
⼀一⾯面 4：从容应对算法题⽬目
由冯·诺依曼机组成我们知道：数据存储和运算是计算机⼯工作的主要内容。 程序=数据结构+算法 ，所

以计算机类⼯工程师必须掌握⼀一定的数据结构和算法知识。

知识点梳理理

常⻅见的数据结构

栈、队列列、链表
集合、字典、散列列集

常⻅见算法

递归
排序
枚举

算法复杂度分析

算法思维

分治
贪⼼心
动态规划

⾼高级数据结构

树、图
深度优先和⼴广度优先搜索

本⼩小节会带领⼤大家快速过⼀一遍数据结构和算法，重点讲解⼀一些常考、前端会⽤用到的算法和数据结构。

数据结构

数据结构决定了了数据存储的空间和时间效率问题，数据的写⼊入和提取速度要求也决定了了应该选择怎样
的数据结构。

根据对场景需求的不不同，我们设计不不同的数据结构，⽐比如：

读得多的数据结构，应该想办法提⾼高数据的读取效率，⽐比如 IP 数据库，只需要写⼀一次，剩下的
都是读取；
读写都多的数据结构，要兼顾两者的需求平衡，⽐比如 LRU Cache 算法。

算法是数据加⼯工处理理的⽅方式，⼀一定的算法会提升数据的处理理效率。⽐比如有序数组的⼆二分查找，要⽐比普
通的顺序查找快很多，尤其是在处理理⼤大量量数据的时候。

数据结构和算法是程序开发的通⽤用技能，所以在任何⾯面试中都可能会遇⻅见。随着近⼏几年年 AI、⼤大数据、
⼩小游戏越来越⽕火，Web 前端职位难免会跟数据结构和算法打交道，⾯面试中也会出现越来越多的算法题
⽬目。学习数据结构和算法也能够帮助我们打开思路路，突破技能瓶颈。

前端常遇⻅见的数据结构问题

前端常遇⻅见的数据结构问题
现在我来梳理理下前端常遇⻅见的数据结构：

简单数据结构（必须理理解掌握）

有序数据结构：栈、队列列、链表，有序数据结构省空间（存储空间⼩小）
⽆无序数据结构：集合、字典、散列列表，⽆无序数据结构省时间（读取时间快）

复杂数据结构

树、堆
图

对于简单数据结构，在 ES 中对应的是数组（ Array ）和对象（ Object ）。可以想⼀一下，数组的存

储是有序的，对象的存储是⽆无序的，但是我要在对象中根据 key 找到⼀一个值是⽴立即返回的，数组则需

要查找的过程。

这⾥里里我通过⼀一个真实⾯面试题⽬目来说明介绍下数据结构设计。

题⽬目：使⽤用 ECMAScript（JS）代码实现⼀一个事件类 Event ，包含下⾯面功能：绑定事件、解绑

事件和派发事件。

在稍微复杂点的⻚页⾯面中，⽐比如组件化开发的⻚页⾯面，同⼀一个⻚页⾯面由两三个⼈人来开发，为了了保证组件的独
⽴立性和降低组件间耦合度，我们往往使⽤用「订阅发布模式」，即组件间通信使⽤用事件监听和派发的⽅方
式，⽽而不不是直接相互调⽤用组件⽅方法，这就是题⽬目要求写的 Event 类。

这个题⽬目的核⼼心是⼀一个事件类型对应回调函数的数据设计。为了了实现绑定事件，我们需要⼀一
个 _cache 对象来记录绑定了了哪些事件。⽽而事件发⽣生的时候，我们需要从 _cache 中读取出来事件回

调，依次执⾏行行它们。⼀一般⻚页⾯面中事件派发（读）要⽐比事件绑定（写）多。所以我们设计的数据结构应
该尽量量地能够在事件发⽣生时，更更加快速地找到对应事件的回调函数们，然后执⾏行行。

经过这样⼀一番考虑，我简单写了了下代码实现：

class Event {

 constructor() {

 // 存储事件的数据结构

 // 为了了查找迅速，使⽤用了了对象（字典）

 this._cache = {};

 }

 // 绑定

 on(type, callback) {

 // 为了了按类查找⽅方便便和节省空间，

 // 将同⼀一类型事件放到⼀一个数组中

 // 这⾥里里的数组是队列列，遵循先进先出

 // 即先绑定的事件先触发

 let fns = (this._cache[type] = this._cache[type] || []);

 if (fns.indexOf(callback) === -1) {

 fns.push(callback);

