
⼀一⾯面 2：JS-Web-API 知识点与⾼高频考题解析
除 ES 基础之外，Web 前端经常会⽤用到⼀一些跟浏览器器相关的 API，接下来我们⼀一起梳理理⼀一下。

知识点梳理理

BOM 操作
DOM 操作
事件绑定
Ajax
存储

BOM

BOM（浏览器器对象模型）是浏览器器本身的⼀一些信息的设置和获取，例例如获取浏览器器的宽度、⾼高度，设
置让浏览器器跳转到哪个地址。

navigator

screen

location

history

这些对象就是⼀一堆⾮非常简单粗暴暴的 API，没任何技术含量量，讲起来⼀一点意思都没有，⼤大家去 MDN 或
者 w3school 这种⽹网站⼀一查就都明⽩白了了。⾯面试的时候，⾯面试官基本不不会出太多这⽅方⾯面的题⽬目，因为只
要基础知识过关了了，这些 API 即便便你记不不住，上⽹网⼀一查也都知道了了。下⾯面列列举⼀一下常⽤用功能的代码示
例例

获取浏览器器特性（即俗称的 UA ）然后识别客户端，例例如判断是不不是 Chrome 浏览器器

获取屏幕的宽度和⾼高度

获取⽹网址、协议、path、参数、hash 等

var ua = navigator.userAgent

var isChrome = ua.indexOf('Chrome')

console.log(isChrome)

console.log(screen.width)

console.log(screen.height)

另外，还有调⽤用浏览器器的前进、后退功能等

DOM

题⽬目：DOM 和 HTML 区别和联系

什什么是 DOM

讲 DOM 先从 HTML 讲起，讲 HTML 先从 XML 讲起。XML 是⼀一种可扩展的标记语⾔言，所谓可扩展就
是它可以描述任何结构化的数据，它是⼀一棵树！

HTML 是⼀一个有既定标签标准的 XML 格式，标签的名字、层级关系和属性，都被标准化（否则浏览器器
⽆无法解析）。同样，它也是⼀一棵树。

// 例例如当前⽹网址是 https://juejin.im/timeline/frontend?a=10&b=10#some

console.log(location.href) // https://juejin.im/timeline/frontend?

a=10&b=10#some

console.log(location.protocol) // https:

console.log(location.pathname) // /timeline/frontend

console.log(location.search) // ?a=10&b=10

console.log(location.hash) // #some

history.back()

history.forward()

<?xml version="1.0" encoding="UTF-8"?>

<note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

 <other>

 <a>

 </other>

</note>

我们开发完的 HTML 代码会保存到⼀一个⽂文档中（⼀一般以 .html 或者 .htm 结尾），⽂文档放在服务器器

上，浏览器器请求服务器器，这个⽂文档被返回。因此，最终浏览器器拿到的是⼀一个⽂文档⽽而已，⽂文档的内容就
是 HTML 格式的代码。

但是浏览器器要把这个⽂文档中的 HTML 按照标准渲染成⼀一个⻚页⾯面，此时浏览器器就需要将这堆代码处理理成
⾃自⼰己能理理解的东⻄西，也得处理理成 JS 能理理解的东⻄西，因为还得允许 JS 修改⻚页⾯面内容呢。

基于以上需求，浏览器器就需要把 HTML 转变成 DOM，HTML 是⼀一棵树，DOM 也是⼀一棵树。对 DOM
的理理解，可以暂时先抛开浏览器器的内部因素，先从 JS 着⼿手，即可以认为 DOM 就是 JS 能识别的
HTML 结构，⼀一个普通的 JS 对象或者数组。

获取 DOM 节点

<!DOCTYPE html>

<html>

<head>

 <meta charset="UTF-8">

 <title>Document</title>

</head>

<body>

 <div>

 <p>this is p</p>

 </div>

</body>

</html>

最常⽤用的 DOM API 就是获取节点，其中常⽤用的获取⽅方法如下⾯面代码示例例：

题⽬目：property 和 attribute 的区别是什什么？

property

DOM 节点就是⼀一个 JS 对象，它符合之前讲述的对象的特征 —— 可扩展属性，因为 DOM 节点本质上
也是⼀一个 JS 对象。因此，如下代码所示， p 可以有 style 属性，有 className nodeName
nodeType 属性。注意，这些都是 JS 范畴的属性，符合 JS 语法标准的。

attribute

property 的获取和修改，是直接改变 JS 对象，⽽而 attribute 是直接改变 HTML 的属性，两种有很⼤大的
区别。attribute 就是对 HTML 属性的 get 和 set，和 DOM 节点的 JS 范畴的 property 没有关系。

