[bookmark: mybatis-核心组件-面试题]MyBatis 核心组件 + 面试题
[bookmark: mybatis-介绍]MyBatis 介绍
MyBatis 是一款优秀的 ORM（Object Relational Mapping，对象关系映射）框架，它可以通过对象和数据库之间的映射，将程序中的对象自动存储到数据库中。它是 Apache 提供的一个开源项目，之前的名字叫做 iBatis，2010 年迁移到了 Google Code，并且将名字改为我们现在所熟知的 MyBatis，又于 2013 年 11 月迁移到了 Github。
MyBatis 提供了普通 SQL 查询、事务、存储过程等功能，它的优缺点如下。
优点 ：
· 相比于 JDBC 需要编写的代码更少
· 使用灵活，支持动态 SQL
· 提供映射标签，支持对象与数据库的字段关系映射
缺点 ：
· SQL 语句依赖于数据库，数据库移植性差
· SQL 语句编写工作量大，尤其在表、字段比较多的情况下
总体来说，MyBatis 是一个非常优秀和灵活的数据持久化框架，适用于需求多变的互联网项目，也是当前主流的 ORM 框架。
[bookmark: mybatis-重要组件]MyBatis 重要组件
MyBatis 中的重要组件如下：
· Mapper 配置：用于组织具体的查询业务和映射数据库的字段关系，可以使用 XML 格式或 Java 注解格式来实现；
· Mapper 接口：数据操作接口也就是通常说的 DAO 接口，要和 Mapper 配置文件中的方法一一对应；
· Executor：MyBatis 中所有的 Mapper 语句的执行都是通过 Executor 执行的；
· SqlSession：类似于 JDBC 中的 Connection，可以用 SqlSession 实例来直接执行被映射的 SQL 语句；
· SqlSessionFactory：SqlSessionFactory 是创建 SqlSession 的工厂，可以通过 SqlSession openSession() 方法创建 SqlSession 对象。
[bookmark: mybatis-执行流程]MyBatis 执行流程
MyBatis 完整执行流程如下图所示：
[image: https://images.gitbook.cn/4070e4c0-da75-11e9-b7a4-5f21fd84c626]
1
MyBatis 执行流程说明：
1. 首先加载 Mapper 配置的 SQL 映射文件，或者是注解的相关 SQL 内容。
1. 创建会话工厂，MyBatis 通过读取配置文件的信息来构造出会话工厂（SqlSessionFactory）。
1. 创建会话，根据会话工厂，MyBatis 就可以通过它来创建会话对象（SqlSession），会话对象是一个接口，该接口中包含了对数据库操作的增、删、改、查方法。
1. 创建执行器，因为会话对象本身不能直接操作数据库，所以它使用了一个叫做数据库执行器（Executor）的接口来帮它执行操作。
1. 封装 SQL 对象，在这一步，执行器将待处理的 SQL 信息封装到一个对象中（MappedStatement），该对象包括 SQL 语句、输入参数映射信息（Java 简单类型、HashMap 或 POJO）和输出结果映射信息（Java 简单类型、HashMap 或 POJO）。
1. 操作数据库，拥有了执行器和 SQL 信息封装对象就使用它们访问数据库了，最后再返回操作结果，结束流程。
[bookmark: mybatis-xml-版]MyBatis XML 版
MyBatis 使用分为两个版本：XML 版和 Java 注解版。接下来我们使用 Spring Boot 结合 MyBatis 的 XML 版，来实现对数据库的基本操作，步骤如下。
[bookmark: 创建数据表]1）创建数据表
drop table if exists `t_user`;
create table `t_user` (
 `id` bigint(20) not null auto_increment comment '主键id',
 `username` varchar(32) default null comment '用户名',
 `password` varchar(32) default null comment '密码',
 `nick_name` varchar(32) default null,
 primary key (`id`)
) engine=innodb auto_increment=1 default charset=utf8;
[bookmark: 添加依赖]2）添加依赖
在项目添加对 MyBatis 和 MySQL 支持的依赖包，在 pom.xml 文件中添加如下代码：
<!-- https://mvnrepository.com/artifact/org.mybatis.spring.boot/mybatis-spring-boot-starter -->
<dependency>
 <groupId>org.mybatis.spring.boot</groupId>
 <artifactId>mybatis-spring-boot-starter</artifactId>
 <version>2.1.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java -->
<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>8.0.16</version>
</dependency>
mybatis-spring-boot-starter 是 MyBatis 官方帮助我们快速集成 Spring Boot 提供的一个组件包，mybatis- spring-boot-starter 2.1.0 对应 MyBatis 的版本是 3.5.2。
[bookmark: 增加配置文件]3）增加配置文件
在 application.yml 文件中添加以下内容：
spring:
 datasource:
 url: jdbc:mysql://localhost:3306/learndb?serverTimezone=UTC&useUnicode=true&characterEncoding=utf-8&useSSL=true
 username: root
 password: root
 driver-class-name: com.mysql.cj.jdbc.Driver
mybatis:
 config-location: classpath:mybatis/mybatis-config.xml
 mapper-locations: classpath:mybatis/mapper/*.xml
 type-aliases-package: com.interview.mybatislearning.model
其中：
· mybatis.config-location：配置 MyBatis 基础属性；
· mybatis.mapper-locations：配置 Mapper 对应的 XML 文件路径；
· mybatis.type-aliases-package：配置项目中实体类包路径。
注：如果配置文件使用的是 application.properties，配置内容是相同的，只是内容格式不同。
[bookmark: 创建实体类]4）创建实体类
public class UserEntity implements Serializable {
 private static final long serialVersionUID = -5980266333958177104L;
 private Integer id;
 private String userName;
 private String passWord;
 private String nickName;
 public UserEntity(String userName, String passWord, String nickName) {
 this.userName = userName;
 this.passWord = passWord;
 this.nickName = nickName;
 }
 public Integer getId() {
 return id;
 }
 public void setId(Integer id) {
 this.id = id;
 }
 public String getUserName() {
 return userName;
 }
 public void setUserName(String userName) {
 this.userName = userName;
 }
 public String getPassWord() {
 return passWord;
 }
 public void setPassWord(String passWord) {
 this.passWord = passWord;
 }
 public String getNickName() {
 return nickName;
 }
 public void setNickName(String nickName) {
 this.nickName = nickName;
 }
}
[bookmark: 创建-xml-文件]5）创建 XML 文件
mybatis-config.xml （基础配置文件）：
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE configuration PUBLIC "-//mybatis.org//DTD Config 3.0//EN" "http://mybatis.org/dtd/mybatis-3-config.dtd">
<configuration>
 <typeAliases>
 <typeAlias alias="Integer" type="java.lang.Integer"/>
 <typeAlias alias="Long" type="java.lang.Long"/>
 <typeAlias alias="HashMap" type="java.util.HashMap"/>
 <typeAlias alias="LinkedHashMap" type="java.util.LinkedHashMap"/>
 <typeAlias alias="ArrayList" type="java.util.ArrayList"/>
 <typeAlias alias="LinkedList" type="java.util.LinkedList"/>
 </typeAliases>
</configuration>
mybatis-config.xml 主要是为常用的数据类型设置别名，用于减少类完全限定名的长度，比如：resultType="Integer" 完整示例代码如下：
<select id="getAllCount" resultType="Integer">
 select
 count(*)
 from t_user
</select>
UserMapper.xml （业务配置文件）：
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd" >
<mapper namespace="com.interview.mybatislearning.mapper.UserMapper">
 <resultMap id="BaseResultMap" type="com.interview.mybatislearning.model.UserEntity" >
 <id column="id" property="id" jdbcType="BIGINT" />
 <result column="username" property="userName" jdbcType="VARCHAR" />
