[bookmark: java-中的运算符和流程控制-面试题]Java 中的运算符和流程控制 + 面试题
[bookmark: 算术运算符]算术运算符
Java 中的算法运算符，包括以下几种：
	算术运算符
	名称
	举例

	+
	加法
	1+2=3

	-
	减法
	2-1=1

	*
	乘法
	2*3=6

	/
	除法
	24/8=3

	%
	求余
	24%7=3

	++
	自增1
	int i=1;i++

	--
	自减1
	int i=1;i–


我们本讲要重点讲的是 “++” 和 “–”，其他的算术运算符相对比较简单直观，本讲就不花精力去讲解了，之所以要把 “++” 和 “–” 单独拿出来讲，是因为在使用他们的时候有很多坑需要开发者注意，最重要的是 “++” 和 “–” 也是面试中高频出现的面试题。
先来看 “++” 的基本使用：
int i = 1;
int i2 = ++i; // ++i 相当于 i = 1+i;
System.out.println(i);  // 2
System.out.println(i2); // 2
++i 和 i++ 的区别
· ++i 先自加再赋值
· i++ 先赋值再自加
比如：
int i = 0;
int i2 = i++;
int j = 0;
int j2 = ++j;
System.out.println("i2=" + i2);
System.out.println("j2=" + j2);
输出的结果：
i2=0
j2=1
代码解析：i++ 是先给 i2 赋值再自身 +1 ，所以 i2 等于0，而 ++j 是先自加等于 1 之后，再赋值给 j2，所以 j2 等于 1。
注意事项
++/– 是非线程安全的，也就是说 ++/– 操作在多线程下可能会引发混乱，例如下面代码：
new Thread() {
    @Override
    public void run() {
        for (int i = 0; i < 100000; i++) {
            System.out.println("thread:" + this.getName() + ",count=" + (++count));
        }
    }
}.start();
new Thread() {
    @Override
    public void run() {
        for (int i = 0; i < 100000; i++) {
            System.out.println("thread:" + this.getName() + ",count=" + (++count));
        }
    }
}.start();
执行的结果，如下图：
[image: https://images.gitbook.cn/3e80ae80-baad-11e9-8bd3-43e1fddff917]
执行结果
如上图所示，每台机器的执行可能略有差距，但大多数情况下并不能给我们想要的真实值 200000。
原理分析
“++” 操作在多线程下引发混乱的原因：因为 ++ 操作对于底层操作系统来说，并不是一条 CPU 操作指令，而是三条 CPU 操作指令——取值、累加、存储，因此无法保证原子性，就会出现上面代码执行后的误差。
如何避免 ++/– 操作在多线程下的“误差”？
· 方法一：++/– 操作放在同步块 synchronized 中。
· 方法二：自己申明锁，把 ++/– 操作放入其中。
· 方法三：使用 AtomicInteger 类型替代 int 类型。
最后，因为 – 的语法和 ++ 完全一致，所以 – 的操作，请参照上面的 ++ 语法。
[bookmark: 条件运算符三元运算符]条件运算符（三元运算符）
条件运算符（?:）也叫“三元运算符”。
语法：
布尔表达式 ? 表达式1 ：表达式2
运算过程：如果布尔表达式的值为 true，则返回 表达式 1 的值 ，否则返回 表达式 2 的值 。
例如：
String s = 3 > 1 ? "三大于一" : "三小于一";
System.out.println(s);
执行结果：三大于一。
[bookmark: 流程控制]流程控制
在 Java 语言中使用条件语句和循环结构来实现流程控制。
[bookmark: 条件语句]1 条件语句
条件语句的语法格式：
if(……) ……
其中的条件判断必须使用括号括起来不能省略。
基础用法使用：
int i = 1;
if (i > 1) {
    System.out.println("i大于一");
} else if (i == 1) {
    System.out.println("i等于一");
} else {
    System.out.println("其他");
}
[bookmark: 循环]2 循环
while 当条件成立的时候执行下一条语句。
while 语法格式：
while(……) ……
基本语法使用：
int i = 0;
  while (i < 3) {
  System.out.println(++i);
}
while 是先判断再决定是否执行，有可能一次也不执行，如果希望至少执行一次，可以使用 do/while。
do/while 语法格式：
do{……}while(……);
基本语法使用：
int i = 0;
do {