// 通过 id 获取

var div1 = document.getElementById('div1') // 元素

// 通过 tagname 获取

var divList = document.getElementsByTagName('div') // 集合

console.log(divList.length)

console.log(divList[0])

// 通过 class 获取

var containerList = document.getElementsByClassName('container') // 集合

// 通过 CSS 选择器器获取

var pList = document.querySelectorAll('p') // 集合

var pList = document.querySelectorAll('p')

var p = pList[0]

console.log(p.style.width) // 获取样式

p.style.width = '100px' // 修改样式

console.log(p.className) // 获取 class

p.className = 'p1' // 修改 class

// 获取 nodeName 和 nodeType

console.log(p.nodeName)

console.log(p.nodeType)

var pList = document.querySelectorAll('p')

var p = pList[0]

p.getAttribute('data-name')

p.setAttribute('data-name', 'juejin')

p.getAttribute('style')

p.setAttribute('style', 'font-size:30px;')

⽽而且，get 和 set attribute 时，还会触发 DOM 的查询或者重绘、重排，频繁操作会影响⻚页⾯面性能。

题⽬目：DOM 操作的基本 API 有哪些？

DOM 树操作

新增节点

获取⽗父元素

获取⼦子元素

删除节点

还有其他操作的API，例例如获取前⼀一个节点、获取后⼀一个节点等，但是⾯面试过程中经常考到的就是上
⾯面⼏几个。

事件

事件绑定

普通的事件绑定写法如下：

var div1 = document.getElementById('div1')

// 添加新节点

var p1 = document.createElement('p')

p1.innerHTML = 'this is p1'

div1.appendChild(p1) // 添加新创建的元素

// 移动已有节点。注意，这⾥里里是“移动”，并不不是拷⻉贝

var p2 = document.getElementById('p2')

div1.appendChild(p2)

var div1 = document.getElementById('div1')

var parent = div1.parentElement

var div1 = document.getElementById('div1')

var child = div1.childNodes

var div1 = document.getElementById('div1')

var child = div1.childNodes

div1.removeChild(child[0])

为了了编写简单的事件绑定，可以编写通⽤用的事件绑定函数。这⾥里里虽然⽐比较简单，但是会随着后⽂文的讲
解，来继续完善和丰富这个函数。

最后，如果⾯面试被问到 IE 低版本兼容性问题，我劝你果断放弃这份⼯工作机会。现在互联⽹网流量量都在
App 上， IE 占⽐比越来越少，再去为 IE 浪费⻘青春不不值得，要尽量量去做 App 相关的⼯工作。

题⽬目：什什么是事件冒泡？

事件冒泡

对于以上 HTML 代码结构，要求点击 p1 时候进⼊入激活状态，点击其他任何 <p> 都取消激活状态，

如何实现？代码如下，注意看注释：

var btn = document.getElementById('btn1')

btn.addEventListener('click', function (event) {

 // event.preventDefault() // 阻⽌止默认⾏行行为

 // event.stopPropagation() // 阻⽌止冒泡

 console.log('clicked')

})

// 通⽤用的事件绑定函数

function bindEvent(elem, type, fn) {

 elem.addEventListener(type, fn)

}

var a = document.getElementById('link1')

// 写起来更更加简单了了

bindEvent(a, 'click', function(e) {

 e.preventDefault() // 阻⽌止默认⾏行行为

 alert('clicked')

})

<body>

 <div id="div1">

 <p id="p1">激活</p>

 <p id="p2">取消</p>

 <p id="p3">取消</p>

 <p id="p4">取消</p>

 </div>

 <div id="div2">

 <p id="p5">取消</p>

 <p id="p6">取消</p>

 </div>

</body>

如果我们在 p1 div1 body 中都绑定了了事件，它是会根据 DOM 的结构来冒泡，从下到上挨个执⾏行行
的。但是我们使⽤用 e.stopPropagation() 就可以阻⽌止冒泡