 <result column="password" property="passWord" jdbcType="VARCHAR" />
 <result column="nick_name" property="nickName" jdbcType="VARCHAR" />
 </resultMap>
 <sql id="Base_Column_List" >
 id, username, password, nick_name
 </sql>
 <sql id="Base_Where_List">
 <if test="userName != null and userName != ''">
 and userName = #{userName}
 </if>
 </sql>
 <select id="getAll" resultMap="BaseResultMap" >
 SELECT
 <include refid="Base_Column_List" />
 FROM t_user
 </select>
 <select id="getOne" parameterType="Long" resultMap="BaseResultMap" >
 SELECT
 <include refid="Base_Column_List" />
 FROM t_user
 WHERE id = #{id}
 </select>
 <insert id="insert" parameterType="com.interview.mybatislearning.model.UserEntity" >
 INSERT INTO
 t_user
 (username,password,nick_name)
 VALUES
 (#{userName}, #{passWord}, #{nickName})
 </insert>
 <update id="update" parameterType="com.interview.mybatislearning.model.UserEntity" >
 UPDATE
 t_user
 SET
 <if test="userName != null">username = #{userName},</if>
 <if test="passWord != null">password = #{passWord},</if>
 nick_name = #{nickName}
 WHERE
 id = #{id}
 </update>
 <delete id="delete" parameterType="Long" >
 DELETE FROM
 t_user
 WHERE
 id =#{id}
 </delete>
</mapper>
以上配置我们增加了增删改查等基础方法。
[bookmark: 增加-mapper-文件]6）增加 Mapper 文件
此步骤我们需要创建一个与 XML 对应的业务 Mapper 接口，代码如下：
public interface UserMapper {
 List<UserEntity> getAll();
 UserEntity getOne(Long id);
 void insert(UserEntity user);
 void update(UserEntity user);
 void delete(Long id);
}
[bookmark: 添加-mapper-包扫描]7）添加 Mapper 包扫描
在启动类中添加 @MapperScan，设置 Spring Boot 启动的时候会自动加载包路径下的 Mapper。
@SpringBootApplication
@MapperScan("com.interview.mybatislearning.mapper")
public class MyBatisLearningApplication {
 public static void main(String[] args) {
 SpringApplication.run(MyBatisLearningApplication.class, args);
 }
}
[bookmark: 编写测试代码]8）编写测试代码
经过以上步骤之后，整个 MyBatis 的集成就算完成了。接下来我们写一个单元测试，验证一下。
@RunWith(SpringRunner.class)
@SpringBootTest
public class MybatislearningApplicationTests {
 @Resource
 private UserMapper userMapper;
 @Test
 public void testInsert() {
 userMapper.insert(new UserEntity("laowang", "123456", "老王"));
 Assert.assertEquals(1, userMapper.getAll().size());
 }
}
[bookmark: 总结]总结
通过本文我们知道 MyBatis 是一个优秀和灵活的数据持久化框架，MyBatis 包含 Mapper 配置、Mapper 接口、Executor、SqlSession、SqlSessionFactory 等几个重要的组件，知道了 MyBatis 基本流程：MyBatis 首先加载 Mapper 配置和 SQL 映射文件，通过创建会话工厂得到 SqlSession 对象，再执行 SQL 语句并返回操作信息。我们也使用 XML 的方式，实现了 MyBatis 对数据库的基础操作。
点击此处下载本文源码
[bookmark: 更多资源下载交流请加微信morstrong加入永久会员网盘更新更快捷]更多资源下载交流请加微信：Morstrong,加入永久会员,网盘更新更快捷！
[bookmark: 本资源由微信公众号光明顶一号提供支持]本资源由微信公众号：光明顶一号，提供支持
rId24.png
[
v J—
INFERELH B
[
v
SRESET HALST /L> HESQLHE T /
[
v
oREaE > GRRiTE