 }

 return this;

 }

 // 触发

类似于树、堆、图这些⾼高级数据结构，前端⼀一般也不不会考查太多，但是它们的查找⽅方法却常考，后⾯面
介绍。⾼高级数据应该平时多积累，好好理理解，⽐比如理理解了了堆是什什么样的数据结构，在⾯面试中遇⻅见的
「查找最⼤大的 K 个数」这类算法问题，就会迎刃⽽而解。

算法的效率是通过算法复杂度来衡量量的

算法的好坏可以通过算法复杂度来衡量量，算法复杂度包括时间复杂度和空间复杂度两个。时间复杂度
由于好估算、好评估等特点，是⾯面试中考查的重点。空间复杂度在⾯面试中考查得不不多。

常⻅见的时间复杂度有：

常数阶 O(1)
对数阶 O(logN)

 trigger(type, data) {

 let fns = this._cache[type];

 if (Array.isArray(fns)) {

 fns.forEach((fn) => {

 fn(data);

 });

 }

 return this;

 }

 // 解绑

 off(type, callback) {

 let fns = this._cache[type];

 if (Array.isArray(fns)) {

 if (callback) {

 let index = fns.indexOf(callback);

 if (index !== -1) {

 fns.splice(index, 1);

 }

 } else {

 //全部清空

 fns.length = 0;

 }

 }

 return this;

 }

}

// 测试⽤用例例

const event = new Event();

event.on('test', (a) => {

 console.log(a);

});

event.trigger('test', 'hello world');

event.off('test');

event.trigger('test', 'hello world');

线性阶 O(n)
线性对数阶 O(nlogN)
平⽅方阶 O(n^2)
⽴立⽅方阶 O(n^3)
!k次⽅方阶 O(n^k)
指数阶 O(2^n)

随着问题规模 n 的不不断增⼤大，上述时间复杂度不不断增⼤大，算法的执⾏行行效率越低。

⼀一般做算法复杂度分析的时候，遵循下⾯面的技巧：

1. 看看有⼏几重循环，⼀一般来说⼀一重就是 O(n) ，两重就是 O(n^2) ，以此类推
2. 如果有⼆二分，则为 O(logN)

3. 保留留最⾼高项，去除常数项

题⽬目：分析下⾯面代码的算法复杂度（为了了⽅方便便，我已经在注释中加了了代码分析）

根据注释可以得到，算法复杂度为 1 + n + n + n = 1 + 3n ，去除常数项，为 O(n) 。

上⾯面代码 while 的跳出判断条件是 number<n ，⽽而循环体内 number 增⻓长速度是 (2^n) ，所以循环

代码实际执⾏行行 logN 次，复杂度为： 1 + 2 * logN = O(logN)

上⾯面代码是两个 for 循环嵌套，很容易易得出复杂度为： O(n^2)

⼈人⼈人都要掌握的基础算法

枚举和递归是最最简单的算法，也是复杂算法的基础，⼈人⼈人都应该掌握！枚举相对⽐比较简单，我们重
点说下递归。

递归由下⾯面两部分组成：

1. 递归主体，就是要循环解决问题的代码

let i =0; // 语句句执⾏行行⼀一次

while (i < n) { // 语句句执⾏行行 n 次

 console.log(`Current i is ${i}`); //语句句执⾏行行 n 次

 i++; // 语句句执⾏行行 n 次

}

let number = 1; // 语句句执⾏行行⼀一次

while (number < n) { // 语句句执⾏行行 logN 次

 number *= 2; // 语句句执⾏行行 logN 次

}

for (let i = 0; i < n; i++) {// 语句句执⾏行行 n 次

 for (let j = 0; j < n; j++) {// 语句句执⾏行行 n^2 次

 console.log('I am here!'); // 语句句执⾏行行 n^2 次

 }

}

2. 递归的跳出条件，递归不不能⼀一直递归下去，需要完成⼀一定条件后跳出

关于递归有个经典的⾯面试题⽬目是：

实现 JS 对象的深拷⻉贝

什什么是深拷⻉贝？

「深拷⻉贝」就是在拷⻉贝数据的时候，将数据的所有引⽤用结构都拷⻉贝⼀一份。简单的说就是，在内存中存
在两个数据结构完全相同⼜又相互独⽴立的数据，将引⽤用型类型进⾏行行复制，⽽而不不是只复制其引⽤用关系。