题⽬目：如何使⽤用事件代理理？有何好处？

事件代理理

我们设定⼀一种场景，如下代码，⼀一个 <div> 中包含了了若⼲干个 <a> ，⽽而且还能继续增加。那如何快捷

⽅方便便地为所有 <a> 绑定事件呢？

这⾥里里就会⽤用到事件代理理。我们要监听 <a> 的事件，但要把具体的事件绑定到 <div> 上，然后看事件

的触发点是不不是 <a> 。

我们现在完善⼀一下之前写的通⽤用事件绑定函数，加上事件代理理。

var body = document.body

bindEvent(body, 'click', function (e) {

 // 所有 p 的点击都会冒泡到 body 上，因为 DOM 结构中 body 是 p 的上级节点，事件会

沿着 DOM 树向上冒泡

 alert('取消')

})

var p1 = document.getElementById('p1')

bindEvent(p1, 'click', function (e) {

 e.stopPropagation() // 阻⽌止冒泡

 alert('激活')

})

<div id="div1">

 a1

 a2

 a3

 a4

</div>

<button>点击增加⼀一个 a 标签</button>

var div1 = document.getElementById('div1')

div1.addEventListener('click', function (e) {

 // e.target 可以监听到触发点击事件的元素是哪⼀一个

 var target = e.target

 if (e.nodeName === 'A') {

 // 点击的是 <a> 元素

 alert(target.innerHTML)

 }

})

然后这样使⽤用，简单很多。

最后，使⽤用代理理的优点如下：

使代码简洁
减少浏览器器的内存占⽤用

Ajax

function bindEvent(elem, type, selector, fn) {

 // 这样处理理，可接收两种调⽤用⽅方式 bindEvent(div1, 'click', 'a', function ()

{...}) 和 bindEvent(div1, 'click', function () {...}) 这两种

 if (fn == null) {

 fn = selector

 selector = null

 }

 // 绑定事件

 elem.addEventListener(type, function (e) {

 var target

 if (selector) {

 // 有 selector 说明需要做事件代理理

 // 获取触发时间的元素，即 e.target

 target = e.target

 // 看是否符合 selector 这个条件

 if (target.matches(selector)) {

 fn.call(target, e)

 }

 } else {

 // ⽆无 selector ，说明不不需要事件代理理

 fn(e)

 }

 })

}

// 使⽤用代理理，bindEvent 多⼀一个 'a' 参数

var div1 = document.getElementById('div1')

bindEvent(div1, 'click', 'a', function (e) {

 console.log(this.innerHTML)

})

// 不不使⽤用代理理

var a = document.getElementById('a1')

bindEvent(div1, 'click', function (e) {

 console.log(a.innerHTML)

})

XMLHttpRequest

题⽬目：⼿手写 XMLHttpRequest 不不借助任何库

这是很多奇葩的、个性的⾯面试官经常⽤用的⼿手段。这种考查⽅方式存在很多争议，但是你不不能完全说它是
错误的，毕竟也是考查对最基础知识的掌握情况。

当然，使⽤用 jQuery、Zepto 或 Fetch 等库来写就更更加简单了了，这⾥里里不不再赘述。

状态码说明

上述代码中，有两处状态码需要说明。 xhr.readyState 是浏览器器判断请求过程中各个阶段

的， xhr.status 是 HTTP 协议中规定的不不同结果的返回状态说明。

xhr.readyState 的状态码说明：

0 -代理理被创建，但尚未调⽤用 open() ⽅方法。
1 - open() ⽅方法已经被调⽤用。
2 - send() ⽅方法已经被调⽤用，并且头部和状态已经可获得。
3 -下载中， responseText 属性已经包含部分数据。
4 -下载操作已完成

题⽬目：HTTP 协议中，response 的状态码，常⻅见的有哪些？

xhr.status 即 HTTP 状态码，有 2xx 3xx 4xx 5xx 这⼏几种，⽐比较常⽤用的有以下⼏几种：

200 正常

3xx

301 永久重定向。如 http://xxx.com 这个 GET 请求（最后没有 / ），就会被 301

到 http://xxx.com/ （最后是 / ）

302 临时重定向。临时的，不不是永久的
304 资源找到但是不不符合请求条件，不不会返回任何主体。如发送 GET 请求时，head 中
有 If-Modified-Since: xxx （要求返回更更新时间是 xxx 时间之后的资源），如果此时

