[bookmark: jdk-原生动态代理是怎么实现的-面试题]JDK 原生动态代理是怎么实现的 + 面试题
[bookmark: 反射]反射
反射机制是 Java 语言提供的一种基础功能，赋予程序在运行时自省（introspect）的能力。简单来说就是通过反射，可以在运行期间获取、检测和调用对象的属性和方法。
[bookmark: 反射的使用场景]反射的使用场景
在现实中反射的使用场景有很多，比如以下几个。
使用场景一 ：编程工具 IDEA 或 Eclipse 等，在写代码时会有代码（属性或方法名）提示，就是因为使用了反射。
使用场景二 ：很多知名的框架，为了让程序更优雅更简洁，也会使用到反射。
例如， Spring 可以通过配置来加载不同的类，调用不同的方法，代码如下所示：
<bean id="person" class="com.spring.beans.Person" init-method="initPerson">
</bean>
例如， MyBatis 在 Mapper 使用外部类的 SQL 构建查询时，代码如下所示：
@SelectProvider(type = PersonSql.class, method = "getListSql")
List<Person> getList();
class PersonSql {
 public String getListSql() {
 String sql = new SQL() {{
 SELECT("*");
 FROM("person");
 }}.toString();
 return sql;
 }
}
使用场景三 ：数据库连接池，也会使用反射调用不同类型的数据库驱动，代码如下所示：
String url = "jdbc:mysql://127.0.0.1:3306/mydb";
String username = "root";
String password = "root";
Class.forName("com.mysql.jdbc.Driver");
Connection connection = DriverManager.getConnection(url, username, password);
当然反射还有其他很多类似的使用场景，这里就不一一列举，读者可以举一反三，想想在平常的开发中，还有哪些使用了反射功能的场景。
[bookmark: 反射的基本使用]反射的基本使用
下来我们通过反射调用类中的某个方法，来学习反射的基本使用。
使用反射调用类中的方法，分为三种情况：
· 调用静态方法
· 调用公共方法
· 调用私有方法
假设有一个实体类 MyReflect 包含了以上三种方法，代码如下：
package com.interview.chapter4;
class MyReflect {
 // 静态方法
 public static void staticMd() {
 System.out.println("Static Method");
 }
 // 公共方法
 public void publicMd() {
 System.out.println("Public Method");
 }
 // 私有方法
 private void privateMd() {
 System.out.println("Private Method");
 }
}
下面分别来看，使用反射如何调用以上三种类型的方法。
[bookmark: 反射调用静态方法]① 反射调用静态方法
Class myClass = Class.forName("com.interview.chapter4.MyReflect");
Method method = myClass.getMethod("staticMd");
method.invoke(myClass);
[bookmark: 反射调用公共方法]② 反射调用公共方法
Class myClass = Class.forName("com.interview.chapter4.MyReflect");
// 创建实例对象（相当于 new ）
Object instance = myClass.newInstance();
Method method2 = myClass.getMethod("publicMd");
method2.invoke(instance);
[bookmark: 反射调用私有方法]③ 反射调用私有方法
Class myClass = Class.forName("com.interview.chapter4.MyReflect");
// 创建实例对象（相当于 new ）
Object object = myClass.newInstance();
Method method3 = myClass.getDeclaredMethod("privateMd");
method3.setAccessible(true);
method3.invoke(object);
[bookmark: 反射使用总结]反射使用总结
反射获取调用类可以通过 Class.forName()，反射获取类实例要通过 newInstance()，相当于 new 一个新对象，反射获取方法要通过 getMethod()，获取到类方法之后使用 invoke() 对类方法进行调用。如果是类方法为私有方法的话，则需要通过 setAccessible(true) 来修改方法的访问限制，以上的这些操作就是反射的基本使用。
[bookmark: 动态代理]动态代理
动态代理可以理解为，本来应该自己做的事情，却交给别人代为处理，这个过程就叫做动态代理。
[bookmark: 动态代理的使用场景]动态代理的使用场景
动态代理被广为人知的使用场景是 Spring 中的面向切面编程（AOP）。例如，依赖注入 @Autowired 和事务注解 @Transactional 等，都是利用动态代理实现的。