分析下怎么做「深拷⻉贝」：

1. ⾸首先假设深拷⻉贝这个⽅方法已经完成，为 deepClone
2. 要拷⻉贝⼀一个数据，我们肯定要去遍历它的属性，如果这个对象的属性仍是对象，继续使⽤用这个⽅方
法，如此往复

递归容易易造成爆栈，尾部调⽤用可以解决递归的这个问题，Chrome 的 V8 引擎做了了尾部调⽤用优化，我
们在写代码的时候也要注意尾部调⽤用写法。递归的爆栈问题可以通过将递归改写成枚举的⽅方式来解
决，就是通过 for 或者 while 来代替递归。

我们在使⽤用递归的时候，要注意做优化，⽐比如下⾯面的题⽬目。

题⽬目：求斐波那契数列列（兔⼦子数列列） 1,1,2,3,5,8,13,21,34,55,89...中的第 n 项

下⾯面的代码中 count 记录递归的次数，我们看下两种差异性的代码中的 count 的值：

function deepClone(o1, o2) {

 for (let k in o2) {

 if (typeof o2[k] === 'object') {

 o1[k] = {};

 deepClone(o1[k], o2[k]);

 } else {

 o1[k] = o2[k];

 }

 }

}

// 测试⽤用例例

let obj = {

 a: 1,

 b: [1, 2, 3],

 c: {}

};

let emptyObj = Object.create(null);

deepClone(emptyObj, obj);

console.log(emptyObj.a == obj.a);

console.log(emptyObj.b == obj.b);

let count = 0;

function fn(n) {

 let cache = {};

 function _fn(n) {

快排和⼆二分查找

前端中⾯面试排序和查找的可能性⽐比较⼩小，因为 JS 引擎已经把这些常⽤用操作优化得很好了了，可能项⽬目中
你费劲写的⼀一个排序⽅方法，都不不如 Array.sort 速度快且代码少。因此，掌握快排和⼆二分查找就可以

了了。

快排和⼆二分查找都基于⼀一种叫做「分治」的算法思想，通过对数据进⾏行行分类处理理，不不断降低数量量级，
实现 O(logN) （对数级别，⽐比 O(n) 这种线性复杂度更更低的⼀一种，快排核⼼心是⼆二分法的 O(logN) ，

实际复杂度为 O(N*logN) ）的复杂度。

快速排序

快排⼤大概的流程是：

1. 随机选择数组中的⼀一个数 A，以这个数为基准
2. 其他数字跟这个数进⾏行行⽐比较，⽐比这个数⼩小的放在其左边，⼤大的放到其右边
3. 经过⼀一次循环之后，A 左边为⼩小于 A 的，右边为⼤大于 A 的
4. 这时候将左边和右边的数再递归上⾯面的过程

具体代码如下：

 if (cache[n]) {

 return cache[n];

 }

 count++;

 if (n == 1 || n == 2) {

 return 1;

 }

 let prev = _fn(n - 1);

 cache[n - 1] = prev;

 let next = _fn(n - 2);

 cache[n - 2] = next;

 return prev + next;

 }

 return _fn(n);

}

let count2 = 0;

function fn2(n) {

 count2++;

 if (n == 1 || n == 2) {

 return 1;

 }

 return fn2(n - 1) + fn2(n - 2);

}

console.log(fn(20), count); // 6765 20

console.log(fn2(20), count2); // 6765 13529

// 划分操作函数

function partition(array, left, right) {

 // ⽤用index取中间值⽽而⾮非splice

 const pivot = array[Math.floor((right + left) / 2)]

 let i = left

 let j = right

 while (i <= j) {

 while (compare(array[i], pivot) === -1) {

 i++

 }

 while (compare(array[j], pivot) === 1) {

 j--

 }

 if (i <= j) {

 swap(array, i, j)

 i++

 j--

 }

 }

 return i

}

// ⽐比较函数

function compare(a, b) {

 if (a === b) {

 return 0

 }

 return a < b ? -1 : 1

}

function quick(array, left, right) {

 let index

 if (array.length > 1) {

 index = partition(array, left, right)

 if (left < index - 1) {

 quick(array, left, index - 1)

 }

 if (index < right) {

 quick(array, index, right)

 }

 }

 return array

}

function quickSort(array) {

 return quick(array, 0, array.length - 1)

