[bookmark: 对数据库的基本操作步骤-面试题]对数据库的基本操作步骤 + 面试题
MyBatis 最初的设计是基于 XML 配置文件的，但随着 Java 的发展（Java 1.5 开始引入注解）和 MyBatis 自身的迭代升级，终于在 MyBatis 3 之后就开始支持基于注解的开发了。
下面我们使用 Spring Boot + MyBatis 注解的方式，来实现对数据库的基本操作，具体实现步骤如下。
[bookmark: mybatis-注解版]MyBatis 注解版
[bookmark: 创建数据表]1）创建数据表
drop table if exists `t_user`;
create table `t_user` (
 `id` bigint(20) not null auto_increment comment '主键id',
 `username` varchar(32) default null comment '用户名',
 `password` varchar(32) default null comment '密码',
 `nick_name` varchar(32) default null,
 primary key (`id`)
) engine=innodb auto_increment=1 default charset=utf8;
[bookmark: 添加依赖]2）添加依赖
<!-- https://mvnrepository.com/artifact/org.mybatis.spring.boot/mybatis-spring-boot-starter -->
<dependency>
 <groupId>org.mybatis.spring.boot</groupId>
 <artifactId>mybatis-spring-boot-starter</artifactId>
 <version>2.1.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java -->
<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>8.0.16</version>
</dependency>
[bookmark: 增加配置文件]3）增加配置文件
在 application.yml 文件中添加以下内容：
spring:
 datasource:
 url: jdbc:mysql://localhost:3306/learndb?serverTimezone=UTC&useUnicode=true&characterEncoding=utf-8&useSSL=true
 username: root
 password: root
 driver-class-name: com.mysql.cj.jdbc.Driver
mybatis:
 type-aliases-package: com.interview.model
[bookmark: 创建实体类]4）创建实体类
public class UserEntity implements Serializable {
 private static final long serialVersionUID = -5980266333958177105L;
 private Integer id;
 private String userName;
 private String passWord;
 private String nickName;
 public UserEntity(String userName, String passWord, String nickName) {
 this.userName = userName;
 this.passWord = passWord;
 this.nickName = nickName;
 }
 public Integer getId() {
 return id;
 }
 public void setId(Integer id) {
 this.id = id;
 }
 public String getUserName() {
 return userName;
 }
 public void setUserName(String userName) {
 this.userName = userName;
 }
 public String getPassWord() {
 return passWord;
 }
 public void setPassWord(String passWord) {
 this.passWord = passWord;
 }
 public String getNickName() {
 return nickName;
 }
 public void setNickName(String nickName) {
 this.nickName = nickName;
 }
}
[bookmark: 增加-mapper-文件]5）增加 Mapper 文件
public interface UserMapper {
 @Select("select * from t_user")
 @Results({
 @Result(property = "nickName", column = "nick_name")
 })
 List<UserEntity> getAll();

 @Select("select * from t_user where id = #{id}")
 @Results({
 @Result(property = "nickName", column = "nick_name")
 })
 UserEntity getOne(Long id);

 @Insert("insert into t_user(username,password,nick_name) values(#{userName}, #{passWord}, #{nickName})")
 void insert(UserEntity user);

 @Update("update t_user set username=#{userName},nick_name=#{nickName} where id =#{id}")
 void update(UserEntity user);

 @Update({"<script> ",
 "update t_user ",
 "<set>",
 " <if test='userName != null'>userName=#{userName},</if>",
 " <if test='nickName != null'>nick_name=#{nickName},</if>",
 " </set> ",
 "where id=#{id} ",
 "</script>"})
 void updateUserEntity(UserEntity user);

