
⼀一⾯面 5：浏览器器相关知识点与⾼高频考题解析
Web 前端⼯工程师写的⻚页⾯面要跑在浏览器器⾥里里⾯面，所以⾯面试中也会出现很多跟浏览器器相关的⾯面试题⽬目。

知识点梳理理

浏览器器加载⻚页⾯面和渲染过程
性能优化
Web 安全

本⼩小节会从浏览器器的加载过程开始讲解，然后介绍如何进⾏行行性能优化，最后介绍下 Web 开发中常⻅见
的安全问题和预防。

加载⻚页⾯面和渲染过程

可将加载过程和渲染过程分开说。回答问题的时候，关键要抓住核⼼心的要点，把要点说全⾯面，稍加解
析即可，简明扼要不不拖沓。

题⽬目：浏览器器从加载⻚页⾯面到渲染⻚页⾯面的过程

加载过程

要点如下：

浏览器器根据 DNS 服务器器得到域名的 IP 地址
向这个 IP 的机器器发送 HTTP 请求
服务器器收到、处理理并返回 HTTP 请求
浏览器器得到返回内容

例例如在浏览器器输⼊入 https://juejin.im/timeline ，然后经过 DNS 解析， juejin.im 对应的 IP
是 36.248.217.149 （不不同时间、地点对应的 IP 可能会不不同）。然后浏览器器向该 IP 发送 HTTP 请
求。

server 端接收到 HTTP 请求，然后经过计算（向不不同的⽤用户推送不不同的内容），返回 HTTP 请求，返
回的内容如下：

其实就是⼀一堆 HMTL 格式的字符串串，因为只有 HTML 格式浏览器器才能正确解析，这是 W3C 标准的要
求。接下来就是浏览器器的渲染过程。

渲染过程

要点如下：

根据 HTML 结构⽣生成 DOM 树
根据 CSS ⽣生成 CSSOM
将 DOM 和 CSSOM 整合形成 RenderTree

根据 RenderTree 开始渲染和展示
遇到 <script> 时，会执⾏行行并阻塞渲染

上⽂文中，浏览器器已经拿到了了 server 端返回的 HTML 内容，开始解析并渲染。最初拿到的内容就是⼀一
堆字符串串，必须先结构化成计算机擅⻓长处理理的基本数据结构，因此要把 HTML 字符串串转化成 DOM 树
—— 树是最基本的数据结构之⼀一。

解析过程中，如果遇到 <link href="..."> 和 <script src="..."> 这种外链加载 CSS 和 JS 的
标签，浏览器器会异步下载，下载过程和上⽂文中下载 HTML 的流程⼀一样。只不不过，这⾥里里下载下来的字符
串串是 CSS 或者 JS 格式的。

浏览器器将 CSS ⽣生成 CSSOM，再将 DOM 和 CSSOM 整合成 RenderTree ，然后针对 RenderTree 即
可进⾏行行渲染了了。⼤大家可以想⼀一下，有 DOM 结构、有样式，此时就能满⾜足渲染的条件了了。另外，这⾥里里
也可以解释⼀一个问题 —— 为何要将 CSS 放在 HTML 头部？—— 这样会让浏览器器尽早拿到 CSS 尽早
⽣生成 CSSOM，然后在解析 HTML 之后可⼀一次性⽣生成最终的 RenderTree，渲染⼀一次即可。如果 CSS
放在 HTML 底部，会出现渲染卡顿的情况，影响性能和体验。

最后，渲染过程中，如果遇到 <script> 就停⽌止渲染，执⾏行行 JS 代码。因为浏览器器渲染和 JS 执⾏行行共⽤用
⼀一个线程，⽽而且这⾥里里必须是单线程操作，多线程会产⽣生渲染 DOM 冲突。待 <script> 内容执⾏行行完之

后，浏览器器继续渲染。最后再思考⼀一个问题 —— 为何要将 JS 放在 HTML 底部？—— JS 放在底部可
以保证让浏览器器优先渲染完现有的 HTML 内容，让⽤用户先看到内容，体验好。另外，JS 执⾏行行如果涉及
DOM 操作，得等待 DOM 解析完成才⾏行行，JS 放在底部执⾏行行时，HTML 肯定都解析成了了 DOM 结构。JS
如果放在 HTML 顶部，JS 执⾏行行的时候 HTML 还没来得及转换为 DOM 结构，可能会报错。