}

⼆二分查找

⼆二分查找法主要是解决「在⼀一堆有序的数中找出指定的数」这类问题，不不管这些数是⼀一维数组还是多
维数组，只要有序，就可以⽤用⼆二分查找来优化。

⼆二分查找是⼀一种「分治」思想的算法，⼤大概流程如下：

1. 数组中排在中间的数字 A，与要找的数字⽐比较⼤大⼩小
2. 因为数组是有序的，所以： a) A 较⼤大则说明要查找的数字应该从前半部分查找 b) A 较⼩小则说明
应该从查找数字的后半部分查找

3. 这样不不断查找缩⼩小数量量级（扔掉⼀一半数据），直到找完数组为⽌止

题⽬目：在⼀一个⼆二维数组中，每⼀一⾏行行都按照从左到右递增的顺序排序，每⼀一列列都按照从上到下递
增的顺序排序。请完成⼀一个函数，输⼊入这样的⼀一个⼆二维数组和⼀一个整数，判断数组中是否含有
该整数。

另外笔者在⾯面试中遇⻅见过下⾯面的问题：

// 原地交换函数，⽽而⾮非⽤用临时数组

function swap(array, a, b) {

 ;[array[a], array[b]] = [array[b], array[a]]

}

const Arr = [85, 24, 63, 45, 17, 31, 96, 50];

console.log(quickSort(Arr));

// 本版本来⾃自：https://juejin.im/post/5af4902a6fb9a07abf728c40#heading-12

function Find(target, array) {

 let i = 0;

 let j = array[i].length - 1;

 while (i < array.length && j >= 0) {

 if (array[i][j] < target) {

 i++;

 } else if (array[i][j] > target) {

 j--;

 } else {

 return true;

 }

 }

 return false;

}

//测试⽤用例例

console.log(Find(10, [

 [1, 2, 3, 4],

 [5, 9, 10, 11],

 [13, 20, 21, 23]

])

);

题⽬目：现在我有⼀一个 1~1000 区间中的正整数，需要你猜下这个数字是⼏几，你只能问⼀一个问
题：⼤大了了还是⼩小了了？问需要猜⼏几次才能猜对？

拿到这个题⽬目，笔者想到的就是电视上⾯面有个「猜价格」的购物节⽬目，在规定时间内猜对价格就可以
把实物抱回家。所以问题就是让⾯面试官不不停地回答我猜的数字⽐比这个数字⼤大了了还是⼩小了了。这就是⼆二分
查找！

猜⼏几次呢？其实这个问题就是个⼆二分查找的算法时间复杂度问题，⼆二分查找的时间复杂度
是 O(logN) ，所以求 log1000 的解就是猜的次数。我们知道 2^10=1024 ，所以可以快速估算

出： log1000 约等于 10，最多问 10 次就能得到这个数！

⾯面试遇⻅见不不会的算法问题怎么办

⾯面试的时候，在遇⻅见算法题⽬目的时候，应该揣摩⾯面试官的意图，听好关键词，⽐比如：有序的数列列做查
找、要求算法复杂度是 O(logN) 这类⼀一般就是⽤用⼆二分的思想。

⼀一般来说算法题⽬目的解题思路路分以下四步：

1. 先降低数量量级，拿可以计算出来的情况（数据）来构思解题步骤
2. 根据解题步骤编写程序，优先将特殊情况做好判断处理理，⽐比如⼀一个⼤大数组的问题，如果数组为两
个数⻓长度的情况

3. 检验程序正确性
4. 是否可以优化（由浅到深），有能⼒力力的话可以故意预留留优化点，这样可以体现个⼈人技术能⼒力力

正则匹配解题

很多算法题⽬目利利⽤用 ES 语法的特性来回答更更加简单，⽐比如正则匹配就是常⽤用的⼀一种⽅方式。笔者简单通
过⼏几个真题来汇总下正则的知识点。

题⽬目：字符串串中第⼀一个出现⼀一次的字符

请实现⼀一个函数⽤用来找出字符流中第⼀一个只出现⼀一次的字符。例例如，当从字符流中只读出前两个字符
「go」时，第⼀一个只出现⼀一次的字符是「g」。当从该字符流中读出前六个字符「google」时，第⼀一
个只出现⼀一次的字符是「l」。

这个如果⽤用纯算法来解答需要遍历字符串串，统计每个字符出现的次数，然后按照字符串串的顺序来找出
第⼀一次出现⼀一次的字符，整个过程⽐比较繁琐，如果⽤用正则就简单多了了。

