
总结与补充说明
恭喜你，学完了了本⼩小册。下⾯面来总结下本⼩小册的内容，并补充⼀一些遗漏漏的内容。

总结

本⼩小册主要带领⼤大家从准备简历开始，逐步梳理理技术⾯面试知识点和⾮非技术⾯面试常考问题，最后介绍了了
⼀一些谈 offer 之类的⾯面试技巧。下⾯面带领⼤大家根据准备、技术⾯面试、⾮非技术⾯面试和 HR ⾯面试四部分，
回顾⼀一下每部分的要点。

准备阶段

简历准备：

1. 简历要求尽量量平实，不不要太花俏
2. 格式推荐 PDF
3. 内容包含：个⼈人技能、项⽬目经验和实习经验
4. 简历应该针对性来写
5. 简历提到的项⽬目、技能都要仔细回想细节，挖掘可能出现的⾯面试题

拿到⾯面邀之后准备：

1. 开场问题：⾃自我介绍、离职原因等
2. 了了解⾯面试官、了了解公司和部⻔门做的事情
3. 知识梳理理推荐使⽤用思维导图

技术⾯面部分

集中梳理理了了 ECMAScript 基础、JS-Web-API、CSS 和 HTML、算法、浏览器器和开发环境六⼤大部分内
容，并且就⼀一些⾼高频考题进⾏行行讲解。

⾮非技术⾯面试部分

主要从软技能和项⽬目介绍两个部分来梳理理。在软技能⽅方⾯面，介绍了了⼯工程师从业⼈人员应该具有的软技
能，并且通过⼏几个⾯面试真题介绍了了怎么灵活应对⾯面试官；在项⽬目介绍⼩小节，推荐按照项⽬目背景、承担
⻆角⾊色、项⽬目收益和项⽬目总结反思四步来介绍，并且继续推荐使⽤用思维导图⽅方式来梳理理项⽬目的细节。

HR ⾯面

在⼩小册最后，介绍了了 HR ⾯面试应该注意的问题，重点分享了了作为⼀一个 Web 前端⼯工程师怎么对⾃自⼰己进⾏行行
估值，然后跟 HR 进⾏行行沟通，拿到⾃自⼰己可以接受的 offer。

最后还介绍了了⼀一些⾯面试注意事项，在⾯面试整个流程中，太多主观因素，细节虽⼩小也可能决定候选⼈人⾯面
试的结果。

补充说明

本着通⽤用性和⾯面试⻔门槛考虑的设计，本⼩小册对于⼀一些前端进阶和框架类的问题没有进⾏行行梳理理，没有涉
及的内容主要有：

1. Node.js部分
2. 类库：Zepto、jQuery、React、Vue 和 Angular 等
3. 移动开发

下⾯面简单展开下上⾯面的内容。

Node.js部分

Node.js 涉及的知识点⽐比较多，⽽而且⽐比较偏后端和⼯工具性，如果⽤用 Node.js 来做 Server 服务，需要补
充⼤大量量的后端知识和运维知识，这⾥里里帮助梳理理下知识点：

Node 开发环境

npm 操作
package.json

Node 基础 API 考查

file system
Event
⽹网络
child process

Node 重点和难点

事件和异步理理解
Steam 相关概念
Buffer 相关概念
domain
vm
cluster
异常调优

Server 相关

库

Koa
Express

数据库

MongoDB
MySQL
Redis

运维部署

Nginx
进程守候
⽇日志

Node 的出现让前端可以做的事情更更多，除了了做⼀一些 Server 的⼯工作以外，Node 在⽇日常开发中可以做
⼀一些⼯工具来提升效率，⽐比如常⻅见的前端构建⼯工具⽬目前都是 Node 来编写的，⽽而我们在研发中，⼀一些类
似 Mock、本地 server、代码实时刷新之类的功能，都可以使⽤用 Node 来⾃自⼰己实现。

前端框架（库）

jQuery 和 Zepto 分别是应⽤用在 PC 和移动上⾯面的库，⼤大⼤大降低了了前端开发⼈人员的⻔门槛，很多前端⼯工程
师都是从写 jQuery 代码开始的。jQuery 和 Zepto 这两个库对外的 API 都是相同的。在⾯面试的时候可
能会问到⼀一些具体代码的实现，⽐比如下⾯面两个问题：

题⽬目：谈谈 jQuery 的 delegate 和 bind 有什什么区别； window.onload 和 $().ready 有什什么

区别

这实际上都是 JS-Web-API 部分基础知识的实际应⽤用：

delegate 是事件代理理（委托），bind是直接绑定事件
onload 是浏览器器部分的全部加载完成，包括⻚页⾯面的图⽚片之类资源；ready 则
是 DOMContentLoaded 事件，⽐比 onload 提前⼀一些