动态代理还可以封装一些 RPC 调用，也可以通过代理实现一个全局拦截器等。
[bookmark: 动态代理和反射的关系]动态代理和反射的关系
JDK 原生提供的动态代理就是通过反射实现的，但动态代理的实现方式还可以是 ASM（一个短小精悍的字节码操作框架）、cglib（基于 ASM）等，并不局限于反射。
下面我们分别来看：JDK 原生动态代理和 cglib 的实现。
[bookmark: jdk-原生动态代理]1）JDK 原生动态代理
interface Animal {
 void eat();
}
class Dog implements Animal {
 @Override
 public void eat() {
 System.out.println("The dog is eating");
 }
}
class Cat implements Animal {
 @Override
 public void eat() {
 System.out.println("The cat is eating");
 }
}

// JDK 代理类
class AnimalProxy implements InvocationHandler {
 private Object target; // 代理对象
 public Object getInstance(Object target) {
 this.target = target;
 // 取得代理对象
 return Proxy.newProxyInstance(target.getClass().getClassLoader(), target.getClass().getInterfaces(), this);
 }
 @Override
 public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
 System.out.println("调用前");
 Object result = method.invoke(target, args); // 方法调用
 System.out.println("调用后");
 return result;
 }
}

public static void main(String[] args) {
 // JDK 动态代理调用
 AnimalProxy proxy = new AnimalProxy();
 Animal dogProxy = (Animal) proxy.getInstance(new Dog());
 dogProxy.eat();
}
以上代码，我们实现了通过动态代理，在所有请求前、后都打印了一个简单的信息。
注意： JDK Proxy 只能代理实现接口的类（即使是 extends 继承类也是不可以代理的）。
[bookmark: cglib-动态代理]2）cglib 动态代理
要是用 cglib 实现要添加对 cglib 的引用，如果是 maven 项目的话，直接添加以下代码：
<dependency>
 <groupId>cglib</groupId>
 <artifactId>cglib</artifactId>
 <version>3.2.12</version>
</dependency>
cglib 的具体实现，请参考以下代码：
class Panda {
 public void eat() {
 System.out.println("The panda is eating");
 }
}
class CglibProxy implements MethodInterceptor {
 private Object target; // 代理对象
 public Object getInstance(Object target) {
 this.target = target;
 Enhancer enhancer = new Enhancer();
 // 设置父类为实例类
 enhancer.setSuperclass(this.target.getClass());
 // 回调方法
 enhancer.setCallback(this);
 // 创建代理对象
 return enhancer.create();
 }
 public Object intercept(Object o, Method method, Object[] objects, MethodProxy methodProxy) throws Throwable {
 System.out.println("调用前");
 Object result = methodProxy.invokeSuper(o, objects); // 执行方法调用
 System.out.println("调用后");
 return result;
 }
}
public static void main(String[] args) {
 // cglib 动态代理调用
 CglibProxy proxy = new CglibProxy();
 Panda panda = (Panda)proxy.getInstance(new Panda());
 panda.eat();
}
以上程序执行的结果：
调用前
The panda is eating
调用后
由以上代码可以知道，cglib 的调用通过实现 MethodInterceptor 接口的 intercept 方法，调用 invokeSuper 进行动态代理的。它可以直接对普通类进行动态代理，并不需要像 JDK 代理那样，需要通过接口来完成，值得一提的是 Spring 的动态代理也是通过 cglib 实现的。