当然，使⽤用 indexOf/lastIndexOf 也是⼀一个取巧的⽅方式。再来看⼀一个千分位问题。

function find(str){

 for (var i = 0; i < str.length; i++) {

 let char = str[i]

 let reg = new RegExp(char, 'g');

 let l = str.match(reg).length

 if(l===1){

 return char

 }

 }

}

题⽬目：将 1234567 变成 1,234,567 ，即千分位标注

这个题⽬目可以⽤用算法直接来解，如果候选⼈人使⽤用正则来回答，这样主动展现了了⾃自⼰己其他⽅方⾯面的优势，
即使不不是算法解答出来的，⾯面试官⼀一般也不不会太难为他。这道题⽬目可以利利⽤用正则的「零宽断⾔言」 (?

=exp) ，意思是它断⾔言⾃自身出现的位置的后⾯面能匹配表达式 exp。数字千分位的特点是，第⼀一个逗号
后⾯面数字的个数是3的倍数，正则： /(\d{3})+$/ ；第⼀一个逗号前最多可以有 1~3 个数字，正
则： /\d{1,3}/ 。加起来就是 /\d{1,3}(\d{3})+$/ ，分隔符要从前往后加。

对于零宽断⾔言的详细介绍可以阅读「零宽断⾔言」这篇⽂文章。

当然上⾯面讲到的多数是算法题⽬目取巧的⽅方式，下⾯面这个题⽬目是纯正则考查，笔者在⾯面试的过程中碰⻅见
过，这⾥里里顺便便提⼀一下。

题⽬目，请写出下⾯面的代码执⾏行行结果

代码执⾏行行后，会发现，最后⼀一个不不是为 true ，⽽而是 false ，这是因为 reg 这个正则有个 g ，

即 global 全局的属性，这种情况下 lastIndex 就发挥作⽤用了了，可以看下⾯面的代码执⾏行行结果就明⽩白

了了。

实际开发中也会犯这样的错误，⽐比如为了了减少变量量每次都重新定义，会把⽤用到的变量量提前定义好，这
样在使⽤用的时候容易易掉进坑⾥里里，⽐比如下⾯面代码：

function exchange(num) {

 num += ''; //转成字符串串

 if (num.length <= 3) {

 return num;

 }

 num = num.replace(/\d{1,3}(?=(\d{3})+$)/g, (v) => {

 console.log(v)

 return v + ',';

 });

 return num;

}

console.log(exchange(1234567));

var str = 'google';

var reg = /o/g;

console.log(reg.test(str))

console.log(reg.test(str))

console.log(reg.test(str))

console.log(reg.test(str), reg.lastIndex)

console.log(reg.test(str), reg.lastIndex)

console.log(reg.test(str), reg.lastIndex)

https://deerchao.net/tutorials/regex/regex.htm#lookaround

⼩小结

本⼩小节介绍了了数据结构和算法的关系，作为普通的前端也应该学习数据结构和算法知识，并且顺带介
绍了了下正则匹配。具体来说，本⼩小节梳理理了了以下⼏几部分数据结构和算法知识点：

1. 经常⽤用到的数据结构有哪些，它们的特点有哪些
2. 递归和枚举是最基础的算法，必须牢牢掌握
3. 排序⾥里里⾯面理理解并掌握快速排序算法，其他排序算法可以根据个⼈人实际情况⼤大概了了解
4. 有序查找⽤用⼆二分查找
5. 遇⻅见不不会的算法问题，先缩⼩小数量量级，然后分析推导

当然算法部分还有很多知识，⽐比如动态规划这些算法思想，还有图和树常⽤用到的⼴广度优先搜索和深度
优先搜索。这些知识在前端⾯面试和项⽬目中遇⻅见得不不多，感兴趣的读者可以在梳理理知识点的时候根据个
⼈人情况⾃自⾏行行决定是否复习。

(function(){

 const reg = /o/g;

 function isHasO(str){

 // reg.lastIndex = 0; 这样就可以避免这种情况

 return reg.test(str)

 }

 var str = 'google';

 console.log(isHasO(str))

 console.log(isHasO(str))

 console.log(isHasO(str))

}())

	一面 4：从容应对算法题目
	知识点梳理
	数据结构
	前端常遇见的数据结构问题
	算法的效率是通过算法复杂度来衡量的
	人人都要掌握的基础算法
	快排和二分查找
	快速排序
	二分查找

	面试遇见不会的算法问题怎么办
	正则匹配解题
	小结