关于浏览器器整个流程，百度的多益⼤大神有更更加详细的⽂文章，推荐阅读下：《从输⼊入 URL 到⻚页⾯面加载完
成的过程中都发⽣生了了什什么事情？ 》。

性能优化

性能优化的题⽬目也是⾯面试常考的，这类题⽬目有很⼤大的扩展性，能够扩展出来很多⼩小细节，⽽而且对个⼈人
的技术视野和业务能⼒力力有很⼤大的挑战。这部分笔者会重点讲下常⽤用的性能优化⽅方案。

题⽬目：总结前端性能优化的解决⽅方案

优化原则和⽅方向

性能优化的原则是以更更好的⽤用户体验为标准，具体就是实现下⾯面的⽬目标：

1. 多使⽤用内存、缓存或者其他⽅方法
2. 减少 CPU 和GPU 计算，更更快展现

优化的⽅方向有两个：

减少⻚页⾯面体积，提升⽹网络加载
优化⻚页⾯面渲染

减少⻚页⾯面体积，提升⽹网络加载

静态资源的压缩合并（JS 代码压缩合并、CSS 代码压缩合并、雪碧图）
静态资源缓存（资源名称加 MD5 戳）

http://fex.baidu.com/blog/2014/05/what-happen/

使⽤用 CDN 让资源加载更更快

优化⻚页⾯面渲染

CSS 放前⾯面，JS 放后⾯面
懒加载（图⽚片懒加载、下拉加载更更多）
减少DOM 查询，对 DOM 查询做缓存
减少DOM 操作，多个操作尽量量合并在⼀一起执⾏行行（ DocumentFragment ）

事件节流
尽早执⾏行行操作（ DOMContentLoaded ）

使⽤用 SSR 后端渲染，数据直接输出到 HTML 中，减少浏览器器使⽤用 JS 模板渲染⻚页⾯面 HTML 的时间

详细解释

静态资源的压缩合并

如果不不合并，每个都会⾛走⼀一遍之前介绍的请求过程

如果合并了了，就只⾛走⼀一遍请求过程

静态资源缓存

通过链接名称控制缓存

只有内容改变的时候，链接名称才会改变

这个名称不不⽤用⼿手动改，可通过前端构建⼯工具根据⽂文件内容，为⽂文件名称添加 MD5 后缀。

使⽤用 CDN 让资源加载更更快

CDN 会提供专业的加载优化⽅方案，静态资源要尽量量放在 CDN 上。例例如：

使⽤用 SSR 后端渲染

<script src="a.js"></script>

<script src="b.js"></script>

<script src="c.js"></script>

<script src="abc.js"></script>

<script src="abc_1.js"></script>

<script src="abc_2.js"></script>

<script src="https://cdn.bootcss.com/zepto/1.0rc1/zepto.min.js"></script>

可⼀一次性输出 HTML 内容，不不⽤用在⻚页⾯面渲染完成之后，再通过 Ajax 加载数据、再渲染。例例如使⽤用
smarty、Vue SSR 等。

CSS 放前⾯面，JS 放后⾯面

上⽂文讲述浏览器器渲染过程时已经提过，不不再赘述。

懒加载

⼀一开始先给为 src 赋值成⼀一个通⽤用的预览图，下拉时候再动态赋值成正式的图⽚片。如
下， preview.png 是预览图⽚片，⽐比较⼩小，加载很快，⽽而且很多图⽚片都共⽤用这个 preview.png ，加