注意 ：cglib 底层是通过子类继承被代理对象的方式实现动态代理的，因此代理类不能是最终类（final），否则就会报错 java.lang.IllegalArgumentException: Cannot subclass final class xxx。
[bookmark: 相关面试题]相关面试题
[bookmark: 动态代理解决了什么问题]1.动态代理解决了什么问题？
答：首先它是一个代理机制，如果熟悉设计模式中的代理模式，我们会知道，代理可以看作是对调用目标的一个包装，这样我们对目标代码的调用不是直接发生的，而是通过代理完成，通过代理可以让调用者与实现者之间解耦。比如进行 RPC 调用，通过代理，可以提供更加友善的界面；还可以通过代理，做一个全局的拦截器。
[bookmark: 动态代理和反射的关系是什么]2.动态代理和反射的关系是什么？
答：反射可以用来实现动态代理，但动态代理还有其他的实现方式，比如 ASM（一个短小精悍的字节码操作框架）、cglib 等。
[bookmark: 以下描述错误的是]3.以下描述错误的是？
A：cglib 的性能更高
B：Spring 中有使用 cglib 来实现动态代理
C：Spring 中有使用 JDK 原生的动态代理
D：JDK 原生动态代理性能更高
答：D
题目解析：Spring 动态代理的实现方式有两种：cglib 和 JDK 原生动态代理。
[bookmark: 请补全以下代码]4.请补全以下代码？
class MyReflect {
 // 私有方法
 private void privateMd() {
 System.out.println("Private Method");
 }
}
class ReflectTest {
 public static void main(String[] args) throws ClassNotFoundException, NoSuchMethodException, InvocationTargetException, IllegalAccessException, InstantiationException {
 Class myClass = Class.forName("MyReflect");
 Object object = myClass.newInstance();
 // 补充此行代码
 method.setAccessible(true);
 method.invoke(object);
 }
}
答：Method method = myClass.getDeclaredMethod(“privateMd”);
题目解析：此题主要考的是私有方法的获取，私有方法的获取并不是通过 getMethod() 方式，而是通过 getDeclaredMethod() 获取的。
[bookmark: cglib-可以代理任何类这句话对吗为什么]5.cglib 可以代理任何类这句话对吗？为什么？
答：这句话不完全对，因为 cglib 只能代理可以有子类的普通类，对于像最终类（final），cglib 是不能实现动态代理的，因为 cglib 的底层是通过继承代理类的子类来实现动态代理的，所以不能被继承类无法使用 cglib。
[bookmark: jdk-原生动态代理和-cglib-有什么区别]6.JDK 原生动态代理和 cglib 有什么区别？
答：JDK 原生动态代理和 cglib 区别如下：
· JDK 原生动态代理是基于接口实现的，不需要添加任何依赖，可以平滑的支持 JDK 版本的升级；
· cglib 不需要实现接口，可以直接代理普通类，需要添加依赖包，性能更高。
[bookmark: 为什么-jdk-原生的动态代理必须要通过接口来完成]7.为什么 JDK 原生的动态代理必须要通过接口来完成？
答：这是由于 JDK 原生设计的原因，来看动态代理的实现方法 newProxyInstance() 的源码：
/**
 *
 * @param loader the class loader to define the proxy class
 * @param interfaces the list of interfaces for the proxy class to implement
 *
 */
@CallerSensitive
public static Object newProxyInstance(ClassLoader loader,
 Class<?>[] interfaces,
 InvocationHandler h)
 throws IllegalArgumentException
{
// 省略其他代码
来看前两个参数的声明：
· loader：为类加载器，也就是 target.getClass().getClassLoader()
· interfaces：接口代理类的接口实现列表
看了上面的参数说明，我们就明白了，要使用 JDK 原生的动态只能通过实现接口来完成。
[bookmark: 总结]总结
通过本文可以知道 JDK 原生动态代理是使用反射实现的，但动态代理的实现方式不止有反射，还可以是 ASM（一个短小精悍的字节码操作框架）、cglib（基于 ASM）等。其中 JDK 原生的动态代理是通过接口实现的，而 cglib 是通过子类实现的，因此 cglib 不能代理最终类（final）。而反射不但可以反射调用静态方法，还可以反射调用普通方法和私有方法，其中调用私有方法时要设置 setAccessible 为 true。
点击此处下载本文源码
[bookmark: 更多资源下载交流请加微信morstrong加入永久会员网盘更新更快捷]更多资源下载交流请加微信：Morstrong,加入永久会员,网盘更新更快捷！
[bookmark: 本资源由微信公众号光明顶一号提供支持]本资源由微信公众号：光明顶一号，提供支持
