[bookmark: 为什么要使用泛型和迭代器-面试题]为什么要使用泛型和迭代器 + 面试题
[bookmark: 泛型]泛型
[bookmark: 为什么要用泛型]1）为什么要用泛型？
在泛型没有诞生之前，我们经常会遇到这样的问题，如以下代码所示：
ArrayList arrayList = new ArrayList();
arrayList.add("Java");
arrayList.add(24);
for (int i = 0; i < arrayList.size(); i++) {
 String str = (String) arrayList.get(i);
 System.out.println(str);
}
看起来好像没有什么大问题，也能正常编译，但真正运行起来就会报错：
Exception in thread “main” java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String
at xxx(xxx.java:12)
类型转换出错，当我们给 ArrayList 放入不同类型的数据，却使用一种类型进行接收的时候，就会出现很多类似的错误，可能更多的时候，是因为开发人员的不小心导致的。那有没有好的办法可以杜绝此类问题的发生呢？这个时候 Java 语言提供了一个很好的解决方案——“泛型”。
[bookmark: 泛型介绍]2）泛型介绍
泛型 ：泛型本质上是类型参数化，解决了不确定对象的类型问题。
泛型的使用，请参考以下代码：
ArrayList<String> arrayList = new ArrayList();
arrayList.add("Java");
这个时候如果给 arrayList 添加非 String 类型的元素，编译器就会报错，提醒开发人员插入相同类型的元素。
报错信息如下图所示：
[image: https://images.gitbook.cn/83dce010-cdeb-11e9-932d-6123ff488b55]
enter image description here
这样就可以避免开头示例中，类型不一致导致程序运行过程中报错的问题了。
[bookmark: 泛型的优点]3）泛型的优点
泛型的优点主要体现在以下三个方面。
· 安全：不用担心程序运行过程中出现类型转换的错误。
· 避免了类型转换：如果是非泛型，获取到的元素是 Object 类型的，需要强制类型转换。
· 可读性高：编码阶段就明确的知道集合中元素的类型。
[bookmark: 迭代器iterator]迭代器（Iterator）
[bookmark: 为什么要用迭代器]1）为什么要用迭代器？
我们回想一下，在迭代器（Iterator）没有出现之前，如果要遍历数组和集合，需要使用方法。
数组遍历，代码如下：
String[] arr = new String[]{"Java", "Java虚拟机", "Java中文社群"};
for (int i = 0; i < arr.length; i++) {
 String item = arr[i];
}
集合遍历，代码如下：
List<String> list = new ArrayList<String>() {{
 add("Java");
 add("Java虚拟机");
 add("Java中文社群");
}};
for (int i = 0; i < list.size(); i++) {
 String item = list.get(i);
}
而迭代器的产生，就是为不同类型的容器遍历，提供标准统一的方法。
迭代器遍历，代码如下：
Iterator iterator = list.iterator();
while (iterator.hasNext()) {
 Object object = iterator.next();
 // do something
}
总结 ：使用了迭代器就可以不用关注容器的内部细节，用同样的方式遍历不同类型的容器。
[bookmark: 迭代器介绍]2）迭代器介绍
迭代器是用来遍历容器内所有元素对象的，也是一种常见的设计模式。
迭代器包含以下四个方法。
· hasNext():boolean —— 容器内是否还有可以访问的元素。
· next():E —— 返回下一个元素。
· remove():void —— 删除当前元素。
· forEachRemaining(Consumer super E>):void —— JDK 8 中添加的，提供一个 lambda 表达式遍历容器元素。
迭代器使用如下：
List<String> list = new ArrayList<String>() {{
 add("Java");
 add("Java虚拟机");
 add("Java中文社群");
}};
Iterator iterator = list.iterator();
// 遍历
while (iterator.hasNext()){
 String str = (String) iterator.next();
 if (str.equals("Java中文社群")){
 iterator.remove();
 }
}
System.out.println(list);
程序执行结果：
[Java, Java虚拟机]
forEachRemaining 使用如下：
List<String> list = new ArrayList<String>() {{
 add("Java");
 add("Java虚拟机");
 add("Java中文社群");
}};
// forEachRemaining 使用
list.iterator().forEachRemaining(item -> System.out.println(item));
[bookmark: 相关面试题]相关面试题
[bookmark: 为什么迭代器的-next-返回的是-object-类型]1.为什么迭代器的 next() 返回的是 Object 类型？
答：因为迭代器不需要关注容器的内部细节，所以 next() 返回 Object 类型就可以接收任何类型的对象。
[bookmark: hashmap-的遍历方式都有几种]2.HashMap 的遍历方式都有几种？
答：HashMap 的遍历分为以下四种方式。
· 方式一：entrySet 遍历
· 方式二：iterator 遍历
· 方式三：遍历所有的 key 和 value
· 方式四：通过 key 值遍历
以上方式的代码实现如下：
Map<String, String> hashMap = new HashMap();
hashMap.put("name", "老王");
hashMap.put("sex", "你猜");
// 方式一：entrySet 遍历
for (Map.Entry item : hashMap.entrySet()) {
 System.out.println(item.getKey() + ":" + item.getValue());
}
// 方式二：iterator 遍历
Iterator<Map.Entry<String, String>> iterator = hashMap.entrySet().iterator();
while (iterator.hasNext()) {
 Map.Entry<String, String> entry = iterator.next();
