending→fulfilled（resolve）
pending→rejected（reject）

⼀一个⽅方法： then

当然还有其他概念，如 catch 、 Promise.all/race ，这⾥里里就不不展开了了。

关于 ES6/7 的考查内容还有很多，本⼩小节就不不逐⼀一介绍了了，如果想继续深⼊入学习，可以在线看《ES6
⼊入⻔门》。

⼩小结

本⼩小节主要总结了了 ES 基础语法中⾯面试经常考查的知识点，包括之前就考查较多的原型、异步、作⽤用
域，以及 ES6 的⼀一些新内容，这些知识点希望⼤大家都要掌握。

http://es6.ruanyifeng.com/

	一面 1：ES 基础知识点与高频考题解析
	知识点梳理
	变量类型
	typeof
	instanceof
	值类型 vs 引用类型

	原型和原型链
	原型
	原型链
	原型链中的this

	作用域和闭包
	执行上下文
	this
	作用域
	作用域链
	闭包

	异步
	同步 vs 异步
	异步和单线程
	前端异步的场景

	ES6/7 新标准的考查
	箭头函数
	Module
	class
	Set 和 Map
	Promise

	小结