 @Delete("delete from t_user where id =#{id}")
 void delete(Long id);
}
使用 @Select、@Insert、@Update、@Delete、@Results、@Result 等注解来替代 XML 配置文件。
[bookmark: 添加-mapper-包扫描]6）添加 Mapper 包扫描
在启动类中添加 @MapperScan，设置 Spring Boot 启动的时候会自动加载包路径下的 Mapper。
@SpringBootApplication
@MapperScan("com.interview.mapper")
public class MybatisApplication {
 public static void main(String[] args) {
 SpringApplication.run(MybatisApplication.class, args);
 }
}
[bookmark: 编写测试代码]7）编写测试代码
@RunWith(SpringRunner.class)
@SpringBootTest
public class MybatisApplicationTests {
 @Autowired
 private UserMapper userMapper;
 @Test
 public void testInsert() {
 userMapper.insert(new UserEntity("laowang", "123456", "老王"));
 Assert.assertEquals(1, userMapper.getAll().size());
 }
}
[bookmark: 相关面试题]相关面试题
[bookmark: mybatis-有哪些优缺点]1.MyBatis 有哪些优缺点？
答：MyBatis 优缺点如下：
优点：
· 相比于 JDBC 需要编写的代码更少
· 使用灵活，支持动态 SQL
· 提供映射标签，支持对象与数据库的字段关系映射
缺点：
· SQL 语句依赖于数据库，数据库移植性差
· SQL 语句编写工作量大，尤其在表、字段比较多的情况下
总体来说，MyBatis 是一个非常不错的持久层解决方案，它专注于 SQL 本身，非常灵活，适用于需求变化较多的互联网项目，也是当前国内主流的 ORM 框架。
[bookmark: 以下不属于-mybatis-优点的是]2.以下不属于 MyBatis 优点的是？
A：可以灵活的编辑 SQL 语句
B：很好的支持不同数据库之间的迁移
C：能够很好的和 Spring 框架集成
D：提供映射标签支持对象和数据库的字段映射
答：B
题目解析：因为 MyBatis 需要自己编写 SQL 语句，但每个数据库的 SQL 语句有略有差异，所以 MyBatis 不能很好的支持不同数据库之间的迁移。
[bookmark: mybatis-和-hibernate-有哪些不同]3.MyBatis 和 Hibernate 有哪些不同？
答：MyBatis 和 Hibernate 都是非常优秀的 ORM 框架，它们的区别如下：
· 灵活性：MyBatis 更加灵活，自己可以写 SQL 语句，使用起来比较方便；
· 可移植性：MyBatis 有很多自己写的 SQL，因为每个数据库的 SQL 可以不相同，所以可移植性比较差；
· 开发效率：Hibernate 对 SQL 语句做了封装，让开发者可以直接使用，因此开发效率更高；
· 学习和使用门槛：MyBatis 入门比较简单，使用门槛也更低。
[bookmark: 和有什么区别]4.“#”和“$”有什么区别？
答：“#”是预编译处理，“$”是字符替换。 在使用“#”时，MyBatis 会将 SQL 中的参数替换成“?”，配合 PreparedStatement 的 set 方法赋值，这样可以有效的防止 SQL 注入，保证程序的运行安全。
[bookmark: 在-mybatis-中怎么解决实体类属性名和表字段名不一致的问题]5.在 MyBatis 中怎么解决实体类属性名和表字段名不一致的问题？
答：通常的解决方案有以下两种方式。
① 在 SQL 语句中重命名为实体类的属性名，可参考以下配置：
<select id="selectorder" parametertype="int" resultetype="com.interview.order">
 select order_id id, order_no orderno form order where order_id=#{id};
</select>
② 通过 <resultMap> 映射对应关系，可参考以下配置：
<resultMap id="BaseResultMap" type="com.interview.mybatislearning.model.UserEntity" >
 <id column="id" property="id" jdbcType="BIGINT" />
 <result column="username" property="userName" jdbcType="VARCHAR" />
 <result column="password" property="passWord" jdbcType="VARCHAR" />
 <result column="nick_name" property="nickName" jdbcType="VARCHAR" />
</resultMap>
 <select id="getAll" resultMap="BaseResultMap">
 select * from t_user
</select>
[bookmark: 在-mybatis-中如何实现-like-查询]6.在 MyBatis 中如何实现 like 查询？
答：可以在 Java 代码中添加 SQL 通配符来实现 like 查询，这样也可以有效的防治 SQL 注入，具体实现如下：
Java 代码：
String name = "%wang%":
List<User> list = mapper.likeName(name);
Mapper 配置：
<select id="likeName">
 select * form t_user where name like #{name};
</select>
[bookmark: mybatis-有几种分页方式]7.MyBatis 有几种分页方式？
答：MyBatis 的分页方式有以下两种：
· 逻辑分页，使用 MyBatis 自带的 RowBounds 进行分页，它是一次性查询很多数据，然后在数据中再进行检索；
· 物理分页，自己手写 SQL 分页或使用分页插件 PageHelper，去数据库查询指定条数的分页数据形式。
[bookmark: rowbounds-是一次性查询全部结果吗为什么]8.RowBounds 是一次性查询全部结果吗？为什么？
答：RowBounds 表面是在“所有”数据中检索数据，其实并非是一次性查询出所有数据。因为 MyBatis 是对 JDBC 的封装，在 JDBC 驱动中有一个 Fetch Size 的配置，它规定了每次最多从数据库查询多少条数据，假如你要查询更多数据，它会在执行 next() 的时候，去查询更多的数据。 就好比你去自动取款机取 10000 元，但取款机每次最多能取 2500 元，要取 4 次才能把钱取完。对于 JDBC 来说也是一样，这样做的好处是可以有效的防止内存溢出。
[bookmark: Xc9ca98beba015fddb1d050628669de261b8dabe]9.为什么阿里巴巴不允许使用 HashMap 或 Hashtable 作为查询结果集直接输出？
答：因为使用 HashMap 或 Hashtable 作为查询结果集直接输出，会导致值类型不可控，给调用人员造成困扰，给系统带来更多不稳定的因素。
[bookmark: 什么是动态-sql]10.什么是动态 SQL？
答：动态 SQL 是指可以根据不同的参数信息来动态拼接的不确定的 SQL 叫做动态 SQL，MyBatis 动态 SQL 的主要元素有：if、choose/when/otherwise、trim、where、set、foreach 等。 以 if 标签的使用为例：
<select id="findUser" parameterType="com.interview.entity.User" resultType="com.interview.entity.User">
 select * from t_user where
 <if test="id!=null">
 id = #{id}
 </if>
 <if test="username!=null">
 and username = #{username}
 </if>
 <if test="password!=null">
 and password = #{password}
 </if>
</select>
[bookmark: 为什么不建议在程序中滥用事务]11.为什么不建议在程序中滥用事务？
答：因为事务的滥用会影响数据的 QPS（每秒查询率），另外使用事务的地方还要考虑各方面回滚的方案，如缓存回滚、搜索引擎回滚、消息补偿、统计修正等。
[bookmark: 如何开启-mybatis-的延迟加载]12.如何开启 MyBatis 的延迟加载？
答：只需要在 mybatis-config.xml 设置 <setting name="lazyLoadingEnabled" value="true"/> 即可打开延迟缓存功能，完整配置文件如下：
<configuration>
 <settings>
 <!-- 开启延迟加载 -->
 <setting name="lazyLoadingEnabled" value="true"/>
 </settings>
</configuration>
[bookmark: 什么是-mybatis-的一级缓存和二级缓存]13.什么是 MyBatis 的一级缓存和二级缓存？
答：MyBatis 缓存如下：
· 一级缓存是 SqlSession 级别的，是 MyBatis 自带的缓存功能，并且无法关闭，因此当有两个 SqlSession 访问相同的 SQL 时，一级缓存也不会生效，需要查询两次数据库；
· 二级缓存是 Mapper 级别的，只要是同一个 Mapper，无论使用多少个 SqlSession 来操作，数据都是共享的，多个不同的 SqlSession 可以共用二级缓存，MyBatis 二级缓存默认是关闭的，需要使用时可手动开启，二级缓存也可以使用第三方的缓存，比如，使用 Ehcache 作为二级缓存。
手动开启二级缓存，配置如下：
<configuration>
 <settings>
 <!-- 开启二级缓存 -->
 <setting name="cacheEnabled" value="true"/>
 </settings>
</configuration>
[bookmark: 如何设置-ehcache-为-mybatis-的二级缓存]14.如何设置 Ehcache 为 MyBatis 的二级缓存？
答：可直接在 XML 中配置开启 EhcacheCache，代码如下：
<mapper namespace="com.interview.repository.ClassesReposirory">
 <!-- 开启二级缓存 -->
 <cache type="org.mybatis.caches.ehcache.EhcacheCache" >
 <!-- 缓存创建以后，最后一次访问缓存的时间至失效的时间间隔 -->
 <property name="timeToIdleSeconds" value="3600"/>
 <!-- 缓存自创建时间起至失效的时间间隔-->
 <property name="timeToLiveSeconds" value="3600"/>
 <!-- 缓存回收策略，LRU 移除近期最少使用的对象 -->
 <property name="memoryStoreEvictionPolicy" value="LRU"/>
 </cache>