 System.out.println(entry.getKey() + ":" + entry.getValue());
}
// 方式三：遍历所有的 key 和 value
for (Object k : hashMap.keySet()) {
 // 循环所有的 key
 System.out.println(k);
}
for (Object v : hashMap.values()) {
 // 循环所有的值
 System.out.println(v);
}
// 方式四：通过 key 值遍历
for (Object k : hashMap.keySet()) {
 System.out.println(k + ":" + hashMap.get(k));
}
[bookmark: 以下关于泛型说法错误的是]3.以下关于泛型说法错误的是？
A：泛型可以修饰类
B：泛型可以修饰方法
C：泛型不可以修饰接口
D：以上说法全错
答：选 C，泛型可以修饰类、方法、接口、变量。
例如：
public interface Iterable<T> {
}
[bookmark: 以下程序执行的结果是什么]4.以下程序执行的结果是什么？
List<String> list = new ArrayList<>();
List<Integer> list2 = new ArrayList<>();
System.out.println(list.getClass() == list2.getClass());
答：程序的执行结果是 true。
题目解析：Java 中泛型在编译时会进行类型擦除，因此 List<String> list 和 List<Integer> list2 类型擦除后的结果都是 java.util.ArrayLis ，进而 list.getClass() == list2.getClass() 的结果也一定是 true。
[bookmark: listobject-和-list-有什么区别]5. List<Object> 和 List<?> 有什么区别？
答：List<?> 可以容纳任意类型，只不过 List<?> 被赋值之后，就不允许添加和修改操作了；而 List<Object> 和 List<?> 不同的是它在赋值之后，可以进行添加和修改操作，如下图所示：
[image: https://images.gitbook.cn/b3a90d00-cdeb-11e9-932d-6123ff488b55]
enter image description here
[bookmark: 可以把-liststring-赋值给-listobject-吗]6.可以把 List<String> 赋值给 List<Object> 吗？
答：不可以，编译器会报错，如下图所示：
[image: https://images.gitbook.cn/cb2aa8d0-cdeb-11e9-b572-5118f14310d8]
enter image description here
[bookmark: list-和-listobject-的区别是什么]7. List 和 List<Object> 的区别是什么？
答： List 和 List<Object> 都能存储任意类型的数据，但 List 和 List<Object> 的唯一区别就是，List 不会触发编译器的类型安全检查，比如把 List<String> 赋值给 List 是没有任何问题的，但赋值给 List<Object> 就不行，如下图所示：
[image: https://images.gitbook.cn/e34947f0-cdeb-11e9-932d-6123ff488b55]
enter image description here
[bookmark: 以下程序执行的结果是]8.以下程序执行的结果是？
List<String> list = new ArrayList<>();
list.add("Java");
list.add("Java虚拟机");
list.add("Java中文社群");
Iterator iterator = list.iterator();
while (iterator.hasNext()) {
 String str = (String) iterator.next();
 if (str.equals("Java中文社群")) {
 iterator.remove();
 }
}
while (iterator.hasNext()) {
 System.out.println(iterator.next());
}
System.out.println("Over");
答：程序打印结果是 Over。
题目解析：因为第一个 while 循环之后，iterator.hasNext() 返回值就为 false 了，所以不会进入第二个循环，之后打印最后的 Over。
[bookmark: 泛型的工作原理是什么为什么要有类型擦除]9.泛型的工作原理是什么？为什么要有类型擦除？
答：泛型是通过类型擦除来实现的，类型擦除指的是编译器在编译时，会擦除了所有类型相关的信息，比如 List<String> 在编译后就会变成 List 类型，这样做的目的就是确保能和 Java 5 之前的版本（二进制类库）进行兼容。
[bookmark: 总结]总结
通过本文知道了泛型的优点：安全性、避免类型转换、提高了代码的可读性。泛型的本质是类型参数化，但编译之后会执行类型擦除，这样就可以和 Java 5 之前的二进制类库进行兼容。本文也介绍了迭代器（Iterator）的使用，使用迭代器的好处是不用关注容器的内部细节，用同样的方式遍历不同类型的容器。
点击此处下载本文源码
[bookmark: 更多资源下载交流请加微信morstrong加入永久会员网盘更新更快捷]更多资源下载交流请加微信：Morstrong,加入永久会员,网盘更新更快捷！
[bookmark: 本资源由微信公众号光明顶一号提供支持]本资源由微信公众号：光明顶一号，提供支持
rId24.png
Arraylist<String> arraylist = ArrayList()
arrayList. add()
arrayList. add(24)

add (java.Jang String) in ArrayList cannot be applied
to (int)

rId35.png
Arraylist arr = new ArrayList();

("Java") ;

List<Object> List = hrr;
list. add("Java") ;
list.add(24) ;
list.set(0, “JWM");

List<?> 1istd = arr;
1ist2. add("Java’) ;
list2.set (0, “TVM));

rId37.png
List<Object> obilist = new ArrayList<>();
List<String> new ArrayList> () ;
objList = strl:

rId39.png
List list = new ArrayList();

List<Object> obilist = new ArrayList<>();
List<String> strList = new ArrayList<();
List = strlist;