服务器器 端资源未更更新，则会返回 304 ，即不不符合要求

404 找不不到资源

5xx 服务器器端出错了了

var xhr = new XMLHttpRequest()

xhr.onreadystatechange = function () {

 // 这⾥里里的函数异步执⾏行行，可参考之前 JS 基础中的异步模块

 if (xhr.readyState == 4) {

 if (xhr.status == 200) {

 alert(xhr.responseText)

 }

 }

}

xhr.open("GET", "/api", false)

xhr.send(null)

看完要明⽩白，为何上述代码中要同时满⾜足 xhr.readyState == 4 和 xhr.status == 200 。

Fetch API

⽬目前已经有⼀一个获取 HTTP 请求更更加⽅方便便的 API： Fetch ，通过 Fetch 提供的 fetch() 这个全局函

数⽅方法可以很简单地发起异步请求，并且⽀支持 Promise 的回调。但是 Fetch API 是⽐比较新的 API，具
体使⽤用的时候还需要查查 caniuse，看下其浏览器器兼容情况。

看⼀一个简单的例例⼦子：

Fetch ⽀支持 headers 定义，通过 headers ⾃自定义可以⽅方便便地实现多种请求⽅方法（ PUT、GET、
POST 等）、请求头（包括跨域）和 cache 策略略等；除此之外还⽀支持 response（返回数据）多种类
型，⽐比如⽀支持⼆二进制⽂文件、字符串串和 formData 等。

跨域

题⽬目：如何实现跨域？

浏览器器中有 同源策略略 ，即⼀一个域下的⻚页⾯面中，⽆无法通过 Ajax 获取到其他域的接⼝口。例例如有⼀一个接⼝口
http://m.juejin.com/course/ajaxcourserecom?cid=459 ，你⾃自⼰己的⼀一个⻚页

⾯面 http://www.yourname.com/page1.html 中的 Ajax ⽆无法获取这个接⼝口。这正是命中了了“同源策
略略”。如果浏览器器哪些地⽅方忽略略了了同源策略略，那就是浏览器器的安全漏漏洞洞，需要紧急修复。

url 哪些地⽅方不不同算作跨域？

协议
域名
端⼝口

但是 HTML 中⼏几个标签能逃避过同源策略略—— <script src="xxx"> 、 <img

src="xxxx"/> 、 <link href="xxxx"> ，这三个标签的 src/href 可以加载其他域的资源，不不受

同源策略略限制。

因此，这使得这三个标签可以做⼀一些特殊的事情。

 可以做打点统计，因为统计⽅方并不不⼀一定是同域的，在讲解 JS 基础知识异步的时候有过代
码示例例。除了了能跨域之外， ⼏几乎没有浏览器器兼容问题，它是⼀一个⾮非常古⽼老老的标签。

<script> 和 <link> 可以使⽤用 CDN，CDN 基本都是其他域的链接。
另外 <script> 还可以实现 JSONP，能获取其他域接⼝口的信息，接下来⻢马上讲解。

fetch('some/api/data.json', {

 method:'POST', //请求类型 GET、POST

 headers:{}, // 请求的头信息，形式为 Headers 对象或 ByteString

 body:{}, //请求发送的数据 blob、BufferSource、FormData、URLSearchParams（get

或head ⽅方法中不不能包含 body）

 mode:'', //请求的模式，是否跨域等，如 cors、 no-cors 或 same-origin

 credentials:'', //cookie 的跨域策略略，如 omit、same-origin 或 include

 cache:'', //请求的 cache 模式: default、no-store、reload、no-cache、 force-

cache 或 only-if-cached

}).then(function(response) { ... });

https://caniuse.com/

但是请注意，所有的跨域请求⽅方式，最终都需要信息提供⽅方来做出相应的⽀支持和改动，也就是要经过
信息提供⽅方的同意才⾏行行，否则接收⽅方是⽆无法得到它们的信息的，浏览器器是不不允许的。

解决跨域 - JSONP

⾸首先，有⼀一个概念你要明⽩白，例例如访问 http://coding.m.juejin.com/classindex.html 的时

候，服务器器端就⼀一定有⼀一个 classindex.html ⽂文件吗？—— 不不⼀一定，服务器器可以拿到这个请求，动
态⽣生成⼀一个⽂文件，然后返回。 同理理， <script src="http://coding.m.juejin.com/api.js">