  System.out.println(++i);
} while (i < 3);
[bookmark: 确定循环]3 确定循环
for 循环是程序中最长使用的循环之一，它是利用每次迭代之后更新计数器来控制循环的次数。
for 语法格式：
for(int i=0;i<n;i++){ …… }
基础语法使用：
for (int i = 0; i < 10; i++) {
    System.out.println("i=" + i);
}
for 循环中可使用关键字 continue，跳过后续操作，继续下一次迭代。
例如：
for (int i = 1; i < 4; i++) {
    if (i == 2) continue;
    System.out.println("i=" + i);
}
执行结果：
i=1
i=3
如结果所示，第二次循环就会跳过，执行下一次循环。
for 注意事项
在循环中检查两个浮点数是否相等要格外小心，例如下面代码：
public static void main(String[] args) {
    for (float i = 0; i != 1; i += 0.1) {
        System.out.println(i);
    }
}
循环永远不会停下来，由于舍入误差，因为 0.1 无法精确的用二级制表示，所以上面代码到 0.9000001 之后，会直接跳到 1.0000001，不会等于 1，所以循环就永远不会停下来。
[bookmark: 多重选择]4 多重选择
switch 的特点是可以判断多个条件，if 的特点是执行少量判断，它们两个刚好形成互补的关系。
switch 语法格式：
switch(……){ case 1: …… break; …… default: …… break; }
switch 基础使用：
int i = 3;
switch (i) {
    case 1:
        System.out.println("等于1");
        break;
    case 2:
        System.out.println("等于2");
        break;
    case 3:
        System.out.println("等于3");
        break;
    default:
        System.out.println("等于其他");
        break;
}
可用于 case 的类型有：
· byte、char、short、int
· 枚举
· 字符串（Java SE 7 新加入）
switch 注意事项
switch 使用时，每个选项最末尾一定不要忘记加 break 关键字，否则会执行多个条件。
案例：
int i = 1;
switch (i) {
    case 1:
        System.out.println("等于1");
    case 2:
        System.out.println("等于2");
    case 3:
        System.out.println("等于3");
    default:
        System.out.println("等于其他");
}
程序执行的结果：
等于1
等于2
等于3
等于其他
所以使用 switch 时，每个选项的末尾一定得加 break 关键字。
[bookmark: 相关面试题]相关面试题
[bookmark: java-中-i-和-i-有什么区别]1. Java 中 i++ 和 ++i 有什么区别？
答：i 先赋值再运算；i 先运算再赋值。
示例代码：
int i = 0;
int i2 = i++;
int j = 0;
int j2 = ++j;
System.out.println("i2=" + i2);
System.out.println("j2=" + j2);
输出结果：i2=0，j2=1
[bookmark: 以下代码-i-的值是多少]2. 以下代码 i 的值是多少？
int i = 0;
i = i++;
System.out.println(i);
答：i=0
题目解析：因为 Java 虚拟机在执行 i++ 时，把这个值有赋值给了 i，而 i++ 是先赋值再相加，所以这个时候 i 接收到的结果自然是 0 了。
[bookmark: 以下代码-i2-和-i3-的值分别为多少]3. 以下代码 i2 和 i3 的值分别为多少？
int i = 0;
int i2 = i++;
int i3 = ++i;
答：i2=0，i3=2
[bookmark: 以下代码能不能正常执行]4. 以下代码能不能正常执行？
if (true) System.out.println("laowang");
答：可以正常执行，其中判断条件的括号不能省略，大括号是可以省略的（作者并不建议为了省代码的而牺牲代码的可读性）。
[bookmark: 以下-switch-执行的结果是什么]5. 以下 switch 执行的结果是什么？
int num = 1;
switch (num) {
    case 0:
        System.out.print("0");
    case 1:
        System.out.print("1");
    case 2:
        System.out.print("2");
    case 3:
        System.out.print("3");
    default:
        System.out.print("default");
}
答：123default
[bookmark: switch-能否用于-byte-类型的判断上能否用于-long-类型的判断上]6. switch 能否用于 byte 类型的判断上？能否用于 long 类型的判断上？
答：switch 支持 byte 类型的判断，不支持 long 类型的判断。
题目解析：switch 支持的全部类型（JDK 8）：char、byte、short、int、Charachter、Byte、Short、Integer、String、enum。
[bookmark: while-必须配合-break-一起使用的说法正确吗]7. while 必须配合 break 一起使用的说法正确吗？
答：错误，while 可以单独使用。
例如：
int i = 0;
while (i < 3) {
    System.out.println(++i);
}
[bookmark: 以下代码可以正常运行吗为什么]8. 以下代码可以正常运行吗？为什么？
int i = 0;
while (i < 3) {
    if (i == 2) {
        return;
    }
    System.out.println(++i);
}
答：可以正常运行，这里的 return 和 break 的效果是一致的，while 可以配合 return 或 break 一起使用。
[bookmark: 以下的程序执行结果什么]9. 以下的程序执行结果什么？
int i = 0;
do {
  System.out.println(++i);
} while (i < 3)
答：编译器报错，do/while 之后必须使用分号 ; 结尾。
[bookmark: 以下程序输出的结果是]10. 以下程序输出的结果是？
String s = new String("laowang");
String s2 = new String("laowang");
System.out.println(s == s2);
switch (s) {
    case "laowang":
        System.out.println("laowang");
        break;
    default:
        System.out.println("default");
        break;
}
A：true,default
B：false,default
C：false,laowang
D：true,laowang
答：C
[bookmark: 以下代码循环执行了几次]11. 以下代码循环执行了几次？
for (float i = 0; i != 10; i += 0.1) {
    System.out.println("hi");
}
答：无数次，循环永远不会停下来。由于舍入误差，因为 0.1 无法精确的用二级制表示，所以上面代码到 0.9000001 之后，会直接跳到 1.0000001，不会等于 1，所以循环就永远不会停下来。
[bookmark: 以下代码输出的结果是]12. 以下代码输出的结果是？
int num = -4;
System.out.println(num % 2 == 1 || num % 2 == -1);
A：1
B：-1
C：true
D：false
答：D
题目解析：-4 % 2 = 0 既不等于 1 也不等于 -1，所以结果为 false。
[bookmark: 以下代码输出的结果是-1]13. 以下代码输出的结果是？
int num = 4;
num = ((num & 1) == 1);
System.out.println(num);
A：4
B：1
C：以上都不是
答：C
题目解析：== 运算返回的是 boolean 类型，不能使用 int 接收，所以程序会报错。

方便读者更有针对性地讨论专栏相关问题，以及分享Java 技术和面试心得，GitChat 编辑团队组织了一个《Java 面试全解析》读者交流群，添加编辑小姐姐微信：「GitChatty6」，回复关键字「234」给编辑小姐姐获取入群资格。
[bookmark: 更多资源下载交流请加微信morstrong加入永久会员网盘更新更快捷]更多资源下载交流请加微信：Morstrong,加入永久会员,网盘更新更快捷！
[bookmark: 本资源由微信公众号光明顶一号提供支持]本资源由微信公众号：光明顶一号，提供支持
rId22.png
thread: Thread-0, count=199988
thread: Thread-0, count=199989
thread: Thread-0, count=199990
thread: Thread-0, count=199991
thread: Thread-0, count=199992
thread: Thread-0, count=199993
thread: Thread-0, count=199994
thread: Thread-0, count=199995
thread: Thread-0, count=199996
thread: Thread-0, count=199997

Process finished with exit code 0