 <select id="findById" parameterType="java.lang.Long" resultType="com.interview.entity.Classes">
 select * from classes where id = #{id}
 </select>
</mapper>
[bookmark: mybatis-有哪些拦截器如何实现拦截功能]15.MyBatis 有哪些拦截器？如何实现拦截功能？
答：MyBatis 提供的连接器有以下 4 种。
· Executor：拦截内部执行器，它负责调用 StatementHandler 操作数据库，并把结果集通过 ResultSetHandler 进行自动映射，另外它还处理了二级缓存的操作。
· StatementHandler：拦截 SQL 语法构建的处理，它是 MyBatis 直接和数据库执行 SQL 脚本的对象，另外它也实现了 MyBatis 的一级缓存。
· ParameterHandler：拦截参数的处理。
· ResultSetHandler：拦截结果集的处理。
拦截功能具体实现如下：
@Intercepts({@Signature(type = Executor.class, method = "query",
 args = {MappedStatement.class, Object.class, RowBounds.class, ResultHandler.class})})
public class TestInterceptor implements Interceptor {
 public Object intercept(Invocation invocation) throws Throwable {
 Object target = invocation.getTarget(); //被代理对象
 Method method = invocation.getMethod(); //代理方法
 Object[] args = invocation.getArgs(); //方法参数
 // 方法拦截前执行代码块
 Object result = invocation.proceed();
 // 方法拦截后执行代码块
 return result;
 }
 public Object plugin(Object target) {
 return Plugin.wrap(target, this);
 }
}
[bookmark: 总结]总结
通过本文可以看出 MyBatis 注解版和 XML 版的主要区别是 Mapper 中的代码，注解版把之前在 XML 的 SQL 实现，全部都提到 Mapper 中了，这样就省去了配置 XML 的麻烦。
点击此处下载本文源码
[bookmark: 更多资源下载交流请加微信morstrong加入永久会员网盘更新更快捷]更多资源下载交流请加微信：Morstrong,加入永久会员,网盘更新更快捷！
[bookmark: 本资源由微信公众号光明顶一号提供支持]本资源由微信公众号：光明顶一号，提供支持