也不不⼀一定加载⼀一个服务器器端的静态⽂文件，服务器器也可以动态⽣生成⽂文件并返回。OK，接下来正式开始。

例例如我们的⽹网站和掘⾦金金⽹网，肯定不不是⼀一个域。我们需要掘⾦金金⽹网提供⼀一个接⼝口，供我们来获取。⾸首先，
我们在⾃自⼰己的⻚页⾯面这样定义

然后掘⾦金金⽹网给我提供了了⼀一个 http://coding.m.juejin.com/api.js ，内容如下（之前说过，服务

器器可动态⽣生成内容）

最后我们在⻚页⾯面中加⼊入 <script src="http://coding.m.juejin.com/api.js"></script> ，那

么这个js加载之后，就会执⾏行行内容，我们就得到内容了了。

解决跨域 - 服务器器端设置 http header

这是需要在服务器器端设置的，作为前端⼯工程师我们不不⽤用详细掌握，但是要知道有这么个解决⽅方案。⽽而
且，现在推崇的跨域解决⽅方案是这⼀一种，⽐比 JSONP 简单许多。

存储

题⽬目：cookie 和 localStorage 有何区别？

<script>

window.callback = function (data) {

 // 这是我们跨域得到信息

 console.log(data)

}

</script>

callback({x:100, y:200})

response.setHeader("Access-Control-Allow-Origin", "http://m.juejin.com/");

 // 第⼆二个参数填写允许跨域的域名称，不不建议直接写 "*"

response.setHeader("Access-Control-Allow-Headers", "X-Requested-With");

response.setHeader("Access-Control-Allow-Methods",

"PUT,POST,GET,DELETE,OPTIONS");

// 接收跨域的cookie

response.setHeader("Access-Control-Allow-Credentials", "true");

cookie

cookie 本身不不是⽤用来做服务器器端存储的（计算机领域有很多这种“狗拿耗⼦子”的例例⼦子，例例如 CSS 中的
float），它是设计⽤用来在服务器器和客户端进⾏行行信息传递的，因此我们的每个 HTTP 请求都带着
cookie。但是 cookie 也具备浏览器器端存储的能⼒力力（例例如记住⽤用户名和密码），因此就被开发者⽤用上
了了。

使⽤用起来也⾮非常简单， document.cookie = 即可。

但是 cookie 有它致命的缺点：

存储量量太⼩小，只有 4KB
所有 HTTP 请求都带着，会影响获取资源的效率
API 简单，需要封装才能⽤用

localStorage 和 sessionStorage

后来，HTML5 标准就带来了了 sessionStorage 和 localStorage ，先拿 localStorage 来说，它

是专⻔门为了了浏览器器端缓存⽽而设计的。其优点有：

存储量量增⼤大到 5MB
不不会带到 HTTP 请求中
API 适⽤用于数据存储 localStorage.setItem(key, value) localStorage.getItem(key)

sessionStorage 的区别就在于它是根据 session 过去时间⽽而实现，⽽而 localStorage 会永久有

效，应⽤用场景不不同。例例如，⼀一些需要及时失效的重要信息放在 sessionStorage 中，⼀一些不不重要但

是不不经常设置的信息，放在 localStorage 中。

另外告诉⼤大家⼀一个⼩小技巧，针对 localStorage.setItem ，使⽤用时尽量量加⼊入到 try-catch 中，某

些浏览器器是禁⽤用这个 API 的，要注意。

⼩小结

本⼩小节总结了了 W3C 标准中 Web-API 部分，⾯面试中常考的知识点，这些也是⽇日常开发中最常⽤用的 API
和知识。

	一面 2：JS-Web-API 知识点与高频考题解析
	知识点梳理
	BOM
	DOM
	什么是 DOM
	获取 DOM 节点
	property
	attribute
	DOM 树操作

	事件
	事件绑定
	事件冒泡
	事件代理

	Ajax
	XMLHttpRequest
	状态码说明
	Fetch API
	跨域
	解决跨域 - JSONP
	解决跨域 - 服务器端设置 http header

	存储
	cookie
	localStorage 和 sessionStorage

	小结