下⾯面再说下⽐比较⽕火的 Angular、React 和 Vue。

为什什么会出现 Angular、React 和 Vue 这种库？

理理解为什什么会出现⼀一种新技术，以及新技术解决了了什什么问题，才能够更更好地选择和运⽤用新技术，不不⾄至
于落⼊入「喜新厌旧」的怪圈。

⾸首先在互联⽹网⽤用户界⾯面和交互越来越复杂的阶段，这些 MV* 库是极⼤大提升了了开发效率，⽐比如在数据
流为主的后台系统，每天打交道最多的就是数据的增删改查，这时候如果使⽤用这些库，可以将注意⼒力力
转移到数据本身来，⽽而不不再是⻚页⾯面交互，从⽽而极⼤大地提升开发效率和沟通成本。

React 还有个很好的想法是 React Native，只需要写⼀一套代码就可以实现 Web、安卓、iOS 三端相同
的效果，但是在实际使⽤用和开发中会有⽐比较⼤大的坑。⽽而且就像 Node ⼀一样，前端⽤用 Node 写 Server
可能需要⽤用到的后端知识要⽐比前端知识多，想要写好 React Native，客户端的知识也是必不不可少的。
React Native 和Node 都是拓拓展了了 Web 前端⼯工程师可以⾛走的路路，既可以向后⼜又可以向前，所谓「全
栈」。

Angular、React 和 Vue 各⾃自的特点

AngularJS有着诸多特性，最为核⼼心的是 MVVM、模块化、⾃自动化双向数据绑定、语义化标签、
依赖注⼊入等
React 是⼀一个为数据提供渲染为 HTML 视图的开源 JavaScript 库，最⼤大特点是引⼊入 Virtual
DOM，极⼤大提升数据修改后 DOM 树的更更新速度，⽽而且也有 React Native 来做客户端开发
Vue.js 作为后起前端框架，借鉴了了 Angular 、React 等现代前端框架/库的诸多特点，并取得了了
相当不不错的成绩。

⼀一定要⽤用这些库吗？

⽬目前这些库的确解决了了实际开发中很多问题，但是这种「三⾜足鼎⽴立」的状况不不是最终态，会是阶段性
产物。从⻓长远来说，好的想法和点⼦子终究会体现在语⾔言本身特性上来，即通过这些库的想法来推动标
准的改进，⽐比如 jQuery 的很多选择器器 API，最终都被 CSS3 和 HTML5 接纳和实现，也就就有了了后来
的 Zepto。

另外，以展现交互为主的项⽬目不不太推荐使⽤用这类库，本身库的性能和体积就对⻚页⾯面造成极⼤大的负担，
⽐比如笔者使⽤用 Vue 做纯展现为主的项⽬目，性能要⽐比⻚页⾯面直出 HTML 慢。纯展现⻚页⾯面指的是那些以展
现为主、⽤用户交互少的⻚页⾯面，如⽂文章列列表⻚页、⽂文章详情⻚页等。

如果是数据交互较多的⻚页⾯面，例例如后台系统这类对性能要求不不多⽽而数据交互较多的⻚页⾯面，推荐使⽤用。

另外，不不管是什什么库和框架，我们最终应该学习的是编程思维，⽐比如分层、性能优化等，考虑视图
层、组件化和⼯工程效率问题。相信随着 ES 标准发展、摩尔定律律（硬件）和浏览器器的演进，⽬目前这些
问题和状况都会得到改善。

关于三者的学习资料料就不不补充了了，因为实在是太⽕火了了，随便便搜索⼀一下就会找到。

移动开发

这⾥里里说的移动开发指的是做的项⽬目是⾯面向移动端的，⽐比如 HTML5 ⻚页⾯面、⼩小程序等。做移动开发⽤用的
也是前⾯面⼏几个⼩小节梳理理的基础知识，唯⼀一不不同的是⼯工程师⾯面向的浏览器器是移动端的浏览器器或者固定的
Webview，所以会跟普通的 PC 开发有所不不同。除了了最基础的 JSBridge 概念之外，这⾥里里笔者重点列列出
以下⼏几点：

1. 移动端更更加注重性能和体验，因为移动端设备和⽹网络都⽐比 PC 的差⼀一些
2. 交互跟 PC 不不同，⽐比如 touch 事件
3. 浏览器器和固定的 Webview 带来了了更更多兼容性的问题，如微信 webview、安卓浏览器器和 iOS 浏览
器器

4. 调试技巧更更多，在 Chrome 内开发完⻚页⾯面，放到真机需要再调试⼀一遍，或者需要真机配合才能
实现⻚页⾯面的完整功能

后记

⼩小册梳理理了了很多知识点，但是限于笔者精⼒力力、⼩小册篇幅和新知识的不不断涌现，难免会有考虑不不到的地
⽅方，还请⼤大家按照我在第⼀一节提到的思维导图的⽅方式，⾃自⼰己列列脑图进⾏行行梳理理。

最后，祝每个⼈人都拿到满意的 offer！

	总结与补充说明
	总结
	准备阶段
	技术面部分
	非技术面试部分
	HR 面

	补充说明
	Node.js部分
	前端框架（库）
	移动开发

	后记