载⼀一次即可。待⻚页⾯面下拉，图⽚片显示出来时，再去替换 src 为 data-realsrc 的值。

另外，这⾥里里为何要⽤用 data- 开头的属性值？—— 所有 HTML 中⾃自定义的属性，都应该⽤用 data- 开

头，因为 data- 开头的属性浏览器器渲染的时候会忽略略掉，提⾼高渲染性能。

DOM 查询做缓存

两段代码做⼀一下对⽐比：

总结：DOM 操作，⽆无论查询还是修改，都是⾮非常耗费性能的，应尽量量减少。

合并 DOM 插⼊入

DOM 操作是⾮非常耗费性能的，因此插⼊入多个标签时，先插⼊入 Fragment 然后再统⼀一插⼊入 DOM。

var pList = document.getElementsByTagName('p') // 只查询⼀一个 DOM ，缓存在

pList 中了了

var i

for (i = 0; i < pList.length; i++) {

}

var i

for (i = 0; i < document.getElementsByTagName('p').length; i++) { // 每次循

环，都会查询 DOM ，耗费性能

}

事件节流

例例如要在⽂文字改变时触发⼀一个 change 事件，通过 keyup 来监听。使⽤用节流。

尽早执⾏行行操作

性能优化怎么做

上⾯面提到的都是性能优化的单个点，性能优化项⽬目具体实施起来，应该按照下⾯面步骤推进：

1. 建⽴立性能数据收集平台，摸底当前性能数据，通过性能打点，将上述整个⻚页⾯面打开过程消耗时间
记录下来

2. 分析耗时较⻓长时间段原因，寻找优化点，确定优化⽬目标
3. 开始优化
4. 通过数据收集平台记录优化效果
5. 不不断调整优化点和预期⽬目标，循环2~4步骤

性能优化是个⻓长期的事情，不不是⼀一蹴⽽而就的，应该本着先摸底、再分析、后优化的原则逐步来做。

Web 安全

var listNode = document.getElementById('list')

// 要插⼊入 10 个 li 标签

var frag = document.createDocumentFragment();

var x, li;

for(x = 0; x < 10; x++) {

 li = document.createElement("li");

 li.innerHTML = "List item " + x;

 frag.appendChild(li); // 先放在 frag 中，最后⼀一次性插⼊入到 DOM 结构中。

}

listNode.appendChild(frag);

var textarea = document.getElementById('text')

var timeoutId

textarea.addEventListener('keyup', function () {

 if (timeoutId) {

 clearTimeout(timeoutId)

 }

 timeoutId = setTimeout(function () {

 // 触发 change 事件

 }, 100)

})

window.addEventListener('load', function () {

 // ⻚页⾯面的全部资源加载完才会执⾏行行，包括图⽚片、视频等

})

document.addEventListener('DOMContentLoaded', function () {

 // DOM 渲染完即可执⾏行行，此时图⽚片、视频还可能没有加载完

})

Web 安全
题⽬目：前端常⻅见的安全问题有哪些？

Web 前端的安全问题，能回答出下⽂文的两个问题，这个题⽬目就能基本过关了了。开始之前，先说⼀一个最
简单的攻击⽅方式 —— SQL 注⼊入。

上学的时候就知道有⼀一个「SQL注⼊入」的攻击⽅方式。例例如做⼀一个系统的登录界⾯面，输⼊入⽤用户名和密
码，提交之后，后端直接拿到数据就拼接 SQL 语句句去查询数据库。如果在输⼊入时进⾏行行了了恶意的 SQL
拼装，那么最后⽣生成的 SQL 就会有问题。但是现在稍微⼤大型⼀一点的系统，都不不会这么做，从提交登录
信息到最后拿到授权，要经过层层的验证。因此，SQL 注⼊入都只出现在⽐比较低端⼩小型的系统上。

XSS（Cross Site Scripting，跨站脚本攻击）

这是前端最常⻅见的攻击⽅方式，很多⼤大型⽹网站（如 Facebook）都被 XSS 攻击过。

举⼀一个例例⼦子，我在⼀一个博客⽹网站正常发表⼀一篇⽂文章，输⼊入汉字、英⽂文和图⽚片，完全没有问题。但是如
果我写的是恶意的 JS 脚本，例例如获取到 document.cookie 然后传输到⾃自⼰己的服务器器上，那我这篇博

客的每⼀一次浏览都会执⾏行行这个脚本，都会把访客 cookie 中的信息偷偷传递到我的服务器器上来。

其实原理理上就是⿊黑客通过某种⽅方式（发布⽂文章、发布评论等）将⼀一段特定的 JS 代码隐蔽地输⼊入进去。
然后别⼈人再看这篇⽂文章或者评论时，之前注⼊入的这段 JS 代码就执⾏行行了了。JS 代码⼀一旦执⾏行行，那可就不不受
控制了了，因为它跟⽹网⻚页原有的 JS 有同样的权限，例例如可以获取 server 端数据、可以获取 cookie 等。
于是，攻击就这样发⽣生了了。

XSS的危害

XSS 的危害相当⼤大，如果⻚页⾯面可以随意执⾏行行别⼈人不不安全的 JS 代码，轻则会让⻚页⾯面错乱、功能缺失，重
则会造成⽤用户的信息泄露露。

⽐比如早些年年社交⽹网站经常爆出 XSS 蠕⾍虫，通过发布的⽂文章内插⼊入 JS，⽤用户访问了了感染不不安全 JS 注⼊入
的⽂文章，会⾃自动重新发布新的⽂文章，这样的⽂文章会通过推荐系统进⼊入到每个⽤用户的⽂文章列列表⾯面前，很
快就会造成⼤大规模的感染。

还有利利⽤用获取 cookie 的⽅方式，将 cookie 传⼊入⼊入侵者的服务器器上，⼊入侵者就可以模拟 cookie 登录⽹网
站，对⽤用户的信息进⾏行行篡改。

XSS的预防

那么如何预防 XSS 攻击呢？—— 最根本的⽅方式，就是对⽤用户输⼊入的内容进⾏行行验证和替换，需要替换的
字符有：

替换了了这些字符之后，⿊黑客输⼊入的攻击代码就会失效，XSS 攻击将不不会轻易易发⽣生。

& 替换为：&

< 替换为：<

> 替换为：>

” 替换为："

‘ 替换为：'

/ 替换为：/

除此之外，还可以通过对 cookie 进⾏行行较强的控制，⽐比如对敏敏感的 cookie 增加 http-only 限制，让

JS 获取不不到 cookie 的内容。

CSRF（Cross-site request forgery，跨站请求伪造）

CSRF 是借⽤用了了当前操作者的权限来偷偷地完成某个操作，⽽而不不是拿到⽤用户的信息。

例例如，⼀一个⽀支付类⽹网站，给他⼈人转账的接⼝口是 http://buy.com/pay?touid=999&money=100 ，⽽而

这个接⼝口在使⽤用时没有任何密码或者 token 的验证，只要打开访问就直接给他⼈人转账。⼀一个⽤用户已经
登录了了 http://buy.com ，在选择商品时，突然收到⼀一封邮件，⽽而这封邮件正⽂文有这么⼀一⾏行行代

码 ，他访问了了邮件之后，其实就已

经完成了了购买。

CSRF 的发⽣生其实是借助了了⼀一个 cookie 的特性。我们知道，登录了了 http://buy.com 之后，cookie
就会有登录过的标记了了，此时请求 http://buy.com/pay?touid=999&money=100 是会带着 cookie
的，因此 server 端就知道已经登录了了。⽽而如果在 http://buy.com 去请求其他域名的 API 例例如
http://abc.com/api 时，是不不会带 cookie 的，这是浏览器器的同源策略略的限制。但是 —— 此时在
其他域名的⻚页⾯面中，请求 http://buy.com/pay?touid=999&money=100 ，会带着 buy.com 的
cookie ，这是发⽣生 CSRF 攻击的理理论基础。

预防 CSRF 就是加⼊入各个层级的权限验证，例例如现在的购物⽹网站，只要涉及现⾦金金交易易，肯定要输⼊入密
码或者指纹才⾏行行。除此之外，敏敏感的接⼝口使⽤用 POST 请求⽽而不不是 GET 也是很重要的。

⼩小结

本⼩小节总结了了前端运⾏行行环境（即浏览器器）的⼀一些常考查知识点，包括⻚页⾯面加载过程、如何性能优化以
及需要注意的安全问题。

	一面 5：浏览器相关知识点与高频考题解析
	知识点梳理
	加载页面和渲染过程
	加载过程
	渲染过程

	性能优化
	优化原则和方向
	减少页面体积，提升网络加载
	优化页面渲染
	详细解释
	静态资源的压缩合并
	静态资源缓存
	使用 CDN 让资源加载更快
	使用 SSR 后端渲染
	CSS 放前面，JS 放后面
	懒加载
	DOM 查询做缓存
	合并 DOM 插入
	事件节流
	尽早执行操作
	性能优化怎么做

	Web 安全
	XSS（Cross Site Scripting，跨站脚本攻击）
	XSS的危害
	XSS的预防

	CSRF（Cross-site request forgery，跨站请求伪造）

	小结

